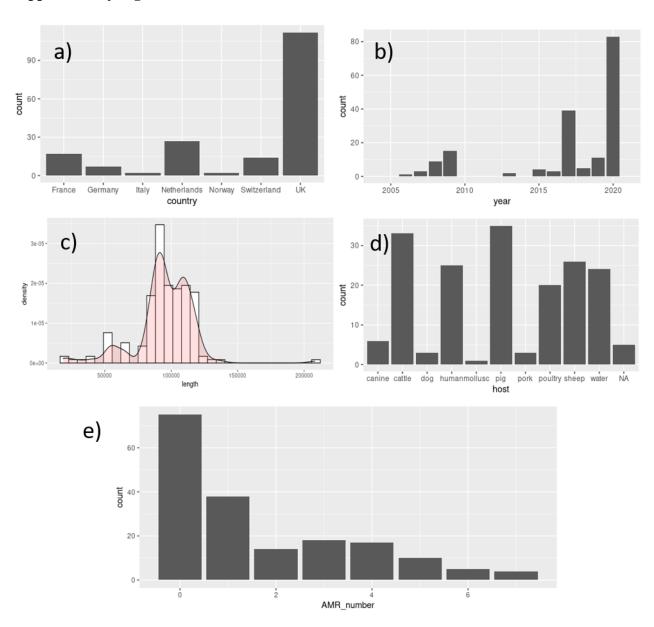
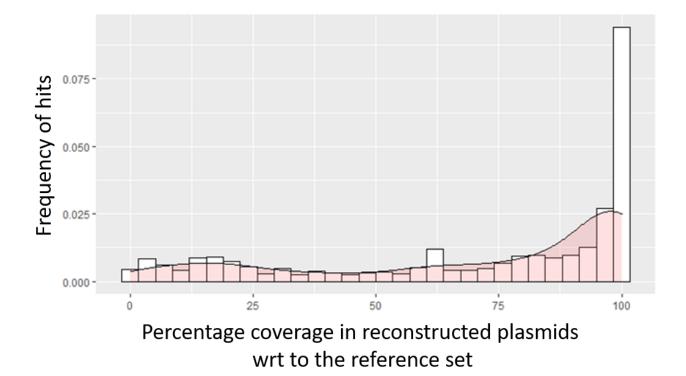
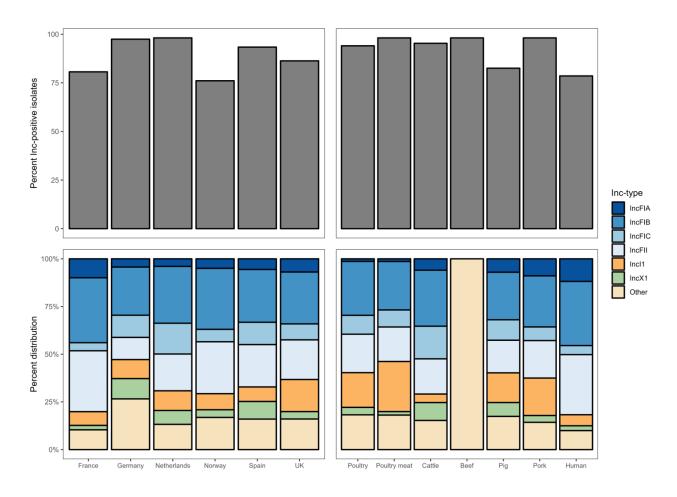
A study of *Escherichia coli* collected between 2013-2020 from six European countries reveals differences in profile and distribution of critical antimicrobial resistance determinants within One-Health compartments.


Supplementary Methods, Figures and Tables

Disclaimer: This supplementary material is hosted by Eurosurveillance as supporting information alongside this article, on behalf of the authors, who remain responsible for the accuracy and appropriateness of the content. The same standards for ethics, copyright, attributions and permissions as for the article apply. Supplements are not edited by Eurosurveillance and the journal is not responsible for the maintenance of any links or email addresses provided therein


