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Data S1 and S2



Fig. S1. 

Patients treated with unilateral FUS-STN included in the topographic analysis. 



Fig. S2. 

The anatomical connection density. The ACD measure (75) is the ratio between the “effective” 

number of voxels over the surface of both regions, weighting each voxel by its connectivity 

value with the connected region, and the total number of considered superficial voxels. Thus, for 

any subject and pair of regions i and j, the ACDi,j measure (0 ≤ ACDi;j ≤ 1; ACDi,j ≡ ACDji) 

reflects the fraction of the region's surface involved in the axonal connection with respect to the 

total surface of both regions. In this way, ACD reflects the degree of evidence supporting the 

existence of each connection, after controlling for the size of the region. For each motor feature, 

we calculated its anatomical connectivity pattern as the ACD matrix between the ‘significant 

mean effect image’ and six regions defined by a human motor area template. 



Fig. S3. 

Manual refinement using 3DSlicer. Example T2 slices (fast spin echo, pixel size = 0.5mm, slice 

thickness = 2mm) acquired 24 hours after FUS-subthalamotomy. Yellow outlines feature 

DISTAL atlas structures after automated registration into MNI space with SPM12 (78). Note the 

mismatch between outlines and underlying anatomical structures. Affine manual refinement of 

deformation fields accounted for these differences. 



Fig. S4. 

Probabilistic FUS lesion maps (N-image, all subjects) respective to the Schaltenbrand and 

Wahren atlas (79). (A) Axial slice at 3-4 mm under the commissural plane, (B) Coronal slice at 3 

mm posterior to the inter-commissural point, (C) Sagittal slice at 13 mm lateral to midline. 

(STN: subthalamic nucleus). On average, the center of the lesion was well within the motor 

region of the STN. ZI: zona incerta; RN: red nucleus; FF: fields of Forel; SN: subtantia nigra; 

Voa/Vop: ventralis oralis anterior/posterior nuclei of the thalamus; Vim: ventralis intermedius 

nucleus of the thalamus; Ra.prl prelemniscal radiation). 



Fig. S5. 

Example of prediction based on fiber tract impact. Prediction of treatment-induced improvement 

in bradykinesia is shown for two extreme example patients. In both cases the patients’s 

streamlines (streamlines distribution seeding from lesion, in hot colors) and sweet fibers 

(streamlines seeding from bradykinesia sweetspot, in winter colors) are rendered in the MNI 

template (left panels). SMA region is zoomed to facilitate visual inspection. Tract density images 

superimposed in MNI template are shown in top right panel. Spatial correlations are shown in 

scatter plots (right bottom panel), where blue dots represent voxels where density values of 

effective streamlines are different from 0. A) Example patient with strong overlap of his lesioned 

tract with sweet fibers significantly improved in bradykinesia score (% improvement = 100%, 

Patient 36, Data S2). B) Patient with less overlap received a lower improvement in bradykinesia 

score (% improvement = 16.7%, Patient 5, Data S2). Note the scarcity of patient’s connections 

(hot colors) in SMA, as well as areas of poor overlap in the course of the tracts. Of note, several 

voxels barely overlapped with the sweet tract and consequently received a near-zero score 

(scatter plot).   



Volume (mm3) 

Sweet-spot: Total M1 SMA Associative Limbic 

Bradykinesia 34.9   5.5 26.8 2.6 0.0 

Rigidity 10.9   2.9   7.9 0.1 0.0 

Tremor 15.9 10.8   5.1 0.0 0.0 

Table S1. 

Estimated volumes of significant mean effect maps impacting in subthalamic subregions. 



Region* VSMA-STN VM1-STN VAssoc-STN VLimbic-STN 

Volume ± s.d. (mm3) § 31.47 ± 16.3 20.91 ± 9.7 9.1 ± 6.6 0.13 ± 0.7 

Bradykinesia 

t-value 5.322 -0.031 -0.003 0.636 

Partial R 0.658 -0.005 0.000 0.105 

p-value <0.001 0.975 0.998 0.529 

Rigidity 

t-value 2.971 1.533 1.451 0.990 

Partial R 0.439 0.248 0.235 0.163 

p-value 0.005 0.134 0.155 0.329 

Tremor 

t-value 1.409 2.657 0.725 0.591 

Partial R 0.245 0.425 0.129 0.106 

p-value 0.169 0.012 0.474 0.559 

Table S2. 

Stepwise multiple regression analysis to account for the relationship between lesion topography 

and the functional organization of the STN. Variables included in the final statistical model are 

shown in bold.  

*Atlas-based subthalamic regions defined by the connectivity with functionally relevant cortical

regions (6).

§ Overlap volume between patient’s lesions and atlas-defined STN sub-regions.



Data S1. Morphometric values (separate file ‘Data_S1.xlsx’) 

Each row represents a subject included in the study (n=39). The table shows volume (mm3) of 

the overall lesion (VTOT). and the impact on the subthalamic nucleus (VSTN). and the SMA-STN. 

M1-STN associative and limbic respective sub-regions according to the 24h post-treatment MRI. 

Coordinates of the center of mass of the lesion within the STN are shown both according to MNI 

system and with respect to ACPC. X represents the latero-medial axis coordinate; thus larger 

positive values indicate more lateral with respect to midline. Y represents the rostro-caudal axis 

coordinate; thus larger positive values indicate more distance posterior with respect to mid-

commisural point. Z represents the dorso-ventral axis coordinate; thus larger positive values 

indicate more ventral distance with respect to the ACPC plane. 

Data S2. Clinical outcome. (separate file ‘Data_S2.xlsx’) 

Each row represents a subject included in the study (n=39). The table shows motor outcomes for 

every patient. Left columns show scores for the treated side (i.e.. most affected side) at baseline. 

Motor outcomes are presented as “% of change” in the respective MDS-UPDRS-III sub scores. 

Contralateral score for rigidity (item 3.3. unilateral assessment includes evaluation of rigidity in 

the upper and lower limbs and ranges from 0 to 8 with higher scores indicating greater rigidity). 

bradykinesia (items 3.4 – 3.8. unilateral assessment includes evaluation of the upper and lower 

limb and ranges from 0 to 20. with higher scores indicating greater bradykinesia) and resting 

tremor (items 3.17. unilateral assessment includes evaluation of rest tremor in the upper and 

lower limbs ranging from 0 to 8. Higher scores indicate worst motor condition.  

% of change= [ (score at baseline - score at last follow up)/baseline score] * 100 

with higher positive values meaning larger improvement. NA=not applicable (for tremor 

improvement in patients without resting tremor at baseline). 
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