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Electrostatic contributions to the SAFT-γ Mie Helmholtz free

energy: Model M

We describe here the treatment of ionic molecules when adopting the Molecular Model

(M), as described in Figure 1 of the article. The derivation, which is largely analogous

to that relating to Model G, follows a similar path beginning with the ion term from the
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SAFT-γ Mie free energy (equation 10, reproduced here as equation (1)):

Aion

NkBT
=

UMSA

NkBT
+

Γ3

3πρ
, (1)

where UMSA is the MSA contribution to the internal energy U, ρ = N/V is the number

density of molecules in the system, V is the system volume, and Γ is the screening length

of the electrostatic forces. Considering spherical ions, UMSA is given by

UMSA

NkBT
= − e2

(4πϵ0)ρkBTD

[
Γρ ∑

i∈I

(
xiZ2

i
1 + Γσii

)
+

π

2∆
ΩP2

n

]
, (2)

where I is the set of ionic species in the mixture and

∆ = 1 − πρ

6 ∑
i∈I

xiσ
3
ii, (3)

Pn =
ρ

Ω ∑
i∈I

xiσiiZi

1 + Γσii
, (4)

and

Ω = 1 +
πρ

2∆ ∑
i∈I

xiσ
3
ii

1 + Γσii
. (5)

∆ represents the packing fraction of the ions as a function of the diameters σii (i ∈ I). Pn

and Ω are coupling parameters. The coupling parameter Pn relates to the charge of the

ions, whereas Ω couples to the packing fraction of the ions. Both parameters are functions

of the ionic diameters, as well as the screening length, Γ:

Γ2 =
πe2ρ

(4πϵ0) DkBT ∑
i∈I

xiQ2
i , (6)

where the effective charge Qi(Γ) is given by

Qi =
Zi − σ2

iiPn (π/ (2∆))
1 + Γσii

. (7)
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In adopting Model M one each non-spherical ion onto a single, large sphere of diameter

σ̃MSA,M
eff, ii =

(
NG

∑
k=1

νk,iν
∗
k Skσ3

kk

)1/3

, i ∈ I (8)

and σii is replaced by this effective σ̃MSA,M
eff, ii in equations (2) to (7).

Adopting the Born model, one assumes that a spherical cavity of diameter σBorn
ii is

created for each ion, i, (independently of any others) in the dielectric medium. This leads

to a contribution to the Helmholtz free energy given by:

ABorn = − e2

4πϵ0

(
1 − 1

D

)
∑
i∈I

NiZ2
i

σBorn
ii

. (9)

The Born diameter σ̃Born, M
eff, ii of the single large sphere used to map each non-spherical

ion in model M is given by:

σ̃Born, M
eff, ii =

(
NG,i

∑
k=1

νk,iν
∗
k Sk

(
σBorn

kk

)3
)1/3

, i ∈ I

where NG,i represents the total number of groups making up the ionic molecule of species

i, and νk,i is the number of groups of type k within the ionic molecule.

This larger diameter is then incorporated into the Born free-energy expression:

ABorn, M = − e2

4πϵ0

(
1 − 1

D

)
∑
i∈I

NiZ2
i

σ̃Born, M
eff, ii

, (10)

or, equivalently (in terms of mole fractions, and dividing through in customary fashion by

kBT to give a dimensionless free energy),

ABorn, M

NkBT
= − e2

4πϵ0kBT

(
1 − 1

D

)
∑
i∈I

xiZ2
i

σ̃Born, M
eff, ii

. (11)
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The Born contribution is thereby reduced by a factor of ∼ σ̃Born, M
eff, ii
σBorn

ii
.

