Fig. S1.

Fig. S2.

1. Phosphoramidate Reaction

2. Phosphohistidine Immunoprecipitation

Library 1 Size: 2x109

Library 3 Size: 4x10⁹

Library 5 Size: 2x10⁹

Library 2 Size: 2x109

Library 4 Size: 2x10¹⁰

Fig. S4.

8

Fig. S5.

Fig. S6.

Fig. S10.

Fig. S11.

Fig. S12.

Fig. S13.

Fig. S14.

Fig. S15.

Fig. S17.

Fig. S21

Fig. S22.

Fig. S23.

Table S1.

Table S1. Mutagenic oligonucleotides used to generate libraries hSC44 1-6.

 Name
 Mutagenic Oligonucleotide Sequence

 hSC44.L1.1 CGTGCCAGTCAGTCCGTG(N4:10101070)(N3:10107010)(N3)(N2:10701010)(N3)(N4)AAC(N1:70101010)(N1)(N1)(N1)(N1)(N2)GTAGCCTGGTATCAACAG

 hSC44.L1.2 CGTGCCAGTCAGTCCGTG(N4:10101070)(N3:10107010)(N3)CGTAACAAG(N1:70101010)(N1)(N2:10701010)GTAGCCTGGTATCAACAG

hSC44_L3.1 TACTGTGTGGGGC(N2:10701010)(N1:70101010)(N4:10101070)TATGGCAGCGAAAACGATGCGTAT(N4)(N1)(N2)GCGTTCGGACAGGGTACC

hSC44.H1.1 GGCTTCAGCATTGATAGC(N4:10101070)(N1:70101010)(N4)(N3:10107010)(N3)(N2:10701010)TTTAGCTGGGTGCGTCAGGCC

hSC44.H2.1 CTGGAACATATTGGC(N4:10101070)(N1:70101010)(N4)CTG(N1)(N2:10701010)(N2)(N3:10107010)(N2)(N2)(N2)(SCGGCCGTGCGTTTTATGCC

hSC44.H3.2 GTGGAACATATTGGCTATCTG(N1:701010)(N1)(N1)(N2)(N2)(OGGGCGGC(N2)(N3):10107010)(N4:10101070)GCGTTTTATGCCAGCTGG hSC44.H3.1 GTCTATTATTGTGCT(N1:70101010)(N1)(N1)(N1)(N2):10701010)(N4:10101070)(N4)(N3):10107010)(N3)(N2)(N1)(N3)(N2)(N3)(N2)(N1)(N1)(N2)(N2)(N3)(N3)(N4)(N4)(N4)GCGATTTGGGGTCAAGGAACC hSC44.H3.2 GTCTATTATTGTGCT(N1:70101010)(N1)(N3):10107010)(N2:10701010)(N4:10101070)(N4)(N3)(N3)(N2)(N1)(N3)(N2)(N1)(N1)(N2)(CG(N3)(N4)(N4)(N4)GCGATTTGGGGTCAAGGAACC

hSC44.V.1 AGCATTGATAGCTATGGC(N4:10101070)(N4)(N4)(N1:70101010)(N3:10107010)(N2:10701010)TGGGTGCGTCAGGCCCCG

hSC44.V.2 GGTAAGGGCCTGGAA(N2:10701010)(N1:70101010)(N4:10101070)(N1)(N4)(N4)GGC(N4)(N1)(N4)CTGACCGCGGGC

hSC44.V.3 GGCCGTGCG(N4:10101070)(N4)(N4)TATGCC(N1:70101010)(N3:10107010)(N2:10701010)(N4)(N3)(N3)(N3)(N3)(N2)(N2)AG(N1)(N3)(N2)CGT(N1)(N3)(N2)ACTATAACC(N2)(N3)(N4)AACACAAAC

hSC44.V.4 GAAAACACA(N3:10107010)(N4:10101070)(N4)ACCCTAAAAATGAACAGC

Table S2.

