Supplementary Information

Early nasal microbiota and subsequent respiratory tract infections in infants with cystic fibrosis

Authors: Ruth Steinberg^{1,2,3}, Nadja Mostacci⁴, Elisabeth Kieninger¹, Bettina Frauchiger¹, Carmen Casaulta¹, Jakob Usemann^{3,5}, Alexander Moeller⁵, Daniel Trachsel³, Isabelle Rochat⁶, Sylvain Blanchon⁶, Dominik Mueller-Suter⁷, Barbara Kern⁷, Maura Zanolari⁸, Urs Frey³, Kathryn A. Ramsey^{1,9}, Markus Hilty⁴, Philipp Latzin¹, Insa Korten¹, SCILD and BILD study groups

Supplementary Methods

Respiratory symptom scores

Symptoms of respiratory tract infections, wheeze and/or cough were recorded in standardized weekly telephone interviews conducted by a study nurse. We calculated a symptom score with high sensitivity for lower respiratory-tract infections (RTIs) ranging from 0 (no symptoms) to 4 (severe respiratory symptoms). The scoring system has been previously used to investigate respiratory symptoms in infants ^{1,2} (see supplementary table 4). We defined RTIs as cough, wheeze and/or breathing difficulties in combination with upper respiratory tract symptoms or fever for more than two consecutive days and/or symptom score \geq 3. Day- and night-time symptoms were combined for each interview and the higher score was used. We defined "higher number of RTIs" above the 75th percentile of RTI weeks of controls. We divided infants in two groups: Infants with a "lower number" of RTIs (0-3 weeks of RTI, n=35) and infants with a "higher number" of RTIs (>3 weeks of RTI, n=15).

Supplementary Tables

CF Center	Included infants
Bern	16
Zürich	11
Lausanne	7
Aarau	6
Basel	4
Genf	2
Lugano	2
St. Gallen	1
Luzern	1

Supplementary Table 1: Included infants per CF Center

<u>Supplementary Table 2:</u> Symptom score calculation

Symptom score	Day-time symptoms (cough, wheeze, or breathing difficulties)	Night-time symptoms (cough, wheeze, or breathing difficulties)
0	None	None
1	Slight, no treatment	Slight, sleep not disturbed
2	Required treatment, but no outside help	Sleep disturbed once, no help required
3	Severe; required help from GP	Sleep disturbed more than once; child needed help
4	Very severe; admitted to hospital	Sleep very disturbed or GP called

	CF (n=50)	Controls (n=30)
Weeks with RTI, all infants (sum (%))	145 (15.5)	64 (11.1)
- Of those with AB treatment (%)	55.2	4.7
Weeks with AB, all infants (sum (%))	80 (8.6)	3 (0.5)
Weeks with RTI per infant (mean (range))	2.9 (0, 12)	2.1 (0, 8)
Weeks with AB per infant (mean (range))	1.6 (0, 14)	0.1 (0, 2)

Supplementary Table 3: Summary of weeks with RTI and antibiotic treatments

Abbreviations: RTI = respiratory tract infection; CF = Cystic Fibrosis; AB= antibiotic treatment

<u>Supplementary Table 4:</u> Comparison of within-subject dissimilarity between CF and controls overall, and stratified in groups regarding first RTI and first antibiotic treatment

Antibiotic treatment	RTI	CF N; consecutive swabs	Controls N; consecutive swabs	Estimate (Controls)†	95% CI [†]	<i>P</i> value⁺
All	All	50; 707	30; 442	-0.053	-0.084 <i>,</i> - 0.022	<0.001
Before	All	42; 397	30; 426	-0.028	-0.066, 0.010	0.145
All	Before	43; 305	27; 263	-0.025	-0.087, 0.038	0.441
After *	All	30; 287	30; 442	-0.090	-0.049, - 0.130	<0.0001
All	After	38; 310	20; 134	-0.116	-0.045, - 0.186	0.002

Abbreviations: RTI = respiratory tract infection; CF = Cystic Fibrosis; CI = confidence interval; All = all samples were included irrespective of antibiotic treatment or RTI; Before/After = only samples before or after the first antibiotic treatment or RTI were included * CF infants after antibiotic treatment were compared with controls.[†] gamm model corrected for breastfeeding, siblings, mode of delivery, antibiotic treatment, season (fixed effects), age in weeks (smooth term) and subject (random effect)

Feature	Value	Coef	Stderr	pval	qval*	
Micrococcaceae	Controls	-1.70	0.32	<0.0001	<0.0001	
Staphylococcaceae	Controls	-2.07	0.47	<0.0001	<0.0005	
Propionibacteriaceae	Controls	-1.32	0.39	<0.005	<0.01	
Gemellaceae	Controls	-1.20	0.39	<0.005	<0.05	
Carnobacteriaceae	Controls	1.34	0.38	<0.001	<0.005	
Moraxellaceae	Controls	1.05	0.34	<0.005	<0.01	
Before first RTI						
Feature	Value	Coef	Stderr	pval	qval	
Carnobacteriaceae	Controls	1.71	0.54	<0.005	<0.05	
Staphylococcaceae	Controls	-2.34	0.72	<0.005	<0.05	
Before first antibiotics						
Feature	Value	Coef	Stderr	pval	qval	
Micrococcaceae	Controls	-1.54	0.36	<0.0001	<0.005	
Staphylococcaceae	Controls	-1.78	0.53	<0.005	<0.05	
Carnobacteriaceae	Controls	1.23	0.42	<0.005	<0.05	
Before first antibiotics, after RTI						
Feature	Value	Coef	Stderr	pval	qval	
Staphylococcaceae	Controls	-2.63	0.69	<0.001	<0.01	
Before RTI, after antibiotics						
Feature	Value	Coef	Stderr	pval	qval	

<u>Supplementary Table 5:</u> Differential abundance analysis of the most abundant bacterial families between CF and controls in first year of life.

