
Supplementary Information

Supplementary 1. AAM-INSPIRED MODEL EXPERIMENT DETAILS

Supplementary 1A. Cohort characteristics

Hospital 1 Hospital 2 Hospital 3 Hospital 4 Hospital 5 Total

Patient Encounters 43,456 44,545 117,210 52,927 46,839 304,977

Outcome 1,793 (4.1%) 878 (2.0%) 10,435 (8.9%) 1,662 (3.1%) 769 (1.6%) 15,537 (5.1%)

Number of Beds 420 225 1,091 230 245 —

Trauma Level Level 2 N/A Level 1 Level 2 N/A —

Supplementary Table 1. Summary of outcomes of patient cohort by hospital, and hospital
characteristics. Outcome refers to the patient outcome, “ICU need”, which is the prediction
target of the AAM model.

Supplementary 1B. AAM-Inspired Model features and description
In our custom implementation of the AAM model, inspired by the AAM model developed in [1],
we used the subset of the original features available in the dataset. Table 2 lists the features we
used in our custom implementation of the AAM model, as well as the feature transformations
(again following the transformations used in [1]). The main differences from [1] are that we did
not include composite indices (LAPS2 and COPS2 [2, 3], custom in-house scores created by the
same organization that developed the AAM model), per-hospital indicators, and we trained the
model to predict at the encounter level. We did not include the per-hospital indicators in our
custom implementation of the AAM model because we wanted to apply it to data coming from
hospitals that were not used in its development. Additionally, we trained the model to predict at
the encounter level for simplicity of enabling encounter level analysis. For exact details regarding
extraction of features used in the AAM model, please consult Section 2 and Table 1 of [1].

The AAM-inspired model is a logistic regression. We trained it using the scikit-learn Python
package [4], with the inverse l2 regularization strength hyperparameter C set to 1000.

Supplementary 1C. Baseline model
The baseline model was selected to have overall performance comparable to, but worse than,
the AAM-inspired model. To have some correspondence to a real-world model, we trained the
baseline model using a subset of the AAM-inspired model’s features that correspond to features
used by the National Early Warning Score (NEWS) [5], a frequently used patient deterioration risk
score. The 15 features used were systolic blood pressure instability, latest systolic blood pressure,
latest heart rate, heart rate instability, oxygen saturation instability, latest oxygen saturation,
worst oxygen saturation, respiratory rate instability, latest respiratory rate, worst respiratory rate,
temperature instability, latest temperature, and latest Glasgow Coma Scale (GCS), age, and sex.
The feature definitions and transformations were the same as those used by the AAM-inspired
model in Table 2.

To achieve more competitive performance with the AAM-inspired model despite the reduced
feature set, the baseline model was trained as a gradient boosted machine (GBM) using the LGBM
package [6]. After using FLAML for automatic hyperparameter tuning, the selected hyperparame-
ters were: number of estimators = 200, number of leaves = 139, minimum samples per child = 8,
and learning rate = 0.05. The baseline model achieved an AUROC of 0.944 (CI 0.940, 0.950) on the
full multi-site evaluation dataset.

Supplementary 1D. Subgroup definition features
The features listed in Table 3 were selected for the subgroup defining feature set in the Stability
Analysis step of AFISP. Comorbidities were extracted from ICD-9 codes. In total there were 91
features.



Feature Transformation

Laboratory Tests

Anion gap Linear

Bicarbonate Quadratic

Glucose Linear

Hematocrit Cubic

Lactate Linear

Log blood urea nitrogen Linear

Log creatinine Quadratic

Sodium Linear

Troponin Linear

Troponin missing flag Indicator

Total white blood cell count Linear

Vital Signs

Latest diastolic blood pressure Quadratic

Instability (i.e., highest - lowest in last 24 hours) of systolic blood pressure Linear

Latest systolic blood pressure Cubic

Latest heart rate Cubic

Log heart rate instability Quadratic

Log oxygen saturation instability Linear

Logit (log( x
1−x ) latest oxygen saturation Cubic

Logit worst oxygen saturation Linear

Log respiratory rate instability Linear

Log temperature instability Quadratic

Latest temperature Quadratic

Latest respiratory rate Cubic

Worst respiratory rate Linear

Latest neurological status (Glasgow Coma Scale) Linear

(Anion gap ÷ serum bicarbonate) × 1000 Linear

Shock index (latest heart rate ÷ latest systolic blood pressure) Linear

Other

Logit transpired length of stay Linear

Logit age Quadratic

Sex Female indicator

Time of day

Time frame 1: 01:00-07:00

Time frame 2: 07:00-12:00

Time frame 3: all else

Admit category

1 ED, Surgical

2 Non-ED, Surgical

3 ED, Medical

4 Non-ED, Medical

Supplementary Table 2. Features used in the AAM-inspired model.
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Feature

