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Supplementary Table 1. Oligos used in BaSSSh-seq

Oligos Source Sequence or location
Round_1_barcoding IDT Supplementary Data 13
Round_2_barcoding IDT Supplementary Data 14
Round_3_barcoding IDT Supplementary Data 15
Round?2_linker IDT CCACAGTCTCAAGCACG
Round3_linker IDT TACGCCGATGCGAAACATCG
Round?2_blocking (blocking after adding
barcode 2 via ligation — blocks non-bound IDT CGTGCTTGAGACTGTGG
Round2_linker)
Round2_blocking_HP (blocking after adding
barcode 2 via ligation — blocks open barcode 2-  IDT ACTGTGGACGTTAGGCAGGACCTAACGT
linker constructs)
Round3_blocking (blocking after adding
barcode 3 via ligation — blocks non-bound IDT CGATGTTTCGCATCGGCGTA
Round3_linker)
Round3_blocking_HP (blocking after adding
barcode 3 via ligation — blocks open barcode 3-  IDT CATCGGCGTATGCAATCGGACCTCGATTGCA
linker constructs)
S®_randomer (second strand synthesis
IDT AAGCAGTCCTATCAACGCTCCACGANNNCCNNNB

randomer)
PCR_P1 (amplification primer for the IDT AAGCAGTCCTATCAACGCTCCAC
S°®_randomer-modified end)
PCR_P2 (amplification primer for the end of DT CAGACGTGTGCTCTTCCGATCT
barcode 3)
rRNA_dep_Fwd (set of rRNA depletion oligos
for the forward|strand) IDT Supplementary Data 16
rRNA_dep_Rev (set of rRNA depletion oligos
for the reverse strand) IDT Supplementary Data 17
Adapter_duplex_Top (top oilgo for ligation DT TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG*T,
during library prep) * denotes phosphorothioate bond
Adapter_duplex_Bott (bottom oligo for ligation CTGTCTCTTATACACATCTGACGCTGCCGACGA
during library prep)

. - . AATGATACGGCGACCACCGAGATCTACACTAGATCGCTCGT
Seq_iS01 (PS end with index i501) DT CGGCAGCGTCAGATGTGTATAAGAGACAG

. L . AATGATACGGCGACCACCGAGATCTACACCTCTCTATTCGTC
Seq_i502 (P5 end with index i502) IDT GGCAGCGTCAGATGTGTATAAGAGACAG

. L . CAAGCAGAAGACGGCATACGAGATTCGCCTTAGTGACTGGA
Seq_i701 (P7 end with index i701) IDT GTTCAGACGTGTGCTCTTCCGATCT

. L . CAAGCAGAAGACGGCATACGAGATCTAGTACGGTGACTGGA
Seq_i702 (P7 end with index i702) IDT GTTCAGACGTGTGCTCTTCCGATCT
gyrB_Fwd IDT GGAATCGGTGGCGACTTTGA
gyrB_Rev IDT CCATCCACATCGGCATCAGT
23S_Fwd IDT GGGAGGACCATCTCCTAAGGC
23S_Rev IDT AGGCACGCCATCACCCATTAAC
16S_Fwd IDT GCGAAAGCCTGACGGAGCAA
16S_Rev IDT GCGCTTTACGCCCAATAATTCCGG




Supplementary Table 2. Reagents used in BaSSSh-seq and related experiments

Reagent

Source

Product number

Anti-Ly6G MicroBeads, UltraPure, mouse
SUPERase:In RNase Inhibitor (20 U/pL)
Lysostaphin

dNTPs

Maxima H Minus Reverse Transcriptase (200 U/pL)

Cell strainers (1 ym and 10 pm)

Cell strainer connector

T4 DNA Ligase (400,000 U/mL)

Proteinase K, recombinant, PCR grade (~20 mg/mL)
Hydrophilic Streptavidin Magnetic Beads
Klenow Fragment (3'>5' exo-)

KAPA HiFi HotStart ReadyMix

SPRiIselect

sparQ DNA fragment and library prep kit
NEBNext Library Quant Kit for lllumina
Enzytec Liquid D-Glucose

Enzytec Liquid Acetic acid

Enzytec Liquid D-/L-Lactic acid
5-cyano-2,3-ditolyl tetrazolium chloride (CTC)

