
nature biomedical engineering

https://doi.org/10.1038/s41551-024-01197-4Article

Histopathological biomarkers for predicting 
the tumour accumulation of nanomedicines

In the format provided by the 
authors and unedited

https://doi.org/10.1038/s41551-024-01197-4


 

 
 
Supplementary Fig. 1 | Tumour accumulation of PHPMA nanocarriers over time. CT-FLT imaging was 
employed to kinetically monitor the tumour accumulation of 67 kDa-sized DY750-labeled PHPMA in 
individual animals in three different tumour models. The results show that polymer accumulation in A431 
tumours plateaued from 24 h onwards, while in MLS and CT26 tumours, the concentrations of the 
nanocarrier still slightly increased from 24 to 72 h post i.v. injection. 
 



 

 
 
Supplementary Fig. 2 | Ex vivo analysis of PHPMA biodistribution. a, Fluorescence reflectance imaging 
(FRI) analysis displaying the biodistribution and tumour accumulation of 67 kDa DY750-labeled PHPMA in 3 
different tumour models at 72 h post i.v. injection. b, Fluorescence signal analysis for tumours and organs, 
demonstrating efficient tumour vs. organ targeting as well as differential tumour accumulation in A431, MLS 
and CT26 tumours.  
  



 

 
 
Supplementary Fig. 3 | Tumour microenvironment characterization and correlation with nanocarrier 
accumulation. a, d, g, Immunofluorescence stainings for collagen I (Col I), collagen IV (Col IV) and nuclei 
(DAPI) in A431, MLS and CT26 tumours. b, e, h, Quantification of the immunofluorescence images. Black 
bars indicate means. c, f, i, Correlation of polymeric nanocarrier tumour accumulation at 72 h post i.v. 
injection with tumour tissue biomarker features. Trendlines are shown per tumour model (colour-coded) and 
for all tumours together (black). R2 values indicate the coefficient of determination and reflect the goodness 
of fit. j-n, Evaluation of additional biomarker features relying on double-staining with tumour blood vessels 
(CD31). Plotted are the percentages of lectin+, aSMA+, VEGFR2+, Col I+ and Col IV+ vessels in the three 
tumour models employed. All indicated p values are based on Student’s t-test. 
  



 

 
 
Supplementary Fig. 4 | Correlation of CD31 and F4/80 area fraction with liposome tumour 
accumulation. a, b, In addition to vessel and macrophage number, also the area fraction of CD31- and 
F4/80-positive structures were quantified in the DAB stainings of the 10 tumour models. Black bars indicate 
means. c, d, Correlation of CD31 and F4/80 area fraction with the tumour accumulation of liposomal 
doxorubicin over time (AUC0-120). Note that E35CR is an outlier, and that overall, there is a decent correlation 
between blood vessel and macrophage density and liposomal doxorubicin accumulation. 
  



 

 
 
Supplementary Fig. 5 | Nanocarrier tumour accumulation in immune-competent mouse models. a, 
4T1 tumour-bearing BALC/c mice were injected with PHPMA polymers and tumour accumulation was plotted 
against the product score of tumour blood vessels and TAM. b-c, Hep-55.1C tumour cells were inoculated 
subcutaneously (b) or orthotopically (c) in immune-competent C57BL/6J mice, and the tumour accumulation 
of PEGylated liposomes was plotted against the product score of tumour blood vessels and TAM. In all three 
syngeneic tumour models in immune-competent mice, a good correlation was observed between our 
biomarker product score and nanomedicine tumour accumulation.  
  



 

 
 
Supplementary Fig. 6 | Co-staining of tumour-associated macrophages with F4/80 and CD68 
antibodies. a, Fluorescence microscopy analysis of A431, MLS, and CT26 tumours in which TAM were co-
stained for F4/80 and CD68. Scale bars indicate 50 µm. b-d, The number of cells positive for F4/80, for 
CD68 and double-positive for both F4/80 and CD68 were counted per field of view. Values represent the 
average of n=5 different fields of view for each individual tumour. The images and quantification show that 
there is high congruence between F4/80 and CD68 staining.  
  