Expressions for the chemical potential and pressure due to

the ion contribution of Model G

The algebra involved in taking the derivatives of Aion to obtain the chemical potential,

µMSA, G
i , and pressure, pMSA, G, is cumbersome, comprising multiple applications of the

chain rule of calculus, although the procedure is simplified a little by recognising that

the derivatives of Aion with respect to Γ are zero (see “Derivatives of the Helmholtz free

energy with respect to screening length Γ”). The chemical potential of component i is thus

given by

µion, G
i
kBT

=
1

kBT

(
∂Aion, G

∂Ni

)
V,T,Nj ̸=i

= − e2V
4πϵ0DkBT

 Γ
V

NG

∑
k=1;Zk ̸=0

νk,iZ2
k(

1 + Γσ̃MSA,G
eff, kk

)
+

(
∂AMSA, G

∂∆

)
V,T,Nj ̸=i

(
∂∆
∂Ni

)
V,T,Nj ̸=i

+

(
∂AMSA, G

∂Ω

)
V,T,Nj ̸=i

(
∂Ω
∂Ni

)
V,T,Nj ̸=i

+

(
∂AMSA, G

∂Pn

)
V,T,Nj ̸=i

(
∂Pn

∂Ni

)
V,T,Nj ̸=i

}

− UMSA,GN
DkBT

(
∂D
∂Ni

)
V,T,Nj ̸=i

. (12)

The individual partial derivatives appearing in equation (12) are obtained as follows:

(
∂AMSA, G

∂∆

)
V,T,Nj ̸=i

= −πΩ
2

(
Pn

∆

)2

; (13)

(
∂∆
∂Ni

)
V,T,Nj ̸=i

=
−π

6V

NG

∑
k=1;Zk ̸=0

νk,i

(
σ̃MSA, G

eff, kk

)3
; (14)
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(
∂AMSA, G

∂Ω

)
V,T,Nj ̸=i

=
πP2

n
2∆

; (15)

(
∂Ω
∂Ni

)
V,T,Nj ̸=i

=
π

2∆V

NG

∑
k=1;Zk ̸=0

νk,iZ2
k(

1 + Γσ̃MSA,G
eff, kk

) +
(1 − Ω)

∆

(
∂∆
∂Ni

)
V,T,Nj ̸=i

; (16)

(
∂AMSA, G

∂Pn

)
V,T,Nj ̸=i

=
πΩPn

∆
; (17)

(
∂Pn

∂Ni

)
V,T,Nj ̸=i

=
1

ΩV

NG

∑
k=1;Zk ̸=0

νk,iσ̃
MSA, G
eff, kk Zk(

1 + Γσ̃MSA,G
eff, kk

) − Pn

Ω

(
∂Ω
∂Ni

)
V,T,Nj ̸=i

. (18)

The pressure is derived from equations 10 and 11 of the article, once again involving

multiple applications of the chain rule. The volume derivatives of ∆, Ω and Pn are first

required: (
∂∆
∂V

)
T,N

=
π

6V2

NC

∑
i=1;Zi ̸=0

NG

∑
k=1;Zk ̸=0

xiνk,i

(
σ̃MSA,G

eff,kk

)3
=

1 − ∆
V

; (19)

(
∂Ω
∂V

)
T,N

= −
(

π

2V2∆
+

π

2V∆2

(
∂∆
∂V

)) NC

∑
i=1;Zi ̸=0

NG

∑
k=1;Zk ̸=0

xiνk,i

(
σ̃MSA,G

eff,kk

)3

1 + Γσ̃MSA,G
eff,kk

=
1 − Ω

V
+

(
1 − Ω

∆

)(
1 − ∆

V

)
=

1 − Ω
V∆

; (20)

(
∂Pn

∂V

)
T,N

= −
(

1
V2Ω

+
1

VΩ2

(
∂Ω
∂V

)) NC

∑
i=1;Zi ̸=0

NG

∑
k=1;Zk ̸=0

xiνk,iσ̃
MSA,G
eff,kk Zk

1 + Γσ̃MSA,G
eff,kk

= −Pn

V
− Pn

Ω

(
1 − Ω

V∆

)
. (21)
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For the purposes of the volume derivative, the final term in equation 11 of the article can

be thought of as a constant × VΩP2
n/∆; the relevant derivative is thus obtained via

