Supplementary information

Isolating Cu-Zn active-sites in Ordered Intermetallics to Enhance Nitrite-to-Ammonia Electroreduction

Jiao Lan^{1, 3}, Zhen Wang^{1, 3}, Cheng-wei Kao², Ying-Rui Lu², Feng Xie¹, Yongwen Tan^{1*}

¹ College of Materials Science and Engineering, Hunan University, Changsha, Hunan

410082, China.

² National Synchrotron Radiation Research Center, Hsinchu 300092, Taiwan.

³ Jiao Lan and Zhen Wang contributed equally to this work

*e-mail: tanyw@hnu.edu.cn

Table of Contents

- 1. Supplementary Fig. 1| XRD spectra of Cu₆Zn₉₄ and Cu₁₅Zn₈₅ ribbons.
- 2. Supplementary Fig. 2| The LSV curve of the Cu15Zn85 ribbons in 1 M KOH.
- 3. Supplementary Fig. 3| The chronoamperometry curves of np/CuZn5, np/CuZn4,

np/Cu₅Zn₈, np/ISAA-CuZn, and np/Cu at the corresponding voltages.

- 4. Supplementary Fig. 4| XRD spectra of np/CuZn₅.
- 5. Supplementary Fig. 5| Crystal structure of Cu-Zn IMCs.
- 6. Supplementary Fig. 6| SEM images of np/CuZn₄.
- 7. Supplementary Fig. 7| SEM images of np/Cu₅Zn₈.
- 8. Supplementary Fig. 8| SEM images of np/ISAA-CuZn.
- 9. Supplementary Fig. 9| SEM-EDS test results.
- 10. Supplementary Fig. 10| The results of BET test.
- 11. Supplementary Fig. 11| EDS composition line diagrams of np/ISAA-CuZn.
- 12. Supplementary Fig. 12| The fitted average oxidation states.
- 13. Supplementary Fig. 13 | WT-EXAFS spectra.
- 14. Supplementary Fig. 14| SEM images of np/Cu.
- 15. Supplementary Fig. 15| XRD spectra of Cu₃₀Zn₇₀ ribbons and np/Cu.
- 16. Supplementary Fig. 16| LSV curves.
- 17. Supplementary Fig. 17 |Calibration curve used for estimation of NH₃.
- 18. Supplementary Fig. 18| The H₂ and N₂ FE of np/ISAA-CuZn at -0.2 -0.8 V vs.

RHE in 0.2 M KHCO₃ + 10 mM KNO₂.

- 19. Supplementary Fig. 19| The NH3 yield rate and FE of np/ISAA-CuZn.
- 20. Supplementary Fig. 20| Electrochemically active surface area (ECSA) tests.
- 21. Supplementary Fig. 21 Calibration curve used for estimation of NO₂⁻.
- 22. Supplementary Fig. 22 $|NO_2^-$ concentration before and after reaction at -0.5 V vs. RHE.
- 23. Supplementary Fig. 23| The H₂ and N₂ FE of np/ISAA-CuZn at -0.4 -0.8 V vs. RHE in 0.2 M KHCO₃ + 1 mM KNO₂.
- 24. Supplementary Fig. 24| The NH₃ FE(a) and yield rate (b) for np/ISAA-CuZn with

concentrations of NO₂⁻ ranging from 1mM to 1 M.

25. Supplementary Fig. 25 | NO₂⁻-N concentration in solution after MEA test.

26. Supplementary Fig. 26| Morphology and composition of np/ISAA-CuZn after MEA test.

27. Supplementary Fig. 27 Optical photograph of the tailor-made electrolytic cell used. for in situ XAS characterization.

28. Supplementary Fig. 28 In situ XAS measurements of np/Cu at different applied potentials.

29. Supplementary Fig.29| Optical photograph of the tailor-made electrolytic cell used. for in situ ATR-SEIRAS characterization.

30. Supplementary Fig. 30| Reaction pathway of the NO₂RR and adsorption models of intermediates on Cu (111) surfaces.

31. Supplementary Fig. 31| Reaction pathway of the NO₂RR and adsorption models of intermediates on CuZn₄ surfaces.

32. Supplementary Fig. 32 Reaction pathway of the NO₂RR and adsorption models of intermediates on Cu_5Zn_8 surfaces.

33. Supplementary Fig. 33 Reaction pathway of the NO₂RR and adsorption models of intermediates on ISAA-CuZn surfaces.

34. Supplementary Fig. 34| Modelling of adsorption of *NOOH and *HNOO intermediates on Cu, CuZn₄, Cu₅Zn₈ and ISAA-CuZn surfaces, respectively.

