Patient	Final Diagnosis	Tumour	Recurrence	Lobe	Sex
TUITOUIS	Clicklastome IDI but WILD Crode 1	Status	Number	L of t Tammanal	-
PT144	Gilobiastoma, IDHwt, WHO Grade 4	Primoru	3		F
PT149	Astrocytoma, IDHmt, WHO Grade 3	Primary	0	IVA Dight Topporol	F F
PT103	Astrocytoma, IDHmt 1p10g apdal WHO Crade 2	Primary	0	Right Temporal Both Frontal	Г
PT201	Oligodendroglioma, IDHmt 1p19g_codel, WHO Grade 2	Primary	0	Left Frontal	F
PT211	Glioblastoma, IDHwt, WHO Grade 4	Recurrent	2	Right Parietal	F
PT225	Glioblastoma, IDHwt, WHO Grade 4	Recurrent	2	Left Frontal	F
DT220	Glioblastoma, IDHwt, WHO Grade 4	Pocurrent	2	Pight Tomporal	M
DT244	Glioblastoma, IDHwt, WHO Grade 4	Pocurrent	2	Pight Pariotal	
DT245	Glioblastoma, IDHwt, WHO Grade 4	Pocurrent	1	Pight Frontal	5
F124J	Clieblastoma, IDHwt, WHO Grade 4	Primory	0	Right Frontal	, E
PT265	Clichlastoma, IDHwt, WHO Grade 4	Primary	0	Right Topporol	Г
PIZOD	Astropytoma, IDHmt, WHO Grade 2	Primary	0	Right Temporal	
P1200	Astrocytoma, IDHut MLO Grade 3	Primary	0	Right Temporal	г г
P1208	Astrocytoma, IDHwt, WHO Grade 3	Primary	0	Lert Parletal	F F
P1277		Recurrent	3	Right Parletai	F
P1280	Astrocytoma, IDHmt, WHO Grade 2	Primary	0		IVI
P1287	Anapiastic Oligodendroglioma, WHO Grade 3	Primary	0	IN/A	INA
P1304	Glioblastoma, IDHw t, WHO Grade 4	Recurrent	3	Left Occipital	F
PI309	Glioblastoma, IDHw t, WHO Grade 4	Primary	0	Left Parietal	M
PT327 Matched Patien	Astrocytoma, IDHmt, WHO Grade 4 t Tumour & Gliomaspheres	Recurrent	2	Right Temporal	М
PT/GS147	Glioblastoma IDHwt WHO Grade 4	Recurrent	2	Right Parietal	М
PT/GS208	Glioblastoma, IDHwit, WHO Grade 4	Primary	0	Right Temporal	M
PT/GS258	Glioblastoma, IDHwit, WHO Grade 4	Primary	0	Right Temporal	M
Cliemeenheree		Thinkary	0	rught remporar	IVI
Gilomaspheres	Clicklastome IDI but W/UQ Crode 4		0	Frantal	14
GBIVB9	Glioblastoma, IDHwt, WHO Grade 4	Primary	0	Frontal Diskt Desistal	IVI
GS001	Gliobiastoma, IDHW t, WHO Grade 4	Primary	0	Right Parletai	IVI
GS005	Glioblastoma, IDHw t, WHO Grade 4	Recurrent	2	Left Temporal	M
GS024	Glioblastoma, IDHw t, WHO Grade 4	Primary	0	Right Temporal	F _
GS025	Glioblastoma, IDHw t, WHO Grade 4	Recurrent	4	Left Frontal	F
GS026	Oligodendroglioma, IDHmt, 1p19q_codel, WHO Grade 3	Recurrent	10	Right Frontal	М
GS027	Glioblastoma, IDHw t, WHO Grade 4	Recurrent	3	Right Parietal	F
GS028	Glioblastoma, IDHw t, WHO Grade 4	Recurrent	1	Right Parietal	F
GS054	Glioblastoma, IDHw t, WHO Grade 4	Recurrent	1	Right Temporal	F
GS075	Glioblastoma, IDHw t, WHO Grade 4	Primary	0	Left Frontal	F
GS081	Glioblastoma, IDHw t, WHO Grade 4	Primary	0	Left Frontal	F
GS090	Glioblastoma, IDHw t, WHO Grade 4	Recurrent	1	Right Parietal	М
GS100	Glioblastoma, IDHw t, WHO Grade 4	Recurrent	2	Right Temporal	М
GS104	Glioblastoma, IDHwt, WHO Grade 4	Primary	0	Left Parietal	М
GS108	Astrocytoma, IDHmt, WHO Grade 4	Recurrent	1	Rgiht Occipital	М
GS114	Glioblastoma, IDHw t, WHO Grade 4	Primary	0	Right Temporal	М
GS116	Glioblastoma, IDHw t. WHO Grade 4	Primarv	0	Left Frontal	М
GS118	Glioblastoma, IDHw t, WHO Grade 4	Recurrent	1	Right Temporal	M
GS121	Glioblastoma, IDHwt, WHO Grade 4	Primary	0	Left Temporal	M
GS122	Glioblastoma, IDHw t, WHO Grade 4	Recurrent	2	Right Temporal	M
GS187	Glioblastoma, IDHwt, WHO Grade 4	Primary	0	Right Temporal	F
HK301	Glioblastoma, IDHwit, WHO Grade 4	Primary	0	Left Parietal	M
1		- ·	0		