Abnormal lung finding

Acute bronchitis

Acute liver disease

Acute pancreatitis

Acute pulmonary heart disease

Acute respiratory failure

Admit source

Admitted from Emergency Department (ED)

Age

AIDS

Anemia

Acute respiratory distress syndrome (ARDS)

Asthma

Bladder cancer

Bronchiectasis

C. diff

Cardiac arrest

Cardiogenic shock

Cerebrovascular disease

Chest pain

Chronic airway obstruction

Chronic bronchitis

Chronic kidney disease

Chronic pancreatitis

Chronic pulmonary

Chronic pulmonary heart disease

Chronic respiratory failure

Congestive heart failure

Convulsions

Chronic obstructive pulmonary disease (COPD)

Cough

Dementia

Diabetes

Diabetes with complications

Diabetes without complications

Dialysis

Dyspnea
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Supplementary Table 3 continued from previous page

Feature

Emphysema

Epilepsy

End-stage renal disease (ESRD)

Gastrointestinal (GI) bleed

Heart arrhythmias

Heart attack

Heart failure

Hematologic malignancies

Hemiparesis

Hemoptysis

Hospital size large (>500 beds)

Hospital trauma level

Hypersensitivity pneumonitis

Hypoxemia

Immunocompromised

Immunodeficiency

Infections angus

Kidney cancer

Liver disease

Malignancy

Metastatic carcinoma

Metastatic solid tumor

Mild liver disease

Myocardial infarction

Nonspecific lung disease

Obesity

Obstructive sleep apnea

Organ insufficiency

Other shock

Pancreatic cancer

Peptic ulcer disease

Peripheral vascular disease

Pneumonia

Post-surgery trauma respiratory failure

Prostate cancer

Pulmonary embolism
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Supplementary Table 3 continued from previous page

Feature

Renal disease

Renal insufficiency

Respiratory prob external agents

Rheumatic disease

Season 1 (Nov, Dec, Jan, Feb)

Season 2 (Mar, Apr, May, Jun)

Season 3 (Jul, Aug, Sep, Oct)

Sepsis

Septic shock

Severe liver disease

Severe sepsis

Sex

Sickle cell crisis

Sickle cell trait

Sickle cell without crisis

Sleep apnea

Stroke

Transient ischemic attack

Supplementary Table 3. Features selected for creating possible subgroup definitions in the first
step of AFISP.

Supplementary 2. AN ADDITIONAL EXPERIMENT ON THE MIMIC DATASET

To further test the applicability of AFISP, we applied AFISP to the publicly available MIMIC-
III dataset [7]. For this experiment, we considered evaluating our own implementation of the
SICULA model [8], a machine learning model intended to predict mortality in ICU patients based
on their first 24 hours in the ICU.

Supplementary 2A. Features
This model uses the same types of features as the SAPS-II score [9]: the min and max vital sign
values in the first 24 hours in the ICU for heart rate, systolic blood pressure, temperature, blood
urea nitrogen, white blood cell count, potassium, sodium, bicarbonate, bilirubin, Glasgow coma
scale, partial pressure of oxygen, and fraction inspired oxygen. Additionally, it uses patient age,
the type of admission (scheduled surgical or emergency), and indicators for if the patient had
HIV/AIDS, metastatic cancer, or a hematologic malignancy.

Supplementary 2B. Dataset
The extracted dataset consisted of 34,386 adult patient encounters in the ICU at the Beth Israel
Deaconess Medical Center between 2001 and 2012. 80% of the data was used to train the SICULA
model while 20% was heldout for the evaluation set (6,878 patients in the evaluation set). The
prevalence of the outcome (mortality) was 0.096 in the entire cohort.

Supplementary 2C. Subgroup Definition Features
We selected the following features for the subgroup defining features used in the stability analysis
step of AFISP: patient sex, ethnicity (Black, Asian, Hispanic, White, or Other), age, insurance
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Supplementary Figure 1. (a) Performance stability curve of the SICULA model with respect to
a shift in patient subgroup prevalence as measured by AUROC. Performance of the SICULA
model decays from 0.880 (CI 0.867, 0.896) on the full evaluation set to 0.796 (CI 0.722, 0.845)
on the worst 5% subset. The shaded region represents a 95% bootstrap confidence interval. (b)
Plot of the effect size (Cohen’s d) for the worst-case subsets of each subset fraction size. Because
we did not have a reference performance threshold, we instead selected the worst-case subset
based on the one with the highest effect size (subset fraction of 0.1).