 

 
 
Supplementary Fig. 7 | Comparison of biomarker assessment and product score performance in 
resected tumour tissue specimens vs. primary tumour biopsies. a-d, Product score performance in 
tumour resections. Data is replotted from main manuscript Fig. 7c-f, but now normalized to an area of 1 cm². 
Blood vessel counts are shown in panel (a) TAM counts in (b) liposome tumour accumulation in (c) (from 
Harrington et al. [24]), and CD31 and CD68 product scores versus liposome accumulation in (d). e-f, 
Quantification of blood vessel (e) and TAM (f) counts in corresponding tumour biopsies from the same 
patients. g, Means of CD31 and CD68 product scores in biopsies plotted against the means of liposome 
tumour targeting, exemplifying that also in biopsies, poorly accumulating tumours can be identified using 
biomarker assessment. Error bars indicate the distribution of product scores and tumour accumulation values 
(minima and maxima on the y-axis, standard deviations on the x-axis; indicated p values are based on 
Student’s t-test). 
  



 

 
 
Supplementary Fig. 8 | Tumour growth of preclinical tumour models. a-f, Tumour volume calculations 
are based on caliper measurements or on CT imaging (e,f).  
  



 

Supplementary Table 1 | Overview of tumour tissue biomarkers. 
 

Category Antigen Indicative for Analysed Biomarker 

Vasculature CD31 Blood vessels Number (No.) 
   Area Fraction (AF) 
 Lectin Perfused Vessels Number (No.) 
   Area Fraction (AF) 
   Ratio of pos. vessels 
 VEGFR2 Angiogenesis Number (No.) 
   Area Fraction (AF) 
   Ratio of pos. vessels 
 LYVE-1 Lymphatic vessels Number (No.) 
   Area Fraction (AF) 
Stroma �SMA Vessel maturity Number (No.) 
   Area Fraction (AF) 
   Ratio of pos. vessels 
 Col I Extracellular Matrix Area Fraction (AF) 
   Number (No.) of pos. Vessels 
   Ratio of pos. Vessels 
 Col IV Vessel support/basal lamina Area Fraction (AF) 
   Number (No.) of pos. Vessels 
   Ratio of pos. vessels 
Cells F4/80 Macrophages Area Fraction (AF) 
   Number (No.) 
 DAPI Nuclei Area Fraction (AF) 
   Number (No.) 

 
 
  



 

Supplementary Table 2 | Time post-implantation required for tumours to reach experimental size. 
 

Tumour Model Days to reach 0.5 cm3 

E35CR 43 

Calu-3 45 

REN (RXF423) 48 

CRC (CXF1297) 21 

E77 47 

NSCLC (LXFE2257) 32 

OV (OVFX899) 28 

SW620 15 

A549 21 

Calu-6 29 
 
 
  



 

Supplementary Table 3 | Details of preclinical tumour models. 
 

Model Mouse Sex  
and Strain 

Mouse  
Supplier 

Age / Weight  
at 
Implantation 

Implant  
Conditions 

A431 
MLS 
CT26 

Female CD1-
nude Charles River 6-8 weeks 

Cell suspension in 
medium. Right flank s.c. 
under anesthesia. 

4T1 Female BALB/c Charles River 6-8 weeks 
Cell suspension in 
medium. 
Mammary fat pad o.t. 
under anesthesia. 

Hep55-1.C Male C57BL/6J Charles River 8-10 weeks 
Cell suspension + 
Matrigel. Left flank s.c. or 
left liver lobe o.t. under 
anesthesia. 

CRC (CXF1297) 
NSCLC 
(LXFE2257) OV 
(OVFX899) 
REN (RXF423) 

Female NMRI 
nude Harlan 4-6 weeks 

3x3 mm fragment under 
anaesthesia.  
Left flank s.c. 