IncI1 plasmid method evaluation

The IncI1 plasmid identification method was validated using the assemblies generated from short-read WGS for 46 isolates that were already known to contain circularised IncI1 plasmids from hybrid sequencing [32], which have also been included in the reference set of plasmids. The assemblies used the same 3 quality conditions as the 3475 isolates used in this study: a) removal of contigs shorter than 300bp, b) the total number of contigs left is smaller or equal to 280 and c) average length of the contigs left is greater than 18000 bp. The method assigned the correct IncI1 plasmid in the reference panel for 40 out of the 46 assemblies used (80%), with a percentage identity greater than 98%. For the 6 assemblies that were not assigned to their corresponding plasmid as the best match, one isolate had a 99% identity to its corresponding IncI1 plasmid but with best match to a different plasmid (99.95% identity); 2 isolates had 95% identity to the IncI1 plasmid with best match to another plasmid (99.5% identity); a further two isolates had 85% identity to the IncI1 plasmid with 99.6% identity to another plasmid; and one isolate had 39% identity to the IncI1 plasmid, with 45% identity to another. Further investigation using the available long read assemblies, showed artifacts on the assemblies for these six isolates as the cause of failure, with the assembler tool joining part of the plasmid and chromosomal DNA into the same contig. Since such contigs did not match the reference plasmid DNA with >99% identity, the method discarded the contig lowering the highest percentage match with the plasmid.


Supplementary Figures

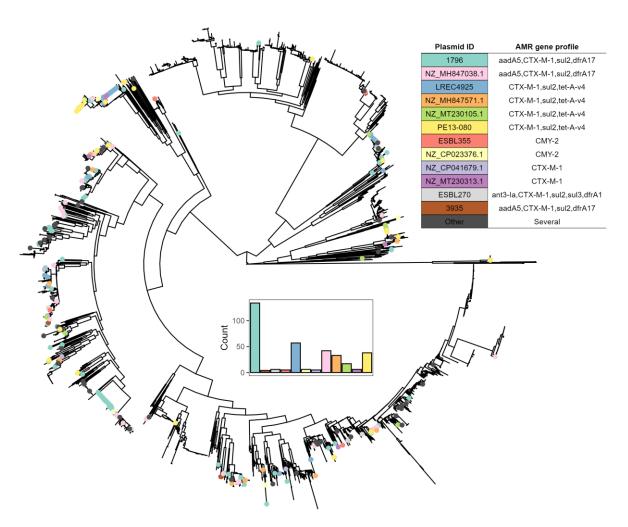

Figure S1: Background of the Incl1 plasmid genomes included in the reference panel by: a) country of isolation; b) year of isolation; c) plasmid length; d) animal host/source; d) number of AMR genes.

Figure S2: Distribution of the highest hit to the reference panel for the 1194 isolates with an Incl1 replicon. The highest hit for an isolate is defined by the BLASTn score when sequences in the assembled contigs of isolates are compared with sequences in the Incl1 plasmid reference panel. The highest percentage coverage for assemblies present in each isolate showing >99% identity to the reference plasmids was plotted. Only isolates with contigs showing >98% coverage to any reference plasmid was included in this study.

Figure S3: Distribution of different plasmid Inc-types identified with PlasmidFinder present in 3745 *E. coli*, stratified on country and host/sample type.

Figure S4: Maximum likelihood phylogeny based on an alignment of 3103 core genes from all included isolates in this study, with the 410 identified Incl1-positive isolates highlighted.-Plasmids presented with a colour represent the major groups of reference plasmids identified in the 410 Incl1-positive isolates. These plasmids were identified in at least one isolate from a different country than the reference plasmid origin. The bar plot presents the number of isolates with each respective Incl1 plasmid.

Supplementary Tables

Table S2: DNA extraction and sequencing methods.

Country	DNA isolation	Library method	Sequenced
The Netherlands	Qiagen DNeasy Blood & Tissue kit	Nextera Flex kit	Illumina Miseq Illumina Hiseq Illumina Nextseq
Norway	QIAamp DNA mini kit	Nextera DNA Flex	Illumina MiSeq Illumina HiSeq
UK	KingFisher	Nextera DNA Flex	Illumina Nextseq
France	QIAamp DNA mini kit	Nextera DNA kit or NEBNext Ultra II FS DNA Library prep	Illumina Nextseq
Germany	Invitrogen Purelink DNA mini kit	Nextera DNA Flex	Illumina Nextseq
Spain	QIAamp DNA mini kit	Nextera DNA XT	Illumina MiSeq

Table S3: Characteristics and origin of the Incl1 reference plasmids conserved among isolates of *Escherichia coli* from France, Germany, the Netherlands, Norway, Switzerland, and the United Kingdom. Distribution among the 410 Incl1-positive isolates in our study is presented in the last two columns.