Supplemental Table 1: Patient and Model Characteristics

Final diagnosis, tumour status, tumour location and sex for all glioma samples and derivative models in Figure 1. Headings are in bold text.

Ε

Supplemental Figure 1: Molecular and functional characterization of the intrinsic apoptotic machinery in GBM identifies survival essential dependence on BCLXL and MCL1

- BH3 profiling of anti-apoptotic blocks in non-GBM cancer cell lines. Peptide concentrations are as follows: ABT-199: 1μM, MS1: 10μM, HRK: 100μM, BAD: 10μM. Lower heatmap of cell viability (Cell Titer Glo) after 48 hrs. of treatment with 0.5μM ABT-199 (BCL2i), 0.5μM A1155463 (BCL-X_Li), and 0.5μM S63856 (MCL1i).
- B. Heat maps describing gliomasphere clinical characteristics, copy number alterations and mutations and BH3 profiling of the apoptotic blocks. BH3 profiling is plotted as a z-score across the sample. Peptide concentrations are as follows: ABT-199: 1μM, MS1: 10μM, HRK: 100μM, BAD: 10μM.
- C. Assessment of RNA expression of the BCL2 protein family from GBM tumour cohort (TCGA, n = 159), patient tumours (n = 31) and gliomaspheres (n = 26). Expression values in transcripts per million (TPM), log2 transformed.
- D. Immunoblot analysis of the intrinsic apoptotic machinery in gliomaspheres (n = 13).
- E. Immunoblot analysis of intrinsic apoptotic machinery in GBM autopsy samples (n = 9) obtained from UCLA pathology.

Supplemental Figure 2: IR creates an exclusive survival dependency on BCL-X_L in p53 wild-type GBM

- A. Apoptosis measured post treatment with BCL-X_ii, IR, or IR + BCL-X_Li. All condition were also combined with the pan caspase inhibitor ZVAD-fmk (50μM) (mean ± s.d., unpaired t test with Welch correction, n = 3 biological replicates).
- B. Short-hairpin RNAs were used reduce expression of BCL-X_L. Apoptosis assessed after treatment with IR (mean \pm s.d., unpaired t test with Welch correction, n = 3 biological replicates).
- C. Apoptosis was measured post treatment with BCL-X_ii, IR, or IR + BCL-X_Li. All condition were also combined with the p53 transcriptional inhibitor, PFT α (mean ± s.d., unpaired t test with Welch correction, n = 3 biological replicates).
- D. Representative images of senescence staining, 48 hours post treatment with 5 Gy IR. Positive control taken 16 days post treatment with 15 Gy IR. Images taken on EVOS M5000.
- E. Quantified signal of senescence staining, 48 hours post treatment with 5 Gy IR. Positive control taken 16 days post treatment with 15 Gy IR. Quantification perform on Incucyte (mean \pm s.d., unpaired t test with Welch correction, n = 4 biological replicates). These results were independently repeated.
- F. Box plots of growth inhibition and apoptosis in patient-derived gliomaspheres (n = 7) treated with IR, TMZ or IR + TMZ. Each dot represents an individual gliomasphere and the mean of three biological replicates (mean ± s.d., unpaired t test with Welch correction).
- G. Dynamic BH3 profiling of p53 KOs after TMZ treatment, shows change in precent cytochrome *c* release with HRK (mean ± s.d.). Cell death was evaluated in p53 KOs, 5 days after treatment with BCL-X_Li, TMZ, or TMZ+ BCL-X_Li, (mean ± s.d., unpaired t test with Welch correction, *n* = 2 biological replicates for Dynamic BH3 profiling, n = 3 biological replicates for Annexin V/PI+).