	Day 1	Day 2	Day 3	Day 4	Day 5
BSA^\dagger	1%	1%	1%	1%	1%
Streptavidin [†]	10µg/mL	-	10µg/mL	-	10µg/mL
Neutravidin [†]	-	10µg/mL	-	10µg/mL	-
No PO4 ⁻ Peptide* ^{,†}	-	10nM	25nM	50nM	100nM
1-pTza Peptide* ^{,†}	-	1nM	5nM	10nM	20nM
3-pTza/pHis Peptide* ^{,‡}	100nM	100nM	50nM	25nM	10nM
No. Wells	24	12	8	6	4
No. Washes	4	6	8	10	12

Table S2. Final concentrations of reagents used on various days of affinity selections.

[†]Negative selections, [‡]Positive Selections

*Captured using 2µg/mL streptavidin/neutravidin on alternating days

Table S3.

Fab	Ligand	Protomers	Elbow angle (°)		
hec// e10	ACI Vana 2 nTza nantida	HL	138.9		
113044.310	ACLIANA-3-piza peplide	AB	157.3		
hSC11 S1C	ACI Vana-3-nHis pontido	HL	137.8		
113044.510		AB 157.1 HL 138.9 AB 159.7 Yana-3-pTza peptide HL 135.9 Yana - 3 - pTza peptide HL 135.9			
hSC44 S1C	_	HL	138.9		
113044.310	-	AB	159.7		
hSC44.S1C.20	ACLYana-3-pTza peptide	HL	135.9		
hSC44.S1C.20	ACLYana-3-pHis peptide	HL	135.8		
hSC44.S1CE.20	-	HL	165.3		
hSC44.S1CE.20	-	HL	172.6		
hSC44.S1C.20.N32F ^L	ACI Vana-3-nTza nentide	HL	165.1		
		ana-3-pTza peptide AB 147.9			
hSC44.S1C.20.N32F ^L	ACI Vana-3-nHis nentide	HL	165.4		
		AB	149.0		
hSC44.S1C.20.N32F ^L	-	HL	156.2		
hSC44.S1CE.20.N32F ^L	-	HL	156.1		

Table S3. Elbow angles of variants of hSC44 Fabs

Table S4.

Table S4. Data collection and refinement statistics for newly solved Fab-Antigen crystal structures.