									Distrib	ution
Plasmid ID	Circular	pMLST	Size (bp)	Source	Year	Origin	Country	AMR profile	Number of isolates	%
1796	Yes	3	108,489	Pork	2015	APHA	UK	1	134	32.68
LREC4925	Yes	3	104,515	Poultry	2020	APHA	UK	2	57	13.9
NZ_MH847038.1	Yes	220 ^a	108,813	Pig	2020	NCBI	FR	1	42	10.24
PE13-080	Yes	3	107,495	Pig	2013	APHA	UK	2	38	9.27
NZ_MH847571.1	Yes	220°	107,715	Pig	2020	NCBI	FR	2	33	8.05
NZ_MT230105.1	Yes	3	107,737	Water	2020	NCBI	FR	2	17	4.15
4636	Yes	80	118,642	Pig	2019	APHA	UK	3	11	2.68
ESBL-49	Yes	3	105,788	Pig	2017	APHA	UK	4	7	1.71
ESBL270	No	7	107,175	Poultry	2007	Smith	NL	7	6	1.46
NZ_CP023376.1	Yes	2	92,420	Canine	2017	NCBI	UK	5	6	1.46
NZ_MT230313.1	Yes	Unknown	65,694	Water	2020	NCBI	FR	6	6	1.46
ESBL355	No	12	99,885	Poultry	2007	Smith	NL	5	5	1.22
NZ_CP041679.1	Yes	58	88,891	Human	2019	NCBI	СН	6	5	1.22
3935	Yes	3	113,383	Poultry	2018	APHA	UK	1	4	0.98
4568	Yes	108	100,114	Pork	2019	APHA	UK	4	4	0.98
CP057698.1	Yes	12	96,066	Pig	2020	NCBI	UK	5	3	0.73
ESBL117	No	36	89,503	Human	2009	Smith	NL	8	3	0.73
ESBL-138	Yes	3	108,782	Pig	2015	APHA	UK	2	3	0.73
ESBL318	No	12	102,363	Poultry	2008	Smith	NL	5	3	0.73
NZ_CP023370.1	Yes	43	96,402	Canine	2017	NCBI	UK	5	3	0.73
NZ_CP031903.1	Yes	31	88,545	Human	2019	NCBI	DE	9	3	0.73
275mcc	Yes	3	107,495	Pig	2015	APHA	UK	2	2	0.49
CP057998.1	Yes	134	86,278	Sheep	2020	NCBI	UK	13	2	0.49

CP074613.1	Yes	3	97,119	Unknown	2021	NCBI	UK	10	2	0.49
NZ_MT230257.1	Yes	3	107,610	Water	2020	NCBI	FR	2	2	0.49
PE13-096	Yes	3 ^a	110,096	Pig	2013	APHA	UK	1	2	0.49
3896	Yes	3 ^a	110,139	Poultry	2018	APHA	UK	2	1	0.24
CP057403.1	Yes	Unknown	93,112	Pig	2020	NCBI	UK	14	1	0.24
NZ_CP023365.1	Yes	2	92,421	Canine	2017	NCBI	UK	5	1	0.24
NZ_CP027395.1	No	Unknown	117,229	Human	2018	NCBI	DE	9	1	0.24
NZ_CP042886.1	Yes	31	88,772	Water	2020	NCBI	NO	11	1	0.24
NZ_CP055601.1	Yes	Unknown	112,380	Pig	2020	NCBI	UK	12	1	0.24
RHB12-C14-3	Yes	Unknown	99,450	Cattle	2017	APHA	UK	13	1	0.24

^a: The closest pMLST-profile but not an exact match

Table S7: AMR profiles for the 410 Incl1-plasmids identified in isolates through PlasmidFinder and with >98% match to the reference panel.