IR (5gy), TMZ (50µM), BCL-X_Li (A1155463: 0.5µM).

DBP Assessed at 48 hours, peptide concentrations: HRK: 100µM. Apoptosis (Annexin V/PI) assessed at 5 days. All box plots: mean, hinges at 25th and 75th percentiles, ± min to max

Supplemental Figure 3: TMZ/IR upregulation of PUMA neutralizes MCL1 to create a BCLXL dependency

- A. Immunoblots to assess changes in the expression of BCL2 family proteins 48 hours post TMZ (50 μ M) or IR (5 Gy) treatment across gliomaspheres (*n* = 19).
- B. Immunoblots to assess changes in the expression of HRK 48 hours post TMZ (50μ M) or IR (5 Gy) treatment across gliomaspheres (n = 4).
- C. Immunoblots to assess changes in the expression of HRK 48 hours post TMZ (50µM) or IR (5 Gy) treatment in p53 KO gliomaspheres, GS025 and HK301.
- D. Graphic summary of the apoptotic blocks and their response to standard of care treatments in GBM.

Supplemental Figure 4: p53 status alone cannot predict response to IR/TMZ in combination with BCL-XLi

- A. Short-hairpin RNAs were used reduce expression MGMT in MGMT positive, GS081. Immunoblots show expression of MGMT and Actin in GS081-shControl, shMGMT-1 and shMGMT-2. Apoptosis (Annexin V/PI+) was evaluated in GS081-shControl, shMGMT-1 and shMGMT-2, 5 days after treatment with A1155463 (BCL-X_Li 0.5µM), TMZ (50µM) or TMZ+A1155463 (mean ± s.d., unpaired t test with Welch correction, n = 3 biological replicates).
- B. Apoptosis was also evaluated with the listed treatments in panel A, combined with the irreversible MGMT inhibitor O6BG (40μ M) (mean ± s.d., unpaired t test with Welch correction, n = 3 biological replicates).
- C. Basal BH3 profiling of gliomaspheres (n = 26) preformed with a titration of the BIM peptide (0µM, 0.01µM, 0.03µM, 0.1µM, 0.3µM, 1µM, 3µM, 10µM). Curve in the dynamic range (0.03µM 3µM BIM) used to calculate area under the curve (AUC) to describe the primed state of these tumours. Colored dots match the colored curves in Figure 3C.
- D. Receiver Operator Curves (ROC) used to determine the priming cut-off where BIM^{AUC} has the most sensitive prediction of cell death. Cut-off used to draw the line in panel C.

p > 0.05 = ns; p < 0.05 = *; p < 0.01 = **; p < 0.001 = ***; p < 0.0001 = ****;

Supplemental Table 2 - Model Descriptions			
Abbreviation	Full formula		
IMF	BIMA UC*TP53 mutation*MGMT status*MDM2 amplification ($p = 15$)		
GM	RNA expression (p = 18,909) + Copy Number Alterations (p = 19,023) + Mutation calls (p = 213)		
GM(*)	Top RNA1*Top RNA2**Top CNA1* top CNA2**Top MUT1*top MUT2 Up to three-w ay interactions betw een all top features in RNA, CNA and MUT. Selected by highest absolute Pearson correlations with the outcome IR/TMZ + BCLXLi-induced apoptosis. ($p = 10,995$ combinations)		
IMF + GM	BIMA UC*TP53 mutation*MGMT status*MDM2 amplification+ RNA+CNA+MUT ($p = 15 + 18,909 + 19,023 + 213$)		

Supplemental Table 2: Model Descriptions Abbreviations and full formulas for the machine learning models.