Structure Name	hSC44.S1C	hSC44.S1C	hSC44.S1C	hSC44.S1C.20	hSC44.S1C.20	hSC44.S1CE.20	hSC44.S1CE.20	hSC44.S1C.20.N32F ^L	hSC44.S1C.20. N32F ^L	hSC44.S1C.20.N32FL	hSC44.S1CE.20.N32F
Combining site ligand	AGAG-3pTza-AGAG	AGAG-3pHis-AGAG	No peptide (citrate)	AGAG-3pTza-AGAG	AGAG-3pHis-AGAG	No peptide (GluH1')	No peptide (PO4)	AGAG-3pTza-AGAG	AGAG-3pHis-AGAG	No peptide (SO4)	No peptide (HEPES)
Data collection											
Beamline	SSRL 12-1	SSRL 12-1	APS 23-ID-B	APS 23-ID-D	SSRL 12-1	ALS 5.0.1	ALS 5.0.1	ALS 5.0.1	ALS 5.0.1	ALS 5.0.1	ALS 5.0.1
Wavelength (Å)	0.97946	0.97946	1.03317	1.0332	0.97946	0.97741	0.97741	0.97741	0.97741	0.97741	0.97741
Resolution (Å) ^a	39.34-1.95	38.72-2.20	46.91-1.75	41.04-1.85	34.82-1.90	47.17-2.45	49.79-2.40	47.25-1.98	47.19-2.09	48.05-1.94	46.27-1.84
Space group	P21212	P21212	P21212	C2	P21	P212121	P43212	P212121	P212121	P212121	P212121
Unit cell (Å)	92.50, 139.62, 73.62	93.25, 139.06, 73.71	93.82, 138.85, 73.21	79.96, 73.12, 88.07	44.11, 72.61, 70.33	49.7, 73.3, 148.5	72.3, 72.3, 205.9	71.55, 73.95, 239.65	71.28, 74.03, 239.28	69.47, 73.25, 96.11	48.57, 72.07, 152.2
(°)	90, 90, 90	90, 90, 90	90, 90, 90	90, 111.24, 90	90, 98.21, 90	90, 90, 90	90, 90, 90	90, 90, 90	90, 90, 90	90, 90, 90	90, 90, 90
Total reflections	733,426	637,037	688,286	155,586	148,666	127,101	219,439	538,821	418,880	284,579	293,288
Unique reflections	68,051(3151)	46,924(2432)	95,210(4089)	40,163(1984)	33,299(1333)	19,822(839)	22,383(1088)	89,758(4417)	71,747(3417)	36,687(1806)	46,607(2191)
Multiplicity	10.8(7.8)	12.9(9.4)	7.2(5.5)	3.9(3.3)	4.5(3.6)	6.4(5.7)	9.8(6.2)	6.0(5.6)	5.8(5.2)	7.8(7.6)	6.3(4.5)
Completeness (%)	97.5(91.3)	99.9(99.9)	98.1(85.3)	99.8(99.4)	96.1(77.1)	96.3(84.2)	100(99.7)	100(100)	95.2(92.7)	100(100)	99.2(94.4)
Mean (I)/ σ _i	13.1(1.7)	11.8(1.8)	10.0(1.6)	6.9(1.1)	9.9(2.8)	19.1(2.1)	28.0(2.7)	8.9(1.5)	13.9(1.5)	11.4(1.0)	16.0(1.2)
R _{merge} ^b (%)	14.3(193)	22.1(483)	12.4(117)	13.1(128)	16.2(120)	6.3(85.4)	7.1(76.1)	12.5(135)	10.1(130)	18.0(238)	10.0(178)
R _{meas} ^c (%)	14.9(205)	23.0(512)	13.3(129)	15.1(151)	18.3(141)	6.9(94.1)	7.5(83.0)	13.7(150)	11.0(144)	19.3(254)	10.8(200)
R _{pim} ^d (%)	4.4(67.3)	6.4(166)	4.9(52.9)	7.4(79.2)	8.2(71.9)	2.7(38.7)	2.3(32.2)	5.6(63.6)	4.4(61.1)	6.7(88.4)	4.2(90.4)
CC _{1/2} ^e (%)	99.8(47.2)	99.8(56.5)	99.7(41.1)	99.5(44.1)	99.2(55.0)	99.9(70.6)	99.9(80.2)	99.5(39.6)	99.7(43.2)	99.3(37.4)	99.6(37.1)
Refinement											
Refinement resolution (Å) ^a	39.34-1.95	38.72-2.20	46.91-1.75	41.04-1.85	34.82-1.90	47.17-2.45	49.79-2.40	47.25-1.98	47.2-2.09	48.05-1.94	46.27-1.84
# reflections in refinement (work/free)	64,623/3393	46,924/2489	90,339/4802	38,147/1978	31,562/1721	18,793/985	21,221/1079	85,368/4291	68,152/3509	34,775/1846	44,224/2299
R _{work} /R _{tree} (%)	21.2/26.0	23.0/27.5	21.0/23.9	20.5/24.3	17.2/21.3	24.4/29.0	25.8/29.3	22.4/25.7	21.8/24.5	21.8/24.7	20.4/23.6
# atoms (Fab/Peptide/Solvent)	6556/64/223	6556/69/64	6532/na/476	6514/57/283	6526/69/188	3286/na/10	3287/na/34	6589/64/206	6552/72/334	3278/na/149	3336/na/480
RMS (bonds)	0.006	0.002	0.006	0.003	0.005	0.005	0.003	0.008	0.002	0.003	0.005
RMS (angles)	0.91	0.6	0.83	0.75	0.77	0.71	0.61	0.94	0.52	0.66	0.86
Ramachandran favoured/allowed/ outliers (%)	96.9/2.9/0.2	97.6/2.4/0	96.7/2.9/0.4	97.7/2.3/0	97.7/2.1/0.2	95.1/4.7/0.2	96.0/4.0/0	96.4/3.6/0	97.3/2.6/0.1	97.7/2.3/0	98.4/1.6/0
Ramachandran plot Z score	0.02	-0.1	0.2	-0.1	0.8	-1.4	-1.6	-0.29	-0.81	0.06	0.39
Clashscore	3.1	1.8	3.7	0.6	1.5	3.2	4.6	2.1	1.4	2.6	3.5
Wilson B (Å ²) Average B (Å ²) for	30	41	22	22	21	53	51	32	36	27	25
all atoms/Fab/	40/38/54/34	56/56/85/43	34/34/na/30	29/29/38/32	25/25/22/27	63/63/na/46	72/72/na/51	42/42/56/36	43/43/56/41	30/30/46/29	31/30/20/36
PDB ID	8UJI	8UIT	8UIO	8UIH	8UIG	8UHT	8UHS	8UHP	8UHN	8UHJ	8UHH
Windhers in parentheses are for binket resolution shell											
^{1}R = $\Sigma_{-}\Sigma_{-}$ [1/(hk)]= d(hk)[s] ($\Sigma_{-}\Sigma_{-}$ [1/(hk)])											
$\frac{1}{2} = \sum_{i=1}^{n} \frac{1}{(n+1)^{i-1}} \frac{1}{(n+1)^{i-1}} \sum_{i=1}^{n-1} \frac{1}{(n+1)^{i-1}} \sum_$											
· · · · · · · · · · · · · · · · · · ·											
¹ Number of unfavorable all ste	metaric overlane > 0.4Å	nor 1000 stome									
Number of unfavorable all-alom steric overlaps 2 0.4A per 1000 atoms											