Index	AMR profile
1	aadA5, bla _{CTX-M-1} , sul2, dfrA17
2	bla _{CTX-M-1} , sul2, tet-A-v4
3	strA, strB, bla _{CTX-M-14} , bla _{LAP-2} , qnrS1, sul2, dfrA14
4	bla _{CTX-M-1} , sul2
5	bla _{CMY-2}
6	bla _{CTX-M-1}
7	ant(3'')-Ia, bla _{CTX-M-1} , sul2, sul3, dfrA1
8	<i>bla</i> _{TEM-52c}
9	bla _{CTX-M-15} , bla _{TEM-1b}
10	sul2
11	bla _{CTX-M-15} , qnrS1
12	bla _{TEM-1b} , sul2, dfrA1
13	No AMR genes

Table S8: Number of samples associated with each of the 13 AMR profiles found for the 410 positive samples containing Incl1 plasmids and their distribution across countries. Number of isolates per country are indicated by #; Norway is excluded as there were no matches at >98% coverage and >99% identity. For every country, column $\%_c$ indicates as percentage the numbers of positive isolates w.r.t. the total positives for that AMR profile in column two and column $\%_p$ indicates as percentage the number of positive isolates w.r.t. the number of Incl1 positive isolates (plasmid finder + 98% coverage) from each country as described in Table 3.

			Netherl	lands		UK			France			Spain			Germany		
AMR profile index	counts	% (of 410)	#	%_c	%_р	#	%_c	%_p	#	%_c	%_p	#	%_c	%_p	#	%_c	%_p
1	182	44.39	7	3.85	19.44	173	95.05	47.4	0	0	0	0	0	0	2	1.1	50
2	153	37.32	12	7.84	33.33	141	92.16	38.63	0	0	0	0	0	0	0	0	0
3	11	2.68	0	0	0	11	100	3.01	0	0	0	0	0	0	0	0	0
4	11	2.68	0	0	0	11	100	3.01	0	0	0	0	0	0	0	0	0
5	21	5.12	7	33.3 3	19.44	13	61.9	3.56	0	0	0	1	4.76	33.3 3	0	0	0
6	11	2.68	4	36.3 6	11.11	5	45.45	1.37	1	9.09	50	0	0	0	1	9.09	25
7	6	1.46	2	33.3 3	5.56	4	66.67	1.1	0	0	0	0	0	0	0	0	0
8	3	0.73	3	100	8.33	0	0	0	0	0	0	0	0	0	0	0	0
9	4	0.98	0	0	0	4	100	1.1	0	0	0	0	0	0	0	0	0
10	2	0.49	0	0	0	2	100	0.55	0	0	0	0	0	0	0	0	0
11	1	0.24	1	100	2.78	0	0	0	0	0	0	0	0	0	0	0	0
12	1	0.24	0	0	0	0	0	0	0	0	0	1	100	33.3 3	0	0	0
13	4	0.98	0	0	0	1	25	0.27	1	25	50	1	25	33.3 3	1	25	25
Total	410		36			365			2			3			4		

Table S9: Number of samples associated with each of the 13 AMR profiles found for the 410 positive samples for Incl1 plasmid and the distribution across the host species. The number of isolates per host-group are indicated by #.

			Poult	ry	Poultry	meat	Po	ork	Hur	nan	Ca	attle	P	ig
AMR profile index	counts	% (of 410)	#	%	#	%	#	%	#	%	#	%	#	%
1	182	44.39	32	17.6	63	34.6	1	0.6	0	0	3	1.65	83	46
2	153	37.32	59	38.6	79	51.6	0	0	0	0	0	0	15	9.8
3	11	2.68	0	0	0	0	0	0	0	0	0	0	11	100
4	11	2.68	1	9.1	0	0	2	18	0	0	0	0	8	73
5	21	5.12	7	33.3	3	14.3	1	4.8	0	0	2	9.52	8	38
6	11	2.68	2	18.2	1	9.09	0	0	1	9.1	3	27.29	4	36
7	6	1.46	0	0	0	0	0	0	0	0	0	0	6	100
8	3	0.73	2	66.7	0	0	0	0	0	0	1	33.3	0	0
9	4	0.98	0	0	0	0	0	0	0	0	0	0	4	100
10	2	0.49	0	0	0	0	0	0	0	0	0	0	2	100
11	1	0.24	0	0	0	0	0	0	0	0	1	100	0	0
12	1	0.24	0	0	0	0	0	0	1	100	0	0	0	0
13	4	0.98	1	25	0	0	0	0	1	25	0	0	0	0

Table S10: Number of samples associated with each of the plasmids in the reference set. The sum of the counts is 410. For every country, column $\%_c$ indicates as percentage the number of isolates w.r.t. the total positive isolates for a particular plasmid type (Table 1). For every country, column $\%_p$ indicates as percentage the number of isolates w.r.t. the number of Incl1 positive isolates from each country as described in Table 3 (column Incl1 plasmid with >98% match with ref panel).