E35CR 
E77 

Male CB.17 
SCID Envigo UK > 18 g 

3x3 mm fragment under 
anaesthesia.  
Left flank s.c. 

Calu-3 Female CB.17 
SCID Envigo UK > 18 g Cell suspension + 

Matrigel. Left flank s.c. 

A549 
Calu-6 
SW620 

Female 
Hsd:Athymic 
Nude-Foxn1nu 

Envigo UK > 18 g Cell suspension + 
Matrigel. Left flank s.c. 

 
 
  



 

Supplementary Table 4 | List of antibodies. 
 

Primary antibodies 

Antigen Host Dilution Company & Catalogue 
number 

Mouse CD31 (PECAM-1) Rat 1:100 BD Biosciences # 553370 

Mouse VEGFR2 extracellular domain Goat 1:20 R&D Systems # AF644 

Mouse F4/80 (wide range of 
Macrophages) Rat 1:50 Bio-Rad # MCA497GA 

Murine and human Collagen Type I Rabbit 1:100 Novus Biologicals (NB600-
408) 

Mouse Collagen IV Rabbit 1:100 Novotec # 20451 0.5ml 

Mouse Smooth Muscle Actin (ASM-1) Biotin 1:100 Progen # BK61501-1mg 

Mouse LYVE-1 Rabbit 1:50 abcam # ab14917 

Mouse CD68 Rabbit 1:100 abcam # ab125212 

Human CD31 Clone JC70A Mouse ready to use DAKO Code IR610 

Human CD68 Clone PG-M1 Mouse ready to use DAKO Code GA613 
     

Secondary antibodies 

Antigen Conjugate Dilution Company & Catalogue 
number 

Rat IgG (H+L) Alexa Fluor 488 1:350 Dianova # 712-546-153 

Rat IgG (H+L) AMCA 1:50 Dianova # 712-155-153 

Rat IgG (H+L) Cy5 1:100 Dianova # 712-175-153 

Rabbit IgG (H+L) Alexa Fluor 488 1:500 Dianova # 711-546-152 

Rabbit IgG (H+L) AMCA 1:50 Dianova # 111-155-003 

Goat IgG (H+L) AMCA 1:50 Dianova # 705-155-147 

Biotin Cy2 1:200 Dianova # 016-220-084 
  



 

Supplementary Table 5 | Details of patient tumour samples. 
 

Sample ID Sex Cohort ICD-O code Topography 
code TNM stage 

BC1 Female Breast 8500/3 C50 pT3pN1 
BC2 Female Breast 8500/3 C50 pT4pN3 
BC3 Female Breast 8500/3 C50 pT4pN2 
BC4 Female Breast 8500/3 C50 pT3pN2 
BC5 Female Breast 8500/3 C50 pT3pN0 
BC6 Female Breast 8500/3 C50 pT4pN3 
BC7 Female Breast 8500/3 C50 pT4pN2 
BC8 Female Breast 8500/3 C50 pT3pN3 
BC9 Female Breast 8500/3 C50 pT4pNX 
BC10 Female Breast 8500/3 C50 pT3pN1 
HN1 Male Head & neck 8070/3 C30 pT3pN0 
HN2 Female Head & neck 8070/3 C02 pT3pN1 
HN3 Male Head & neck 8070/3 C02 pT3pN2 
HN4 Female Head & neck 8070/3 C07 pT3pN1 
HN5 Male Head & neck 8070/3 C09 pT3pN1 
HN6 Male Head & neck 8070/3 C13 pT4pN0 
HN7 Male Head & neck 8070/3 C32 pT3pN0 
HN8 Male Head & neck 8070/3 C09 pT3pN1 
HN9 Male Head & neck 8070/3 C44 pT3pN1 
HN10 Male Head & neck 8070/3 C32 pT3pN0 
LC1 Male Lung 8070/3 C34 pT4pN1cM1 
LC2 Male Lung 8070/3 C34 pT3pN0 
LC3 Male Lung 8070/3 C34 pT3pN0 
LC4 Male Lung 8070/3 C34 pT3pN1 
LC5 Female Lung 8070/3 C34 pT3pN0 
LC6 Male Lung 8070/3 C34 pT3pN0 
LC7 Female Lung 8070/3 C34 pT3pN0 
LC8 Male Lung 8070/3 C34 pT3pN0 
LC9 Male Lung 8070/3 C34 pT3pN1 
LC10 Male Lung 8070/3 C34 pT3pN1 