35. Supplementary Fig. 35| The relationship between computational ε and ΔG of *NO₂ protonation.

36. Supplementary Fig. 36| Calculated of the water dissociation step on Cu and np/ISAA-CuZn surfaces.

37. Supplementary Table 1 ICP-OES test result.

38. Supplementary Table 2 EXAFS fitting parameters.

39. Supplementary Table 3 Total energy and free energy correction value.

Supplementary Fig. 1| XRD spectra of Cu₆Zn₉₄ and Cu₁₅Zn₈₅ ribbons.

Supplementary Fig. 2| The LSV curve of the Cu₁₅Zn₈₅ ribbons in 1 M KOH.

Supplementary Fig. 3| The chronoamperometry curves of np/CuZn5, np/CuZn4, np/Cu5Zn8, np/ISAA-CuZn, and np/Cu at the corresponding voltages.

Supplementary Fig. 4| XRD spectra of np/CuZn5.

Supplementary Fig. 5| Crystal structure of Cu-Zn IMCs.

Supplementary Fig. 6| SEM images of np/CuZn4. Scale bars: a, c 10 µm, b, d 100

nm.

Supplementary Fig. 7| SEM images of np/Cu₅Zn₈. Scale bars: a, c 10 µm, b, d 100

nm.

Supplementary Fig. 8| SEM images of np/ISAA-CuZn. Scale bars: a, c 10 $\mu m,$ b, d

100 nm.

Supplementary Fig. 9| SEM-EDS test results. EDS spectroscopy and corresponding

element content of $np/CuZn_4$ (a), np/Cu_5Zn_8 (b), np/ISAA-CuZn (c).

Supplementary Fig. 10| The results of BET test. Nitrogen adsorption/desorption curves (a) and pore size distribution (b) of np/ISAA-CuZn.

Supplementary Fig. 11| EDS composition line diagrams of np/ISAA-CuZn. Scale

bar: 5 nm.

Supplementary Fig. 12 [The fitted average oxidation states. a, The first derivatives of the Cu K-edge XANES spectra of of np/CuZn₄, np/Cu₅Zn₈, np/ISAA-CuZn, Cu foil, and CuO, insert: average oxidation states of Cu. b, The first derivatives of the Zn K-edge XANES spectra of of np/CuZn₄, np/Cu₅Zn₈, np/ISAA-CuZn, Zn foil, and ZnO, insert: average oxidation states of Zn.

Supplementary Fig. 13| WT-EXAFS spectra. The Zn K-edge WT-EXAFS spectra of

np/CuZn4, np/Cu5Zn8, np/ISAA-CuZn, and Zn foil.

Supplementary Fig. 14| SEM images of np/Cu. Insert of (a): Corresponding SEM-

EDS elemental distributions. Scale bars: **a**, **c** 10 µm, **b**, **d** 100 nm.

Supplementary Fig. 15| XRD spectra of Cu₃₀Zn₇₀ ribbons and np/Cu.

Supplementary Fig. 16 LSV curves. LSV curves of np/ISAA-CuZn in 0.2 M KHCO3

with or without 10 mM of NO_2^{-} .

Supplementary Fig. 17| Calibration curve used for estimation of NH₃.

Supplementary Fig. 18 | The H₂ and N₂ FE of np/ISAA-CuZn at -0.2 - -0.8 V vs. RHE

in 0.2 M KHCO₃ + 10 mM KNO₂.

Supplementary Fig. 19 The NH₃ yield rate and FE of np/ISAA-CuZn. The NH₃ yield rate (**a**), and FE (**b**) of np/ISAA-CuZn at -0.2 - -1.2 V vs. RHE in 0.2 M KHCO₃ + 10 mM KNO₂. The error bands represent the standard deviation of the data obtained from more than three repetitions.

Supplementary Fig. 20 Evaluation of intrinsic activity of different catalysts. Cyclic voltammograms for **a**, np/Cu, and **b**, np/CuZn₄, **c**, np/Cu₅Zn₈, **d**, np/ISAA-CuZn. **e**, Plots of the current density versus the scan rate for np/Cu, np/CuZn₄, np/Cu₅Zn₈ and np/ISAA-CuZn. **f**, ECSA-normalized NH₃ current density under different potential of np/Cu, np/CuZn₄, np/Cu₅Zn₈ and np/ISAA-CuZn.

Supplementary Fig. 21| Calibration curve used for estimation of NO₂⁻.

Supplementary Fig. 22 | NO₂⁻ concentration before and after reaction at -0.5 V vs.

RHE.

Supplementary Fig. 23| The H₂ and N₂ FE of np/ISAA-CuZn at -0.4 - -0.8 V vs.

RHE in 0.2 M KHCO₃ + 1 mM KNO₂.