∂

∂V

(
VΩP2

n
∆

)
T,N

=
ΩP2

n
∆

+ V
{

Ω
2Pn

∆

(
∂Pn

∂V

)
− P2

n
∆2

(
∂∆
∂V

)
+

P2
n

∆

(
∂Ω
∂V

)}
= . . . =

(
Pn

∆

)2

(Ω∆ − 2Ω∆ − 2(1 − Ω)− Ω(1 − ∆) + (1 − Ω))

= −
(

Pn

∆

)2

. (22)

One finally obtains

pion, G =

(
−∂Aion, G

∂V

)
N,T

= −Γ3kBT
3π

− e2

8ϵ0D

(
Pn

∆

)2

+
UMSA, G

D

(
∂D
∂V

)
T,N

. (23)

Derivatives of the Helmholtz free energy with respect to

screening length Γ

(This demonstration is adapted from the PhD thesis of Schreckenberg 1.)

Derived thermodynamic properties in the case of the MSA (in the primitive model) are

obtained by taking the derivative of the Helmholtz free energy with respect to the appro-

priate state variable, such as volume, number of components or temperature. Applying

the chain rule, the first derivative with respect to any state variable Ψ is obtained as

∂A
∂Ψ

=

(
∂A
∂Ψ

)
Γ,∆,Ω,Pn

+

(
∂A
∂Γ

)
Ψ,∆,Ω,Pn

(
∂Γ
∂Ψ

)
+

(
∂A
∂∆

)
Ψ,Γ

(
∂∆
∂Ψ

)
+

(
∂A
∂Ω

)
Ψ,Γ

(
∂Ω
∂Ψ

)
+

(
∂A
∂Pn

)
Ψ,Γ

(
∂Pn

∂Ψ

)
. (24)

We provide first the demonstration for the simpler case of Model M. Taking the deriva-

tive with respect to Γ in the second term on the right-hand side of equation (24), as applied
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to Aion given by equations (1) and (2) for Model M leads to

∂Aion

∂Γ
= − Ve2

4πDϵ0

[
1
V ∑

i∈I

NiZ2
i

1 + Γσii

(
1 − Γσii

1 + Γσii

)
+

πPn

2∆

(
Pn

∂Ω
∂Γ

+ 2Ω
∂Pn

∂Γ

)]
+

VkTΓ2

π
.

(25)

From equation (4) we have

∂Pn

∂Γ
=

−1
Ω2V

∂Ω
∂Γ ∑

i∈I

NiσiiZi

1 + Γσii
− 1

ΩV ∑
i∈I

Niσ
2
iiZi

(1 + Γσii)2

=
−Pn

Ω
∂Ω
∂Γ

− 1
ΩV ∑

i∈I

Niσ
2
iiZi

(1 + Γσii)2 , (26)

whence

∂Aion

∂Γ
= − Ve2

4πDϵ0

[
1
V ∑

i∈I

NiZ2
i

(1 + Γσii)2 +
πPn

2∆

(
Pn

∂Ω
∂Γ

− 2
V ∑

i∈I

Niσ
2
iiZi

(1 + Γσii)2 − 2Pn
∂Ω
∂Γ

)]

+
VkTΓ2

π
. (27)

Equation (5) provides
∂Ω
∂Γ

=
−π

2ΩV ∑
i∈I

Niσ
4
ii

(1 + Γσii)2 , (28)

allowing cancellation of V from the numerator of the prefactor in equation (33) and leading

to

∂Aion

∂Γ
= − e2

4πDϵ0

[
∑
i∈I

NiZ2
i

(1 + Γσii)2 − πPn

∆ ∑
i∈I

Niσ
2
iiZi

(1 + Γσii)2

+
π2P2

n
4∆2 ∑

i∈I

Niσ
4
ii

(1 + Γσii)2

]
+

VkTΓ2

π
. (29)

Recalling equation (7) for Qi, the terms in square brackets in equation (35) can be recognised

as ∑i∈I NiQ2
i , whereby this expression reduces to

∂Aion

∂Γ
= − e2

4πDϵ0
∑
i∈I

NiQ2
i +

VkTΓ2

π
= 0 . (30)
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The final equality follows upon substitution for Γ2 using equation (6).