 
 
 
  



 

Supplementary methods 
 
Gradient tree boosting 
GTB is a supervised machine learning technique building predictive regression models based on a set of 
decision trees (1-3). Every decision tree is established as a chain of simple comparisons with a binary 
outcome. The ensemble is trained in an additive manner, i.e., every newly added decision tree corrects the 
results of the previous present decision trees. GTB accepts arbitrary input features and intrinsically handles 
partially missing data during training and prediction (4). Important hyperparameters of GTB models, i.e., 
parameters set before the model training, are the maximum depth, the number of decision trees, and the 
learning rate (5). The maximum depth denotes the maximum number of comparisons within a single decision 
tree. The learning rate is only essential during model training and weights the influence of the previous 
ensemble when adding the following decision tree. Trained GTB models allow insights into their prediction 
process as the individual decision trees can be easily followed and the used features are recognizable. This 
allows extracting the feature importance by calculating the distribution and occurrence of the features in the 
comparisons, measuring the relevance of every individual input feature for the whole GTB ensemble. 
 
Python environment 
The code is available on request and should run on all standard operating systems but was developed on a 
computer with an Intel processor and Windows 10. The usual runtime is in the range of 2-10 min.  
For gradient tree boosting, a typical Python environment can be used (e.g., pip or Conda; here, Conda was 
used). The Conda-env is given in env.txt and should be installed in 10-15 minutes. Especially the XGBoost 
library version 1.4.2 was used. 
 
Training and analysis procedure 
The training and analysis consisted of two parts: First, a suitable set of hyperparameters was selected based 
on a grid search. Secondly, we identified the most relevant input features based on the feature importance 
(method "gain") and conducted an iterative feature reduction scheme. 
In the first step, all available data was separated into training, validation, and test data sets (ratio 70:15:15). 
Then, a hyperparameter search for the maximum depth, number of decision trees as well as the learning 
rate was performed in the following ranges: 

• Maximum depths: {3, 5, 7, 8, 9, 10} 
• Number of decision trees: {10, 30, 50, 100} 
• Learning rates: {0.1, 0.3} 

The trained GTB models were tested for the R2 and the mean absolute error, while the best suitable 
hyperparameters were selected based on the R2. We chose the following hyperparameters set for the later 
model training, providing a well-predictive performance while keeping the models comparable small: 

• Maximum depth: 8 
• Number of decision tree: 10 
• Learning rate: 0.1 

 
All other hyperparameters were set to their default values. An overview as well as an explanation can be 
found in the official XGBoost documentation for the used library version 1.4.2. (6). These settings fully define 
the hyperparameter set of the employed GTB implementation. 
 
In the second step, we analyzed the importance of the individual input features. The found hyperparameter 
set was fixed for further analysis. We chose a leave-one-out approach during model training and testing to 
ensure the best available database while separating training and test data. Thus, model training and 
evaluation were repeated for all available samples in the data set. After all GTB models were established 
required to ensure predicting the accumulation of all available samples, the feature importance of this model 
set was averaged and sorted. These results are shown and discussed in the main paper. In addition, we 
identified the least important feature, discarded it from the data set, and iteratively repeated this analysis. 
The listing of this "feature elimination" was consistent with the classical feature importance and thus not 
further discussed in the main work. As an advantage, feature elimination reduces the dimensionality of the 
feature space and allows testing for the models' stability for these reduced data sets. Thus, the analysis can 
provide hints for simplified application schemes acquiring only a subset of the discussed features. 
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