*Differential abundance analysis was performed with MaAsLin2, default settings. The reported significant q-values are corrected for multiple testing (Benjamini-Hochberg) and considered as significant if q<0.05.

Supplementary Figures

Supplementary Figure 1: Rarefaction curves. Sample size is displayed on the x-axis and

Species on the y-axis. We included samples with at least 3000 reads.

a Infants with CF

<u>Supplementary Figure 2:</u> Longitudinal display of study cohort. Each row of the y-axes displays a study participant. The x-axes show the age in weeks. Each symbol shows a data point (nasal swab and interview). Red colours show that RTIs were reported and triangles show antibiotic treatment.

<u>Supplementary Figure 3</u>: NMDS showing compositional difference between infants with CF and controls measured as Bray-Curtis dissimilarity (PERMANOVA R²=0.016, p=0.001).

<u>Supplementary Figure 4:</u> NMDS showing compositional difference between infants with CF and controls measured as Bray-Curtis dissimilarity before, at and after first RTI. Compositional difference increases in infants with CF after first RTI compared to before (PERMANOVA R^2 =0.009, p<0.001).

<u>Supplementary Figure 5</u>: Most prevalent and abundant bacterial genus in our dataset. Mean relative abundance was plotted on the x-axis and prevalence on the y-axis. Most abundant and prevalent genera were *Dolosigranulum, Moraxella, Streptococcus, Staphylococcus, Corynebacterium and Haemophilus*.

<u>Supplementary Figure 6</u>: Within subject dissimilarities in infants with CF with higher and lower number of RTIs in the first year of life. x-axes display the age of infants in weeks and y-axes display model fitted values of the median Bray-Curtis dissimilarity between consecutive time-points within the same subject. β -diversity differed between the two groups including (A) all swabs and (B) swabs taken before the first antibiotic treatment.

References

- Korten, I. *et al.* Respiratory symptoms do not reflect functional impairment in early CF lung disease. *J Cyst Fibros* 20, 957-964 (2021).
- 2. Latzin, P. *et al.* Prospectively assessed incidence, severity, and determinants of respiratory symptoms in the first year of life. *Pediatr Pulmonol* **42**, 41-50 (2007).

Swiss Cystic Fibrosis Infant Lung Development (SCILD) cohort, current study group:

Juerg Barben, St. Gallen⁹

Sylvain Blanchon, Lausanne⁶

Carmen Casaulta, Bern¹

Bettina Frauchiger, Bern¹

Barbara Kern, Aarau⁷

Elisabeth Kieninger, Bern¹

Insa Korten, Bern¹

Philipp Latzin, Bern¹

Alexander Moeller, Zurich⁵

Anne Mornand, Geneva¹⁰

Dominik Mueller-Suter, Aarau⁷

Nicolas Regamey, Lucerne¹¹

Isabelle Rochat, Lausanne⁶

Ruth Steinberg, Bern^{1,2,3}

Daniel Trachsel, Basel³

Sophie Yammine, Bern¹

Maura Zanolari, Bellinzona⁸

Affiliations: ¹Division of Paediatric Respiratory Medicine and Allergology, Departement of Paediatrics, Inselspital, Bern University Hospital, University of Bern - Bern (Switzerland), ² Graduate School for Cellular and Biomedical Sciences, University of Bern - Bern (Switzerland), ³Paediatric Intensive Care and Pulmonology, University Children's Hospital Basel (UKBB) – Basel (Switzerland), ⁵Department of Respiratory Medicine and Children's Research Center, University Children's Hospital Zurich – Zurich (Switzerland), ⁶Pediatric Pulmonology and Cystic Fibrosis Unit, Division of Pediatrics, Department of Woman-Mother-Child, Lausanne University Hospital and University of Lausanne – Lausanne (Switzerland), ⁷Division of Pediatric Pneumology, Kantonsspital Aarau – Aarau (Switzerland), ⁸Division of Pediatrics, Hospital Bellinzona – Bellinzona (Switzerland), ⁹Paediatric Pulmonology and CF Centre, Children's Hospital of Eastern Switzerland – St. Gallen (Switzerland), ¹⁰Department of Paediatric Pulmonology, Geneva University Hospital – Geneva (Switzerland), ¹¹Department of Paediatric Pulmonology, Cantonal Hospital Lucerne – Lucerne (Switzerland)

13

Basel Bern Infant Lung Development (BILD) cohort, current study group:

Xenia Bovermann, Bern¹

Urs Frey, Basel²

Olga Gorlanova, Basel²

Claudia E Kuehni, Bern³

Noemï Kuenstle, Basel²

Philipp Latzin, Bern¹

Loretta Müller, Bern¹

Jakob Usemann, Basel²

Sophie Yammine, Bern¹

Affiliations: ¹Division of Paediatric Respiratory Medicine and Allergology, Departement of Paediatrics, Inselspital, Bern University Hospital, University of Bern - Bern (Switzerland), ²Paediatric Intensive Care and Pulmonology, University Children's Hospital Basel (UKBB) – Basel (Switzerland), ³Institute of Social and Preventive Medicine, University of Bern – Bern (Switzerland)