Table S5.

pHis Fab	Ligand	Crystallization condition	Cryoprotectant
hSC44.S1C (C1)	AGAG-3-pTza-AGAG	0.2 M Lithium citrate, 20% PEG3350	30 % Ethylene glycol
hSC44.S1C (A7)	AGAG-3-pHis-AGAG	0.2 M Calcium chloride, 20% PEG3350	30 % Ethylene glycol
hSC44.S1C (A2)	No ligand	0.2 M Lithium citrate, 20% PEG3350	30 % Ethylene glycol
hSC44.S1C.20 (J13)	AGAG-3-pTza-AGAG	0.2 M tri-potassium citrate, 20% PEG3350	25% PEG400
hSC44.S1C.20 (B5)	AGAG-3-pHis-AGAG	0.2 M tri-potassium citrate, 20% PEG3350	25% PEG400
hSC44.S1CE.20 (C16)	No ligand	0.1 M Tris pH 8.5, 8% PEG8000	30 % Ethylene glycol
hSC44.S1CE.20 (A10)	No ligand	0.1 M HEPES pH 7.5, 20% PEG4000, 10% 2-propanol	30 % Ethylene glycol
hSC44.S1C.20.N32F ^L (E12)	AGAG-3-pTza-AGAG	0.08 M Sodium Cacodylate pH 6.5, 0.16 M Calcium acetate, 20% glycerol, 14.4% PEG8000	10% glycerol
hSC44.S1C.20.N32F ^L (E14)	AGAG-3-pHis-AGAG	0.08 M Sodium Cacodylate pH 6.5, 0.16 M Calcium acetate, 20% glycerol, 14.4% PEG8000	10% glycerol
hSC44.S1C.20.N32F ^L (C8)	No ligand	0.1 M Tris pH 8.5, 0.2 M Lithium sulfate, 40% PEG400	Well solution
hSC44.S1CE.20.N32F ^L (C15)	No ligand	0.1 M HEPES pH 7.5, 20% PEG4000, 10% 2-propanol	30 % Ethylene glycol

Table S5. Constructs with ligand, crystallization conditions and cryoprotectant used for crystallization experiments

Table S6: Changes in the ligand binding free energies caused by the N32F^L mutation. The first column shows the binding free energy differences from FEP calculations ($\Delta\Delta G_{bind}^{WT \to M}$) of 3-pHis, whereas the last column shows the experimentally obtained binding free energy differences.

System	Relative Binding Free energy	K _D (M)	Experimental binding free energy ΔΔG _{bind} (Kcal/mol)
	ΔΔG _{bind} (Kcal/mol)		
pHis_SC44H.20.F (N32F ^L)	-1.1±0.4	1.68E-09	$RT \ln \frac{K_D^M}{MT} = -1.4$
pHis_SC44H.20.F (WT)		2.10E-08	K_D^{WI}