R + BCL-X _L i ~ GM Features Descriptions				
Feature	Description			
CHCHD3(CN)	Inner mitochondrial membrane scaffold protein			
GAL3ST4(RNA)	Galactose-3-O-sulfotransferase protein family			
FBXO22(RNA)	Member of the F-box protein, transcriptional target of the tumour protein p53			
INIP _(RNA)	Subunit of single-stranded DNA binding complexes, maintains genome stability			
RPS19(RNA)	Ribosomal protein that is a component of the 40S subunit			
SEC61G(CN)	Component of the protein translocation apparatus of the endoplasmic reticulum			
BAX _(RNA)	BCL2 protein family, functions as an apoptotic activator			
RRP15 _(RNA)	Protein that co-purifies with human nucleoli			
SERPINB1(RNA)	Member of the serpin family of proteinase inhibitors			
DFFA _(RNA)	Substrate for caspase-3 and triggers DNA fragmentation during apoptosis			
FOXP1(RNA)	Tissue- and cell type-specific gene transcription, tumour sup.			
DNAJC12(RNA)	Subclass of the HSP40/DnaJ protein family			
USP27X _(RNA)	Deubiquitinase that is involved in upregulation of the pro-apoptotic Bim protein			
C12orf71 _(RNA)	Chromosome 12 open reading frame 71			
CEP70(RNA)	Enables identical protein binding activity			
TMPRSS7(RNA)	Predicted to enable serine-type peptidase activity			
TMZ + BCL-X _L i ~ GM Features Descriptions				
Feature	Description			
DIAPH2(RNA)	Diaphanous subfamily of the formin homology family of proteins			
CASP9(RNA)	Cysteine-aspartic acid protease (caspase) family, execution-phase of cell apoptosis			
CPTP(RNA)	Enables ceramide 1-phosphate binding and ceramide 1-phosphate transfer activity			
MIB2(RNA)	E3 ubiquitin protein ligase that mediates ubiquitination in the Notch signaling pathway			
OTUB2(RNA)	Deubiquitylating enzymne			

Supplemental Figure 5: Feature correlation and description for features chosen at least 10/26 rounds of LOOCV for IMF and GM models.

- Z-score of the individual features selected for IMF models describing IR/TMZ + BCL-X₁ cell death. The heatmap title formula is Α. a high-level description before expanding to all possible combinations of interactions.
- Β. Gene expression values for selected features by elastic net for the GM models describing IR/TMZ + BCL-XL cell death. Features displayed chosen at least 10/26 rounds of LOOCV. Z-score of log2 transformed counts per million.
- C. Selected features by elastic net for GM models describing IR/TMZ + BCL-X_L cell death with description summarizing gene function (paraphrased NCBI databases) displayed. Headings are in bold text.

Features pulled from RNA data set labeled as (RNA), features pulled from copy number data set labeled as (CN).

IR + BCL-X _L i ~ IMF + GM		TMZ + BCL-X _L i ~ IMF + GM	
permuation p value: 0.009		permuation p value: 0.018	
feature	order	feature	order
BIM*TP53*MDM2	1	BIM*TP53*MDM2*MGMT	1
BIM* <i>TP53</i>	2	CASP9(RNA)	2
CASP9 _(RNA)	4	SCML1 _(RNA)	4
CCKBR _(RNA)	4	SH2D7 _(RNA)	4
SNAP23(RNA)	5	GUK1 _(RNA)	5
FBXO22 _(RNA)	8	COBLL1 _(RNA)	6
RNF225 _(RNA)	8	RAB3B _(RNA)	8
SEC61G _(CN)	8	RAB43(RNA)	8
ADGRG5(RNA)	11	TCAF1 _(RNA)	9
KRTAP19.8 _(RNA)	11	PRADC1 _(RNA)	11
CHCHD3(CN)	11	TM4SF20(RNA)	11

Supplemental Figure 6: Integrated profiling outperforms global transcriptomic and genomic data sets

- A. Comparison of experimental and predicted values via simple linear regression for the IMF and GM models
- B. Comparison of experimental and predicted values via simple linear regression for the IMF and GM(*) models
- C. Rank of pooled IMF + GM features based on retention in LASSO with increasing penalization.

Features pulled from RNA data set labeled as (RNA), features pulled from copy number data set labeled as (CN).