6-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate (CM-H,DCFDA)

CellTracker Deep Red Dye

Miltenyi Biotec
ThermoFisher

AMBI Products LLC

NEB
ThermoFisher

pluriSelect

pluriSelect
NEB
ThermoFisher
NEB

NEB

Roche
Beckman Coulter
Quantabio
NEB
r-biopharm
r-biopharm
r-biopharm
ThermoFisher
ThermoFisher
ThermoFisher

130-120-337
AM2696

LSPN-50 (Ambicin L)

NO0447L
EP0753
43-50001-13
43-50010-03
41-50000-03
MO0202L
EO0492
S1421S
M0212S
07958927001
B23318
95194-024
E7630L
E8140
E8226
E8240
B34956
C6827
C34565




BaSSSh-seq workflow

Alternative methods

Cost-savings comments

Barcoding

Split-pool barcoding, random hexamers

microSPLIT: Split-pool barcoding, poly(A)/random hex.

PETRI-seq: Split-pool barcoding, random hex.
BacDrop: 10X Chromium microdroplet instrument
ProBac-seq: 10X Chromium micredroplet instrument
M3-seq: 10X Chromium microdroplet instrument

Make cell libraries of
15,000-25,000 cells

Second strand synthesis
{for double-stranded cDNA generation)

On-bead, randomer-primed

PCR amplification,
pool libraries if desired

rRNA depletion
Dual-strand subtractive hybridization,
enzyme-free

Y

q: Custom microfluidics setup
MATQ-seq: FACS sorting

microSPLIT: On-bead template switching

PETRI-seq: Second strand synthesis (no amplification)
BacDrop: dA-tailing

ProBac-seq: Probe handles

M3-seq: Randomer-primed second strand synthesis
smRandom-seq: dA-tailing

MATQ-seq: Poly(C) tailing

microSPLIT: Omited/not performed
PETRI-seq: Omited/not performed
BacDrop: RNase H
ProBac-seq: mRNA-targeted probes
M3-seq: RNase H

dom-seq: CRISPR Cas9 strategy

PCR amplification

Library prep
Fragmentation, ligation, and
amplification to complete P5/P7

Sequencing

Illumina NextSeq 500/550 series,
mid-output kit, pooled libraries of
200,000-400,000 cells

MATQ-seq: Cas9-mediated (DASH)

microSPLIT: Fragmentation, ligation (different
adaptors and cleanup from BaSSSh-seq)
PETRI-seq: Illumina Nextera XT

BacDrop: lllumina Nextera XT

ProBac-seq: Custom amplification

M3-seq: lllumina Nextera XT

smRandom-seq: Vazyme kit

MATQ-seq: lllumina Nextera XT

microSPLIT: NextSeq 2000, P2-200 kit
PETRI-seq: NextSeq 500/500, high-output kit
BacDrop: NovaSeq 6000, 51/52 kits
ProBac-seq: NextSeq 1000, 100 cycle kit
M3-seq: NovaSeq 6000, 100 cycle kit

Experimental

smRand q: NovaSeq 6000, S4 kit
MATQ-seq: NextSeq 500, NovaSeq 6000

Commercially available droplet
microfluidics systems require costly
specialized equipment, reagents, and
cartridge chips. Split-pool barcoding
requires commonly available 96- or 384-
well plates and a one-time order of
plated oligos.

Randomer-primed second strand
synthesis requires an inexpensive
Klenow fragment enzyme and a single
custom oligo.

The dual-strand subtractive
hybridization approach reduces cost by
being enzyme-free, and only requires a
one-time purchase of biotinylated
oligos. rRNA depletion allows for more
efficient use of sequencing reagents,
permitting use of smaller sequencing
runs.

The kit from Quantabio for
fragmentation and ligation is more cost
efficient compared to similar kits from
lllumina with equal throughput.

The ability to perform a smaller
sequencing run can reduce costs by an
order of magnitude (NovaSeq reagent
kits are >10X the cost of a mid-output
NextSeq 500/500 kit).

Computational

Adapter removal and quality filter

Cutadapt
Martin, EMBnet.journal 17 (2011).

Extract UMIs

UMI-tools
Smith, et al. Genome Res 27,491-499 (2017).