		G	ermany		N	etherland	ls		Spain			UK		F	rance		
plasmid ID	country	#	%_p	%_c	#	%_р	%_c	#	%_p	%_c	#	%_p	%_c	#	%_p	%_c	AMR profile
1796	UK	1	0.7	25	3	2.2	8.3	0	0	0	130	97	35.6	0	0	0	1
LREC4925	UK	0	0	0	2	3.5	5.6	0	0	0	55	96.5	15.1	0	0	0	2
NZ_MH847038.1	France	0	0	0	4	9.5	11.1	0	0	0	38	90.5	10.4	0	0	0	1
PE13-080	UK	0	0	0	2	5.3	5.6	0	0	0	36	94.7	9.9	0	0	0	2
NZ_MH847571.1	France	0	0	0	6	18.2	16.7	0	0	0	27	81.8	7.4	0	0	0	2
NZ_MT230105.1	France	0	0	0	0	0	0	0	0	0	17	100	4.7	0	0	0	2
4636	UK	0	0	0	0	0	0	0	0	0	11	100	3	0	0	0	3
ESBL-49	UK	0	0	0	0	0	0	0	0	0	7	100	1.9	0	0	0	4
ESBL270	Nether- lands	0	0	0	2	33.3	5.6	0	0	0	4	66.7	1.1	0	0	0	7
NZ_CP023376.1	UK	0	0	0	3	50	8.3	0	0	0	3	50	0.8	0	0	0	5
NZ_MT230313.1	France	0	0	0	2	33.3	5.6	0	0	0	4	66.7	1.1	0	0	0	6
ESBL355	Nether- lands	0	0	0	1	20	2.8	0	0	0	4	80	1.1	0	0	0	5
NZ_CP041679.1	Switzer- land	1	20	25	2	40	5.6	0	0	0	1	20	0.3	1	20	50	6
3935	UK	1	25	25	0	0	0	0	0	0	3	75	0.8	0	0	0	1
4568	UK	0	0	0	0	0	0	0	0	0	4	100	1.1	0	0	0	4
CP057698.1	UK	0	0	0	3	100	8.3	0	0	0	0	0	0	0	0	0	5
ESBL117	Nether- lands	0	0	0	3	100	8.3	0	0	0	0	0	0	0	0	0	8
ESBL-138	UK	0	0	0	0	0	0	0	0	0	3	100	0.8	0	0	0	2
ESBL318	Nether- lands	0	0	0	0	0	0	1	33.3	33.3	2	66.7	0.5	0	0	0	5
NZ_CP023370.1	UK	0	0	0	0	0	0	0	0	0	3	100	0.8	0	0	0	5
NZ_CP031903.1	Germany	0	0	0	0	0	0	0	0	0	3	100	0.8	0	0	0	9
275mcc	UK	0	0	0	0	0	0	0	0	0	2	100	0.5	0	0	0	2
CP057998.1	UK	0	0	0	0	0	0	1	50	33.3	0	0	0	1	50	50	13
CP074613.1	UK	0	0	0	0	0	0	0	0	0	2	100	0.5	0	0	0	10
NZ_MT230257.1	France	0	0	0	1	50	2.8	0	0	0	1	50	0.3	0	0	0	2
PE13-096	UK	0	0	0	0	0	0	0	0	0	2	100	0.5	0	0	0	1
3896	UK	0	0	0	1	100	2.8	0	0	0	0	0	0	0	0	0	2
CP057403.1	UK	0	0	0	0	0	0	0	0	0	1	100	0.3	0	0	0	14
NZ_CP023365.1	UK	0	0	0	0	0	0	0	0	0	1	100	0.3	0	0	0	5
NZ_CP027395.1	Germany	0	0	0	0	0	0	0	0	0	1	100	0.3	0	0	0	9
NZ_CP042886.1	Norway	0	0	0	1	100	2.8	0	0	0	0	0	0	0	0	0	11
NZ_CP055601.1	UK	0	0	0	0	0	0	1	100	33.3	0	0	0	0	0	0	12
RHB12-C14-3	UK	1	100	25	0	0	0	0	0	0	0	0	0	0	0	0	13