Supplementary Fig. 24| The NH₃ FE(a) and yield rate (b) for np/ISAA-CuZn with concentrations of NO₂⁻ ranging from 0.1 mM to 1000 mM. The error bands represent

the standard deviation of the data obtained from more than three repetitions.

Supplementary Fig. 25| NO₂⁻-N concentration in solution after MEA test.

Supplementary Fig. 26| Morphology and composition of np/ISAA-CuZn after

MEA test. a, XRD patten. b, Cross-section SEM image. Scale bar: 100 nm.

Supplementary Fig. 27| Optical photograph of the tailor-made electrolytic cell

used. for in situ XAS characterization.

Supplementary Fig. 28| In situ XAS measurements of np/Cu at different applied

potentials. In situ XANES spectra (a) and FT-EXAFS (b) of np/Cu recorded at Cu K-

edge.

Supplementary Fig.29| Optical photograph of the tailor-made electrolytic cell used.

for in situ ATR-SEIRAS characterization.

Supplementary Fig. 30| Reaction pathway of the NO₂RR and adsorption models

of intermediates on Cu (111) surfaces (Cu: orange, Zn: grey, N: blue, O: red, H: white)

Supplementary Fig. 31| Reaction pathway of the NO₂RR and adsorption models

of intermediates on CuZn4 surfaces (Cu: orange, Zn: grey, N: blue, O: red, H: white).

Supplementary Fig. 32| Reaction pathway of the NO₂RR and adsorption models

of intermediates on Cu₅Zn₈ surfaces (Cu: orange, Zn: grey, N: blue, O: red, H: white).

Supplementary Fig. 33| Reaction pathway of the NO₂RR and adsorption models

of intermediates on ISAA-CuZn surfaces (Cu: orange, Zn: grey, N: blue, O: red, H:

white).

Supplementary Fig. 34| Modelling of adsorption of *NOOH and *HNOO intermediates on Cu, CuZn4, Cu5Zn8 and ISAA-CuZn surfaces, respectively.

Supplementary Fig. 35| The relationship between computational ε and ΔG of *NO₂ protonation.

Supplementary Fig. 36| Calculated of the water dissociation step on Cu and np/ISAA-CuZn surfaces. a, Free energy diagrams, b, The structure of the $*H_2O$, transition state (TS), and *H + *OH of the reaction process.

Supplementary Table 1. ICP-OES test result. Elemental composition of np/ISAA-CuZn.

Testing element	Atomic Percentage (%)	Mass percentage (%)
Cu	46.4	45.70
Zn	53.6	54.30

Supplementary Table 2. EXAFS fitting parameters. EXAFS fitting parameters at the

Cu K-edge and Zn K-edge for np/CuZn₄, np/Cu₅Zn₈, np/ISAA-CuZn and refences sample (Cu foil, CuO and Zn foil).

	Samples	Path	CN	R (Å)	$\sigma^{2}(10^{-3})$ $A^{2})$	ΔE_0 (eV)	R-factor
Cu K- edge	Cu foil	Cu-Cu	12	2.53	8.4	4.2	0.005
	CuO	Cu-O	2.7	1.94	4.2	7.4	0.002
	np/CuZn ₄	Cu-Zn	7.2	2.63	11.4	2.0	0.02
	np/Cu ₅ Zn ₈	Cu-Cu	1.8	2.54	5.6	5.3	0.07
		Cu-Zn	4.5	2.61	11.8		
	np/ISAA- CuZn	Cu-Zn	4.5	2.54	11.7	10.2	0.013
Zn K- edge	Zn foil	Zn-Zn	8.0	2.66	13.2	0.9	0.012
	np/CuZn4	Zn-Cu	1.8	2.63	14.5	3.0	0.006
		Zn-Zn	8.9	2.64	15.8		
	np/Cu ₅ Zn ₈	Zn-Cu	4.8	2.59	9.8	4.1	0.006
		Zn-Zn	3.0	2.64	12.2		
	np/ISAA- CuZn	Zn-Cu	3.2	2.54	12.3	1.5	0.024

Supplementary Table 3. Total energy and free energy correction value. The total energy and free energy correction value of adsorbed NO₂ protonated species over Cu, ISAA-CuZn, Cu₅Zn₈ and CuZn₄.

	Edft	Correction value of G (298.15K, 1 Atm)
ISAA-CuZn*HNOO	-151.54	0.52
ISAA-CuZn*NOOH	-150.99	0.33
Cu*NOOH	-268.85	0.38
Cu*HNOO	-268.80	0.43
Cu ₅ Zn ₈ *HNOO	-282.33	0.33
Cu ₅ Zn ₈ *NOOH	-282.32	0.35
CuZn ₄ *HNOO	-149.35	0.40
CuZn ₄ *NOOH	-149.29	0.37