In the case of Model G, taking the derivative with respect to Γ in the second term on

the right-hand side of equation (24), as applied to Aion given by equations 10 and 11 of the

article leads to

∂Aion

∂Γ
= − Ve2

4πDϵ0

[
1
V

NC

∑
i=1;Zi ̸=0

NG

∑
k=1;Zk ̸=0

Niνk,iZ2
k

1 + Γσ̃MSA,G
eff,kk

(
1 −

Γσ̃MSA,G
eff,kk

1 + Γσ̃MSA,G
eff,kk

)

+
πPn

2∆

(
Pn

∂Ω
∂Γ

+ 2Ω
∂Pn

∂Γ

)]
+

VkTΓ2

π
. (31)

From equation 14 of the article we have

∂Pn

∂Γ
=

−1
Ω2V

∂Ω
∂Γ

NC

∑
i=1;Zi ̸=0

NG

∑
k=1;Zk ̸=0

Niνk,iσ̃
MSA,G
eff,kk Zk

1 + Γσ̃MSA,G
eff,kk

− 1
ΩV

NC

∑
i=1;Zi ̸=0

NG

∑
k=1;Zk ̸=0

Niνk,i

(
σ̃MSA,G

eff,kk

)2
Zk(

1 + Γσ̃MSA,G
eff,kk

)2

=
−Pn

Ω
∂Ω
∂Γ

− 1
ΩV

NC

∑
i=1;Zi ̸=0

NG

∑
k=1;Zk ̸=0

Niνk,i

(
σ̃MSA,G

eff,kk

)2
Zk(

1 + Γσ̃MSA,G
eff,kk

)2 , (32)

whence

∂Aion

∂Γ
= − Ve2

4πDϵ0

 1
V

NC

∑
i=1;Zi ̸=0

NG

∑
k=1;Zk ̸=0

Niνk,iZ2
k(

1 + Γσ̃MSA,G
eff,kk

)2

+
πPn

2∆

Pn
∂Ω
∂Γ

− 2
V

NC

∑
i=1;Zi ̸=0

NG

∑
k=1;Zk ̸=0

Niνk,i

(
σ̃MSA,G

eff,kk

)2
Zk(

1 + Γσ̃MSA,G
eff,kk

)2 − 2Pn
∂Ω
∂Γ




+
VkTΓ2

π
. (33)

S8



Equation 15 of the article provides

∂Ω
∂Γ

=
−π

2ΩV

NC

∑
i=1;Zi ̸=0

NG

∑
k=1;Zk ̸=0

Niνk,i

(
σ̃MSA,G

eff,kk

)4

(
1 + Γσ̃MSA,G

eff,kk

)2 , (34)

allowing cancellation of V from the numerator of the prefactor in equation (33) and leading

to

∂Aion

∂Γ
= − e2

4πDϵ0

 NC

∑
i=1;Zi ̸=0

NG

∑
k=1;Zk ̸=0

Niνk,iZ2
k(

1 + Γσ̃MSA,G
eff,kk

)2

−πPn

∆

NC

∑
i=1;Zi ̸=0

NG

∑
k=1;Zk ̸=0

Niνk,i

(
σ̃MSA,G

eff,kk

)2
Zk(

1 + Γσ̃MSA,G
eff,kk

)2

+
π2P2

n
4∆2

NC

∑
i=1;Zi ̸=0

NG

∑
k=1;Zk ̸=0

Niνk,i

(
σ̃MSA,G

eff,kk

)4

(
1 + Γσ̃MSA,G

eff,kk

)2


+

VkTΓ2

π
. (35)

Recalling equation 17 of the article for Qk, the terms in square brackets in equation (35)

can be recognised as ∑NC
i=1;Zi ̸=0 ∑NG

k=1;Zk ̸=0 Niνk,iQ2
k, whereby this expression reduces to

∂Aion

∂Γ
= − e2

4πDϵ0

NC

∑
i=1;Zi ̸=0

NG

∑
k=1;Zk ̸=0

Niνk,iQ2
k +

VkTΓ2

π
= 0 . (36)

The final equality follows upon substitution for Γ2 using equation 16 of the article.
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