Table S11. Percent distribution of the reference Incl1 plasmids among the 410 samples positive for Incl1-plasmids using the BLAST method. The data is stratified on host species, presented as number of isolates (#) and percent occurrence (%) with respect to the total number of isolates harbouring the respective plasmid.

		Poul	try	Poultry	Meat	Po	rk	Hum	an	Ca	ttle		Pig	
Assigned plasmid ID	Plasmid host	#	%	#	%	#	%	#	%	#	%	#	%	AMR profile
1796	pork	28	20.89	60	44.78	1	0.75	0	0	2	1.5	43	32.09	1
LREC4925	poultry	21	36.84	35	61.4	0	0	0	0	0	0	1	1.75	2
NZ_MH847038.1	pig	3	7.14	1	2.38	0	0	0	0	1	2.38	37	88.1	1
PE13-080	pig	8	21.05	20	52.63	0	0	0	0	0	0	10	26.32	2
NZ_MH847571.1	pig	16	48.48	15	45.45	0	0	0	0	0	0	2	6.06	2
NZ_MT230105.1	water	10	58.82	7	41.18	0	0	0	0	0	0	0	0	2
4636	pig	0	0	0	0	0	0	0	0	0	0	11	100	3
ESBL-49	pig	1	14.29	0	0	0	0	0	0	0	0	6	85.71	4
ESBL270	poultry	0	0	0	0	0	0	0	0	0	0	6	100	7
NZ_CP023376.1	canine	3	50	0	0	1	16.7	0	0	0	0	2	33.33	5
NZ_MT230313.1	water	2	33.33	1	16.67	0	0	0	0	0	0	3	50	6
ESBL355	poultry	3	60	1	20	0	0	0	0	0	0	1	20	5
NZ_CP041679.1	human	0	0	0	0	0	0	1	20	3	60	1	20	6
3935	poultry	1	25	2	50	0	0	0	0	0	0	1	25	1
4568	pork	0	0	0	0	2	50	0	0	0	0	2	50	4
CP057698.1	pig	1	33.3	0	0	0	0	0	0	2	66.7	0	0	5
ESBL117	human	2	66.67	0	0	0	0	0	0	1	33.3	0	0	8
ESBL-138	pig	0	0	2	66.67	0	0	0	0	0	0	1	33.33	2
ESBL318	poultry	0	0	2	66.67	0	0	0	0	0	0	1	33.33	5
NZ_CP023370.1	canine	0	0	0	0	0	0	0	0	0	0	3	100	5
NZ_CP031903.1	human	0	0	0	0	0	0	0	0	0	0	3	100	9
275mcc	pig	2	100	0	0	0	0	0	0	0	0	0	0	2
CP057998.1	sheep	1	50	0	0	0	0	1	50	0	0	0	0	13
CP074613.1	NA	0	0	0	0	0	0	0	0	0	0	2	100	10
NZ_MT230257.1	water	1	50	0	0	0	0	0	0	0	0	1	50	2
PE13-096	pig	0	0	0	0	0	0	0	0	0	0	2	100	1
3896	poultry	1	100	0	0	0	0	0	0	0	0	0	0	2
CP057403.1	pig	0	0	0	0	0	0	0	0	0	0	1	100	14
NZ_CP023365.1	canine	0	0	0	0	0	0	0	0	0	0	1	100	5
NZ_CP027395.1	human	0	0	0	0	0	0	0	0	0	0	1	100	9
NZ_CP042886.1	water	0	0	0	0	0	0	0	0	1	100	0	0	11
NZ_CP055601.1	pig	0	0	0	0	0	0	1	100	0	0	0	0	12
RHB12-C14-3	cattle	0	0	0	0	0	0	0	0	0	0	1	100	13