A 4

Demultiplexing barcodes ¥
Cutadapt

Alignment
STAR v
Dobin, et al. Bioinformatics 29, 15-21 (2013).

Counting reads
featureCounts
Liao, et al. Bioinformatics 30, 923-930 (2014).

v

Collapse UMIs
UMI-tools

Count matrix generation v
Python

Data processing and clustering

—

Scanpy within Jupyter Notebook
Wolf, et al. Genome Biol 19, 15 (2018).

Clustering

BBKNN, UMAP, Leiden (within Scanpy)

MAST

Differential expression

Finak, et al. Genome Biol 16, 278 (2015).

iModulonDB

Transcriptional regulation

Rychel, et al. Nucleic Acids Res 49, D112-D120 (2021).

Palantir

Trajectory analysis

Setty, et al. Nat Biotechnol 37, 451-460 (2019).

Supplementary Figure 1 | BaSSSh-seq workflow. Experimental overview of BaSSSh-seq and
its computational analysis. Comparisons are provided to alterative bacterial sScRNA-seq methods?
" and key aspects of cost-savings.
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Supplementary Figure 2 | Single cell isolation and permeabilization for barcoding.
Representative (A) brightfield and (B) fluorescence (SYTO 24-stained cells) images of S. aureus
biofilm cells at three stages of the BaSSSh-seq workflow prior to barcoding: (left) after overnight
fixation; (middle) after Tween treatment and lysostaphin permeabilization of fixed cells; and (right)
after filtering, vortexing, and sonicating the fixed and permeabilized cells immediately prior to the
first reverse transcription round of barcoding. Note brightfield (A) and fluorescence (B) images
are not of corresponding regions. Images were captured using a Zeiss 710 laser scanning
microscope with a 60X oil lens, and represent at least five similarly captured areas. (C)
Quantifying cell losses from filtering of biofilm and planktonic samples. Filtering consists of
passing cells through consecutive 10 ym and 1 um cell strainers, as described in the Methods.
Data are presented as mean +/- standard deviation from 3 biological replicates. (D) Flow
cytometry quantification of S. aureus permeabilization by propidium iodide uptake at different
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stages of the BaSSSh-seq workflow prior to barcoding, namely after overnight fixation, Tween
treatment, and lysostaphin permeabilization. Results are presented from one experiment. (E)
Representative FSC-A vs. SSC-A pseudocolor plot, from which all cells were taken for histogram
analysis in (D). Source data are provided as a Source Data file.
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Supplementary Figure 3 | Difficulties with template switching for generating double-
stranded cDNA. (A) lllustration of the concatamerization issue when performing template
switching with low concentrations of starting material. Ultimately, the concatamers overrun the
sequencing output. (B) Representative observation of the concatamerization issue in fragment
analyses with (left) a normal unmodified template switching oligo, and (right) a template switching
oligo containing non-natural isomeric nucleotides at the 5 end as previously described to
suppress concatamerization®. The modified oligo alleviated but did not solve the
concatamerization issue. All size distributions were measured on a 5200 Fragment Analyzer
(Agilent). Lower markers (LM) are indicated at 1 bp, and upper markers (UM) are indicated at
6,000 bp. Source data are provided as a Source Data file.
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Supplementary Figure 4 | Experimental considerations during second strand synthesis for
generating double-stranded cDNA. (A) Examples of size distributions from fragment analysis
after second strand synthesis if there was insufficient removal of free/unbound round 3 barcode
oligos or too many cells in the library. If amplification is stopped early, the size distribution is
biased towards smaller fragments, and if amplification is prolonged the size distribution becomes