(Medicaid, Medicare, Private, or Self Pay), first care unit (coronary care unit, medical ICU, surgical
ICU, cardiac surgery care unit, and trauma surgical ICU), and admission type (emergency or not).

Supplementary 2D. Results
We analyzed how the performance of the SICULA model decays as the evaluation data distribu-
tion is gradually changed adversarially through shifts in the prevalence of subgroups defined
with respect to the six features defined above. The resulting performance stability curve is shown
in Figure 1a. As expected, performance of the SICULA model decays from an AUROC of 0.880
(CI 0.867, 0.896) on the full evaluation set to an AUROC of 0.796 (CI 0.722, 0.845) on the worst 5%
subset.

In this experiment, we did not have a reference performance threshold to compare to (as
opposed to the baseline model that was compared to in the AAM-inspired model experiment).
Thus, we selected the worst-case subset based on the one with the highest effect size, which was
the one with a subset fraction of 0.1 (Figure 1b).

We applied SIRUS to determine interpretable subgroup phenotypes. We allowed for up to three
features to be simultaneously considered in a phenotype definition. After filtering subgroups
based on significance (and correcting for multiple comparisons) and effect size, AFISP recovered
the 6 subgroups reported in Table 4 (ordered by within-subgroup AUROC). The size of the
subgroups are all quite large, ranging from 23% to 42% of the full evaluation set.

Supplementary 2E. Comparison to other algorithmic approaches
As in the AAM experiment, we also compared the subgroups found by AFISP to those found by
SliceFinder (SF), a state-of-the-art algorithmic approach which searches all possible subgroups
for those with poor performance. For this dataset we found that degree 3 slices (i.e., subgroups
involving 3 features) were necessary to detect poor performance. Thus, we set (SF) to search the
225, 151 possible degree 3 slices. SF found 320 slices, which is much more than the 6 found by
AFISP.

To enable the comparison, we jointly embedded the AFISP subgroups, SF slices, and 500 slices
randomly sampled from the 225, 151 possible degree 3 slices into the same vector space using
Partial Least Squares regression. The resulting loading plot is shown in Figure 2. The plot captures
correlations between slices and performance: while the random slices (blue points) are distributed
throughout the space, the SF slices are concentrated in the right two quadrants of the space.

The space also captures similarities between subgroups. For example, the vectors for AFISP
subgroups 3, 5, and 6 are closely aligned, and these subgroups deal with the intersection of
patients older than 66, whose first care unit was not the cardiac surgery intensive care unit, and
whose admission was related to an emergency, unscheduled visit.
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Subgroup # Phenotype AUROC [95% Bootstrap CI] N

1 Age >= 75.8 & Medicare & not CSRU 0.81 [0.78, 0.83] 1570

2 Medicare & not CCU & not CSRU 0.81 [0.79, 0.83] 2208

3 Age>= 66.1 & not CSRU & Emergency Admission 0.82 [0.80, 0.84] 2439

4 Medicare & not CSRU & Emergency Admission 0.82 [0.80, 0.84] 2673

5 Age >= 66.1 & not CSRU 0.82 [0.88, 0.84] 2636

6 Age >= 66.1 & Emergency Admission 0.83 [0.81, 0.85] 2887

Supplementary Table 4. Subgroups found by AFISP on the MIMIC dataset
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Supplementary Figure 2. Loading plot of the first two dimensions created by jointly embed-
ding subgroups found by SliceFinder (SF) (green points), random candidate subgroups (blue
points), and subgroups found by AFISP (portrayed as black vector direction arrows) using par-
tial least squares (PLS) to predict model loss. While the random slices are spread throughout
the space, all SliceFinder slices are in the right two quadrants, indicating that PLS was able
capture subgroup-performance correlations. Further, the AFISP vectors “cover” the SF region
of the space, capturing the relevant directions in only 6 subgroups as opposed to the 328 found
by SF.

Finally, the 6 AFISP subgroup vectors do a good job of capturing the relevant directions in the
space associated with the SF slices. Thus, AFISP found a concise set of subgroups that cover the
slices selected by SF.
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