Supplemental Table 3: Patient Characteristics - Independent Verficiation Cohort					
Gliomaspheres	Final Diagnosis	Tumour Status	Recurrence Number	Lobe	Sex
GS055	Glioblastoma, IDHw t, WHO Grade 4	Recurrent	unknow n	Left Temporal	М
GS074	Glioblastoma, IDHw t, WHO Grade 4	Primary	0	Left Temporal	М
GS158	Glioblastoma, IDHw t, WHO Grade 4	Recurrent	3	Left Occipital	М
GS176	Glioblastoma, IDHw t, WHO Grade 4	Primary	0	Left Temporal	F
GS180	Glioblastoma, IDHw t, WHO Grade 4	Recurrent	1	Left Temporal	F
GS220	Glioblastoma, IDHw t, WHO Grade 4	Primary	0	Left Temporal	F
GS227	Glioblastoma, IDHw t, WHO Grade 4	Primary	0	Right Parietal	F
GS243	Glioblastoma, IDHw t, WHO Grade 4	Primary	0	Right Temporal	М
GS248	Glioblastoma, IDHw t, WHO Grade 4	Primary	0	Right Frontal	F
GS304	Glioblastoma, IDHw t, WHO Grade 4	Recurrent	2	Left Occipital	F
GS306	Glioblastoma, IDHw t, WHO Grade 4	Recurrent	1	Left Parietal	F
GS319	Glioblastoma, IDHw t, WHO Grade 4	Primary	0	Right Parietal	М

Supplemental Table 3: Patient Characteristics

Final diagnosis, tumour status, tumour location and sex for the glioma samples used to derive the gliomaspheres in the validation cohort. Headings are in bold text.

Supplemental Table 4: Features for IMF, GM and GM(*) models				
Feature	Coef.	SD	Stand. Coef.	
IR + BCL-X _L i ~ IMF Model				
(Intercept)	10.2			
BIM ^{AUC} *TP53	0.11	72.09	8.15	
BIM ^{AUC} *TP53*MDM2	0.26	73.97	19.57	
TMZ + BCL-Xı i ~ IMF Model				
(Intercept)	7.48			
BIM ^{AUC} *TP53*MDM2	0.09	73.97	6.74	
BIM ^{AUC} *TP53*MGMT	0.1	72.92	7.18	
BIM ^{AUC} *TP53*MDM2*MGMT	0.12	73.63	9.17	
IR + BCL-XLi ~ GM Model				
(Intercept)	-125.57			
	8 82	0.38	3 38	
GAL 3ST4	8 30	1.05	8.69	
EBXO22(DNA)	8 14	0.61	4 96	
	7.40	0.42	3.08	
	5.75	0.44	2.52	
SEC61G(CN)	4 53	1.30	5.90	
BAX/DNA)	3.80	0.78	2.98	
	3.46	0.47	1.62	
	2 16	1.51	3.26	
	-0.99	0.58	-0.57	
FOXP1(RNA)	-1.16	1.50	-1.75	
DNAJC12(RNA)	-2.26	1.18	-2.66	
	-4.18	0.47	-1.95	
C12orf71 _(RNA)	-7.07	0.04	-0.26	
CEP70(RNA)	-7.23	0.70	-5.05	
TMPRSS7(RNA)	-45.81	0.06	-2.55	
TMZ + BCL-XLi: GM Model				
(Intercept)	184.26			
DIAPH2(RNA)	-4.14	1.01	-4.18	
CASP9(RNA)	-7.38	0.70	-5.17	
	-7.74	0.57	-4.42	
MIB2(RNA)	-11.16	0.77	-8.55	
OTUB2(RNA)	-22.64	0.43	-9.62	
IR + BCL-XLi ~ GM(*) Model				
(Intercept)	12.16			
DDB2(RNA)*NHEJ1(RNA)*RNF19A(RNA)	0.38	28.01	10.61	
BAX(RNA)*NHEJ1(RNA)*RNF19A(RNA)	0.14	34.50	4.90	
CASP9 _(RNA) *FOXP1 _(RNA) *SCML1 _(RNA)	-0.57	24.72	-14.10	
TMZ + BCL-XLi ~ GM(*) Model				
(Intercept)	57.55			
CASP9(RNA)*COBLL1(RNA)*MIB2(RNA)	-0.12	22.83	-2.67	
CASP9(RNA)*COBLL1(RNA)*PPP1R16A(RNA)	-0.18	19.65	-3.49	
CASP9(RNA)*COBLL1(RNA)*STX18(RNA)	0.02	17.34	0.40	
CASP9(RNA)*CPTP(RNA)*STX4(RNA)	-0.11	24.85	-2.76	
	-0.52	6 45	-3.35	
	-0.02	20.40	-1.91	
CCDC96(RNA)*FBXO48(PNA)	-0.72	0.53	-0.38	
	-0.25	8,59	-2.19	
	-0.82	1.16	-0.95	
	-0.16	2.33	-0.37	
CPTP _(RNA) *STX18 _(RNA) *STX4 _(RNA)	-0.07	22.74	-1.63	
INAFM2 _(RNA) *NHEJ1 _(RNA)	0.94	3.47	3.28	
INAFM2(RNA)*NHEJ1(RNA)*CHCHD3(CN)	0.96	6.77	6.51	

