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Supplementary Tables: 

Supplementary Table 1. Binding sites for talin domains 
Domain 
Name 

Binding Partners 

F0 Rap1 
F1 PIP2 
F2 Actin, PIP2 
F3 Actin, b-Integrin, RIAM, PIP2, FAK, TIAM1, Layilin, PIP1g90, Ga13, R9 
R1 Vinculin 
R2 Vinculin x2, RIAM 
R3 Vinculin x2, RIAM 
R4 Actin 
R5 Actin 
R6 Vinculin, Actin 
R7 Vinculin, Actin, KANK1, a-Synemin  
R8 Vinculin, Actin, RIAM, DLC1, Paxillin, a-Synemin, CDK1 
R9 F3 
R10 Vinculin, calpain 
R11 Vinculin, RIAM, b-Integrin, Moesin 
R12 b-Integrin, Moesin 
R13 Vinculin, Actin, Moesin 
DD Actin, DD 

Compiled from  References (10, 19, 50-54)  
  



  

Supplementary Table 2. Expected number of amino acids from unfolding of various 
intermediates in the R7R8 structure. 

Structure Number of aa Structure Number of aa 
R7R8 294 R7(H4&H5) 72 

R7 full length 176 R7(H1&H5) 60 
R7(H2-H5) 147 R8 full length 118 
R7(H2-H4) 116 R8 (H1’&H4’) 59 
R7(H1-H3) 104 R8 (H4’) 34 

 

Supplementary Table 3. Binding and unbinding kinetics of DLC1 to talin R8.  
Concentration DLC1 (nM)  10 100 1000 
Binding rate x103 (s-1) 5.9 ± 0.7 7 ± 1 6  ± 2 
Unbinding rate x103 (s-1) 4 ± 1 6  ± 2 10 ± 1 
Number of events, N 50 39 29 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  



  

Supplementary Figures: 

 

 

Supplementary Figure 1. Structural classification of talin R7R8 domain. Structural 
classification generated using http://www.ebi.ac.uk/ and the crystal structure with pdb 
code 4w8p. The color code shows R7 and R8 portions with red and blue, respectively. 
The helices of R7 are labeled from H1 to H5, while the helices of R8 are labeled with H1’ 
to H4’.  

 

 



  

 

 

Supplementary Figure 2. Histograms of natural logarithm of dwell time as a 
function of probability density at various forces for talin R8 domain. The force varies 
in physiological range from 4.5 pN to 9.5 pN. Magenta histograms are obtained for the 
folded states and blue histograms are for the unfolded states. 
  



  

 

 

 
Supplementary Figure 3: History dependent behavior on unfolding and refolding 
equilibrium of R8 domain. A) Representative traces of unfolding and refolding transition 
of R8 at a given force. (left) The traces from top to bottom represents the same molecule 
exposed to 7.75 pN at different force cycles; (right) similar traces obtained from the same 
molecule at 8.5 pN. Magenta color represents the unfolded states and blue represents 
the folded states. All traces presented shown above were obtained from the same 
molecule. B) Unfolding and refolding rates at various forces as a function of cycle number, 
collected from traces with more than 5 events. 



  

 

 

 

 

Supplementary Figure 4. Comparison between fingerprint cycles for trace in Fig.3. 
Molecular extension vs applied force. Inset: measured extension vs force for the 
overstretching DNA transition showing no variance in the position of the overstretching 
transition and representing a second indirect measurement for potential force drift. Dotted 
box represents the magnified view from inset. 

 

 



  

 
 
Supplementary Figure 5: Force extension traces of the same talin R8 molecule in 
the absence and presence of DLC1 ligand. A) Traces of the R8 construct before 
addition of DLC1 (purple) and after addition of DLC1. No unfolding fingerprint was 
measured during all the cycles after addition of DLC1. DLC1 concentration:1.2 µM; pulling 
rate: 15.5 pN/s. B) Traces of the R8-DNA construct before and after addition DLC1 (purple 
and magenta, respectively). Both traces show the DNA overstretching transition. DLC1 
concentration: 14 µM; pulling rate: 0.33 pN/s. C) Extension and force as a function of time 
for the same R8-DNA molecule in the absence and presence of DLC1. Inset: rupture 
steps which we typically measure before the detachment of the di-biotin end of the 
molecule. DLC1 concentration:10 nM. All traces were filtered with a 50 box filter. Grey 
trace in panel C represents raw data.  
  



  

 

Supplementary Figure 6: Assessment of potential instrumental drift in applied 
force using molecular fingerprints. A) Single molecule magnetic tweezers trace where 
a R8-DNA construct is cycled between a linear increase in force with time, to unfold the 
talin domain and sample the DNA overstretching transition, followed by a quench in force, 
which allows for the refolding of the protein. B) Zoom-in of one of the cycles. C) Variation 
of unfolding extension of R8 as a function of cycle number. D) Variation in the measured 
unfolding force for R8 as a function of cycle number. E) Change in the measured position 
of the DNA overstretching transition with cycle number. A significant change would be 
indicative of instrumental drift over time.  
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