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1. Supplementary Figures 

 

 

Figure S1. One dimensional proton NMR spectra of distinct molecular species of Aβ1-40. NMR 

spectra of monomers (black), oligomers (green), and amyloid fibrils (red) are shown. NMR spectra 

were recorded on a 800 MHz NMR spectrometer equipped with a cryogenic probe (Bruker 

BioSpin, Germany) at 10 C. 
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Figure S2. TEM micrographs of Aβ1-40 at varying concentrations of HFIP. (A-G) Morphological 

characterization of A1-40 protofibrils formed immediately after sample preparation in (A and B) 2%, 

(C and D) 6%, and (E, F, and G) 12% HFIP. (H) No aggregate was detected for A1-40 in 20% HFIP. 

The length of each scale bar is noted. 
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Figure S3. MD simulation of Aβ1-40 in alcohol/water mixtures. (A and B) Secondary structure 

evolution maps for Aβ1-40 in (A) 85% H2O and 15% TFE as well as (B) 98% H2O and 2% HFIP. 
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Figure S4. Characterization of interactions between Aβ1-40 and alcohols. MD snapshots in (A) 

85% H2O and 15% TFE as well as (B) 98% H2O and 2% HFIP are shown. Aβ1-40, water, and alcohol 

molecules are represented in cartoons, bonds, and lines (purple), respectively. 
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Figure S5. Monitoring of A1-40 fibrillation at various TFE concentrations with and without 

sonication. (A-E) The amyloid fibrillation of A1-40 was monitored by the ThT fluorescence assay 

(left) and far-UV CD spectroscopy (right) in (A) 5, (B) 10, (C) 20, (D) 25, and (E) 40% (v/v) TFE. 

The ThT intensity in the absence (blue triangle) and presence (red circle) of sonication was plotted as 

a function of incubation time. Solid lines represent the fit curves of the kinetics of A1-40 fibrillation. 

Dotted lines were drawn as an eye-guide only. Inserts in A-D represent the magnified profiles of rapid 

kinetics of A1-40 fibrillation with sonication. Error bars indicate the standard deviation from three 

independent measurements. The far-UV CD spectra of A1-40 after incubation with sonication (red) 

or without agitation (blue) were recorded. Far-UV CD spectra before incubation (black) are also 

shown for a comparison.  

E 
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Figure S6. Toxicity of A40 amyloid fibrils generated in distinct solvent conditions, monitored 

by the MTT assay. SH-SY5Y cells were incubated with A40 amyloid fibrils formed in the absence 

(black) and presence of 15% TFE (red) or 10% HFIP (green) for 24 h and then cell viability was 

examined using UV-Vis absorbance spectroscopy. Error bars represent the standard error from three 

independent experiments.  
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Figure S7. Examination of the effect of HFIP on the ThT fluorescence intensity. ThT fluorescence 

intensities of 10 mM sodium phosphate buffer (pH 7.5) containing 100 mM NaCl in 0, 2, and 6% 

HFIP without A1-40 peptides are shown. The ThT value of A1-40 amyloid fibrils is displayed as the 

control. Error bars indicate the standard deviation from three independent measurements. 
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Figure S8. AFM images of HFIP-induced A1-40 aggregates. (A-D) A1-40 aggregates formed after 

incubation in the (A and C) absence and (B and D) presence of sonication in (A and B) 2% and (C 

and D) 6% HFIP. Scale bar = 500 nm. 
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Figure S9. TEM micrographs of Aβ1-40 oligomers. (A-H) Gallery of representative morphologies 

of oligomeric species of A1-40. Scale bar = 10 nm. 

 

 

 

 

  



S14 

 

 

 

 

 

 

 

 

 

Figure S10. Examination of solvent effects on ThT fluorescence. ThT fluorescence intensities 

of each solution were recorded. A1-40 oligomer solution in the absence (1) and presence (2) of 

10 mM sodium phosphate buffer (pH 7.5) containing 100 mM NaCl. Solution without A1-40 

oligomers in the absence (3) and presence (4) of 10 mM sodium phosphate buffer (pH 7.5) 

containing 100 mM NaCl. The dead time for the addition of 10 mM sodium phosphate buffer (pH 

7.5) containing 100 mM NaCl was ~ 20 s. Error bars indicate the standard deviation from three 

independent measurements. 
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RC: Random coil structure; P: Partial helical structure; H: Highly helical structure;  

PF: -Structured protofibril; OG: -Structured oligomer;  

LA: -Structured large aggregate; AF: Mature amyloid fibril 

 

Figure S11. Energy landscapes of A1-40 aggregation under various conditions. (A and B) 

Relative energy levels and activation energy barriers are represented for buffered water without an 

alcohol (left), a water/TFE mixture (right) in A, and a water/HFIP mixture in B. Energy levels in 
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equilibria and transition states are indicated by black and brown transverse lines, respectively. The 

impact of sonication or a pH jump with a moderate concentration of NaCl on decreasing kinetic 

energy barriers is highlighted with broken and arrowed lines. Various aggregation pathways are 

shown below energy landscapes with distinct colors: pathway 1 (gray), pathway 2 (black), pathway 

3 (green), pathway 4 (blue), pathway 4 (red), and pathway 5 (magenta). 
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Figure S12. Secondary structure of A1-40 in 100% HFIP. The far-UV CD spectrum of A1-40 

monomers dissolved in 100% HFIP is shown.  
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Figure S13. Phase diagrams of the aggregation of several amyloid proteins in water/alcohol 

mixtures. (A-F) Phase diagrams of (A and B) 2-microglobulin, (C and D) lysozyme, and (E and F) 

insulin in the absence (left) and presence of sonication (right). Cartoons of helical monomers, amyloid 

fibrils, and amorphous aggregates are illustrated. Colors represent molecular species: (blue region) 

soluble monomers; (red region) mature amyloid fibrils; (magenta region in E and F) amorphous 

aggregates; (pink region in D) mainly mature amyloid fibrils with a small quantity of amorphous 

aggregates; (green region in D) monomers with a small amount of amorphous aggregates. The α-

helical contents of the initial states of 2-microglobulin, lysozyme, and insulin before aggregation, 

analyzed by the BeStSel algorithm,1, 2 were displayed at the top of the phase diagrams. “n.d.” 

represents the region at which excessively fast aggregation and precipitation prevented the analysis 

of α-helical contents. Prior data of 2-microglobulin aggregation3 were used for phase diagrams in A 

and B. Phase transitions of lysozyme4 and insulin5 in water/TFE mixtures were reproduced in C-F 

with slight modifications from our previous studies. 
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