Supplemental Table 4: Features for the IMF, GM and GM(*) models

Features for the IMF, GM and GM(*) models describing IR/TMZ + BCL-X_L cell death with the final model intercepts and coefficient. Standard deviation (SD) and standardized coefficient are displayed to describe the contribution of each feature. Headings are in bold text.

Supplemental Figure 7: Evaluation of IMF as a binary biomarker.

A. ROC curves used to evaluate the GAVA model as a binary score.

0,000 ,..., 0,000 0,000 э<u>;</u>с *...* , jo °., ABBV-155 (μg/ml) ABBV-155 (μg/ml) ABBV-155 (μg/ml) + TMZ + TMZ + TMZ

0.

0.

~

Α

В

D

G

Supplemental Fig. 8. Novel anti-body drug conjugate provides the rapeutically safe alternative to targeting BCL-X_L and is brain penetrant

- A. Representative images from immunohistochemistry staining for B7-H3 (CD276) in GBM (n = 34) and normal brain (n = 5) microarray.
- B. Immunoblot and quantification of B7-H3 expression from normal brain (mean \pm s.d., n = 5) and autopsy samples (mean \pm s.d., n = 5). Comparisons were made with two-tailed, unpaired t tests.
- C. Immunoblot of B7-H3 expression in gliomaspheres (n = 12).
- D. Apoptosis (Annexin V/PI) of p53 WT (n = 2) and mut-p53 (n = 2) gliomaspheres treated with 0.5µM MCL-1i (S63845) and 1µg/mL ABBV-155 for 5 days. Data are normalized to vehicle (mean ± s.d., two-tailed, paired t test).
- E. Apoptosis (Annexin V/PI +) of GAVA positive, p53 WT and high primed gliomaspheres, GS025 and GBM39, 5 days post TMZ (50uM) and ABBV-155 titration. Concentration range: 0.0001µg/mL, 0.001µg/mL, 0.01µg/mL, 0.1µg/mL, 1µg/mL. Data are normalized to R alone (mean ± s.d., n = 3 biological replicates).
- F. Apoptosis (Annexin V/PI +) of GAVA negative, low primed gliomaspheres, GS054 and GS027, 5 days post TMZ (50uM) and ABBV-155 titration. Concentration range: 0.0001µg/mL, 0.001µg/mL, 0.01µg/mL, 0.1µg/mL, 1µg/mL. Data are normalized to IR alone (mean ± s.d., n = 3 biological replicates).
- G. Apoptosis (Annexin V/PI +) GAVA negative, mut-p53 gliomaspheres, GS121, GS147 and GS005, 5 days post TMZ (50uM) and ABBV-155 titration. Concentration range: 0.0001µg/mL, 0.001µg/mL, 0.01µg/mL, 0.1µg/mL, 1µg/mL. Data are normalized to R alone (mean ± s.d., *n* = 3 biological replicates).
- H. Grouped analysis by GAVA status of all TMZ + 0.1μg/mL ABBV-155 cell death data (mean ± s.d., student's two sample unpaired t test, *n* = 7 gliomaspheres).
- I. Apoptosis (Annexin V/PI +) of p53 WT gliomaspheres, GS025, 5 days post IR (5 Gy) or TMZ (50μM) and Non-Targeting Control (NTC). Concentration range: 0.0001μg/mL, 0.001μg/mL, 0.01μg/mL, 0.1μg/mL, 1μg/mL. Data are normalized to either TMZ or IR alone (mean ± s.d., n = 3 biological replicates).