larger and raises the baseline past the upper 6,000 bp marker. (B) Representative size
distributions from fragment analysis after second strand synthesis using a 0.80X (left) or 0.60X
(right) SPRIselect bead cleanup ratio. (C) Representative size distributions from fragment
analysis after rRNA depletion using a 0.80X (left) or 0.60X (right) SPRIselect bead cleanup ratio.
(D) Number of cells detected in the sequencing output with > 10 raw reads/cell, normalized to the
number detected with a 0.60X SPRIselect bead cleanup ratio used throughout second strand
synthesis and rRNA depletion. The larger cleanup ratio allows for > 2X more detected cells on
average. Data are presented as mean +/- standard deviation from 4 biological replicates. Source
data are provided as a Source Data file.
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Supplementary Figure 5 | Experimental considerations during rRNA depletion. Levels of
23S (left) and 16S (right) rRNA depletion for each of the conditions listed in the table, with results
presented from one experiment. Larger ratios for oligo:RNA, bead:oligo, and buffer (SSC) lead to
more robust depletion; however, economic considerations must be made as quantities of oligos
and streptavidin beads increase accordingly. Source data are provided as a Source Data file.
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Supplementary Figure 6 | Experimental considerations during library prep. (A) Time and
temperature of fragmentation can be tuned, with higher temperatures and longer times leading to
smaller fragment sizes. (B) Representative examples of size distributions from fragment analysis
for the fragmentation step of library prep, including the input (from rRNA depletion) and after
double-sided SPRIselect bead cleanup. (C) Representative selection of how metrics for library
prep input, fragmentation time, and the number of amplification cycles relate to final sequencing
library concentration. Concentrations should be kept near the minimum amount required to load
the sequencer to ensure full library diversity is represented, as seen in example runs 7 and 8.
Data are presented as mean +/- standard deviation from 4 biological replicates. Source data are
provided as a Source Data file.
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Supplementary Figure 7 | BaSSSh-seq quality control steps. (A) Representative size
distributions from fragment analysis during each of the quality control checks in the BaSSSh-seq
process. Check points occur after second strand synthesis (left), rRNA depletion (middle), and
library prep (right). (B) Representative validation of rRNA depletion by gPCR. Sample aliquots
from before and after rRNA depletion were analyzed for 23S and 16S rRNA abundance in relation
to gyrB as a control. Curves were used to calculate 2-22°9 values for each sample (0.038 and
0.026 for 23S and 16S, respectively in the example). (C) Representative library quantification by
gPCR. Libraries were diluted and analyzed in comparison to a standard curve. Source data are

provided as a Source Data file.
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Supplementary Figure 8 | Correlation of BaSSSh-seq with bulk RNA-seq, and insights
gained from single-cell resolution. (A, B, C) Transcriptomic profiles from pseudobulk analysis
of single-cell RNA-seq with BaSSSh-seq significantly correlate with those captured in a prior
report (Bertrand et al., doi: 10.1128/iai.00428-22)° using bulk RNA-seq for biofilm control (no
immune cells) (A), biofilm + G-MDSC co-culture (B), and biofilm + M® co-culture (C). Pearson
correlations performed with normalized counts per gene. (D) For the case of biofilm + G-MDSC
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co-culture, Bertrand et al. identified biofilm upregulation of fermentative genes, most prominently
pflB, that promoted biofilm persistence. Using BaSSSh-seq single-cell datasets for the biofilm
control and biofilm co-cultured with G-MDSCs, not all biofilm clusters uniformly upregulate pfiB in
the presence of immune pressure. While many clusters showed pfIB upregulation, some clusters
showed down-regulation. These details are lost in bulk RNA-seq. (E) Similar to pflB, other
fermentation-related genes found to be upregulated following G-MDSC co-culture with biofilm
from the bulk RNA-seq analysis in Bertrand et al. (Idh1, narJ, nask) are not uniformly upregulated
across all biofilm clusters. Source data are provided as a Source Data file.
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Supplementary Figure 9 | Filtering, metrics, and clustering when comparing biofilm and
planktonic growth with BaSSSh-seq. (A) Filtering sequenced cells based on the number of
non-rRNA (mRNA and tRNA) reads per cell. Cells are sorted in terms of decreasing reads per
cell. Numbers of cells carried through for analysis are noted on the plots. (B) Counts of rRNA,
MRNA, and tRNA for filtered cells from biofilm and planktonic samples. Solid lines indicate the
median, and dotted lines reflect upper and lower quartiles. (C) Percentages of rRNA, mRNA, and
tRNA for filtered cells from biofilm and planktonic samples. (D) Marker gene heatmap arranged
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by dendrogram relation for the integrated biofilm and planktonic samples, with UMAP on the
bottom right (UMAP originally defined in Figure 1C). (E) Lactate levels in fetal bovine serum (FBS),
RPMI-1640, and the RPMI-based medium used for S. aureus culture containing 10% FBS. Data
are presented as mean +/- standard deviation from 4 biological replicates. Source data are
provided as a Source Data file.
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Supplementary Figure 10 | Determining filter cutoffs for biofilm-planktonic growth
comparisons. (A) Cell numbers passing the non-rRNA reads per cell filter for biofilm and
planktonic samples, as the cutoff is increased. Arrows denote where cutoffs were determined for
biofilm (7 non-rRNA reads per cell) and planktonic (28 non-rRNA reads per cell) to yield
comparable cell numbers. Source data are provided as a Source Data file. (B, C, D) Integrated
clustering (performed with the same parameters as the clustering in Figure 2B-C) over a range of
three different cutoffs that are equally applied to both the biofilm and planktonic datasets: (B) 5
non-rRNA reads per cell, (C) 18 non-rRNA reads per cell, and (D) 30 non-rRNA reads per cell.
When equal cutoffs are applied, the planktonic dataset contains between 3-20X more cells than
the biofilm dataset. This is problematic because differential expression analyses performed with
unbalanced cell numbers have been shown to skew true positive and false positive identifications.
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Supplementary Figure 11 | Trajectory analysis details. (A) Cell selections denoting the
terminal_states parameters in the Palantir'® trajectory algorithm, for both ‘Biofilm’ and ‘Planktonic’
for the integrated biofilm and planktonic samples (trajectory in Figure 3E). (B) Exploring alternative
trajectories within the biofilm and planktonic dataset. (Top left) Cell selections denoting the
terminal_states parameters in the Palantir trajectory algorithm, for all clusters radiating outward
from cluster 2 (clusters 3, 4, 5, and 6) alongside of the previously defined states (clusters 1 and
2 representing core biofilm and planktonic groups, respectively). (Top right) The resulting
trajectory over pseudotime, converging towards the biofilm cells in cluster 1, similar to Figure 3E.
(Bottom) The alternative clusters (clusters 3, 4, 5, and 6) showed moderate probability as
alternative branches of the overall trajectory early in pseudotime, but the analysis converged
towards the biofilm cells in cluster 1 later in pseudotime. (C) Cell selections denoting the
terminal_states parameters in the Palantir trajectory algorithm, selected to represent ‘High’ activity
and ‘Low’ activity for the biofilm-leukocyte co-culture samples (trajectory in Figure 6C).
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Supplementary Figure 12 | Filtering and metrics for biofilm-leukocyte co-culture
experiments with BaSSSh-seq. (A) Filtering sequenced cells based on the number of non-rRNA
(mRNA and tRNA) reads per cell. Cells are sorted in terms of decreasing reads per cell. Numbers
of cells carried through for analysis are noted on the plots. (B) Counts of rRNA, mRNA, and tRNA
for filtered cells from co-culture samples. Solid lines indicate the median, and dotted lines reflect
upper and lower quartiles. (C) Percentages of rRNA, mRNA, and tRNA for filtered cells from co-
culture samples. Source data are provided as a Source Data file.
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Supplementary Figure 13 | Clustering for biofilm-leukocyte co-culture experiments with
BaSSSh-seq. Marker gene heatmaps arranged by dendrogram relation for the biofilm control (A),
and independently clustered biofilm + M®s (B), biofilm + G-MDSCs (C), and biofilm + PMNs (D),
with UMAPs below (UMAPs originally defined in Figure 4B-C). For comparative analysis, all co-
cultured biofilm cells were projected onto the control UMAP in Figure 6.
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Supplementary Figure 14 | Transcriptional evidence of a potential biofilm persister cell
population. Differential expression was performed using the MAST! algorithm for cluster O on
each of the biofilm-leukocyte co-cultures compared to the biofilm control. Each co-culture
condition displayed a set of genes significantly upregulated within cluster 0, a small subset of
which are displayed in the matrix plots for +M®s (A), +G-MDSCs (B), or +PMNs (C). RNA
polymerase (rpoB) was consistently upregulated across each condition, which is further illustrated
in UMAP overlays of rpoB expression displayed to the right of each matrix plot, with the biofilm
control shown at the top along with cluster identities for reference.
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