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Abstract and Summary
This supplementary material provides further simulation results to investigate the robustness of the method
proposed in the main paper. Therefore, two additional simulation scenarios reflecting different levels of
misspecification are discussed. We conclude that both slight type I error inflation, i.e. a simulated type I error
of 10% at a significance level of 5%, and a conservative behaviour, can occour, depending on how strong
the misspecification of the models is. In general, it turns out that for a moderate level of misspecification,
the simulated values are very close to the ones obtained from correctly specified models, particularly for
increasing sample sizes.
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1 ROBUSTNESS OF THE TEST PROCEDURE

1.1 Design

We consider two different settings for the distributions of the transition intensities, which are again driven by the application
example given in Section 5 of the main paper. In Scenario 1 we generate the event times according to Scenario 3 of the main
paper, i.e. a Gompertz distribution for the first two states and a Weibull distribution for the third state, respectively. Therefore,
the intensities of the first two states are given by
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We choose the parameters given by the corresponding transition intensities of the application example (see Table 1), resulting
in

d =
3

max
j=1
‖α(1)

0j – α(2)
0j ‖∞ = max{0.0003, 0.0028, 0.0004} = 0.0028

for Scenario 1.

T A B L E 1 Estimates of the parameters θ(`)
0j of event time distributions for the three transition intensities from competing

risks model 1 and competing risks model 2 in the application example. For Gompertz and Weibull, the first value corresponds to
the scale and the second value to the shape parameter (see (1) and (2)). Numbers in bold are used in the simulation study.

Model 1 Model 2
θ̂(1)

01 θ̂(1)
02 θ̂(1)

03 θ̂(2)
01 θ̂(2)

02 θ̂(2)
03

Exponential 0.001 0.0011 0.004 0.0008 0.0017 0.0009
Gompertz 0.002, -0.016 0.003, -0.036 0.0002,0.003 0.002, -0.018 0.006, -0.043 0.0007,-0.003
Weibull -0.112, 1304.5 -0.38, 3098.3 0.097, 2894.8 -0.12, 1729.8 -0.404, 1595.9 0.108, 1242.1

In order to investigate the robustness of the approach, we start with a rather moderate level of misspecification. Precisely, we
estimate the first two intensities as Gompertz-distributed, but assume the third one , i.e. α(`)

03 , ` = 1, 2, to be constant in both
groups.

In a second scenario, we increase the amount of misspecification as follows: we assume Gompertz distributed event times for
the first and second state and Weibull distributed event times for the third state, respectively, but the data is generated according
to an exponential distribution, i.e. transition intensities are constant. The corresponding parameters are again taken from the
application example and displayed in Table 1. The resulting test statistic is given by

d =
3

max
j=1
‖α(1)

0j – α(2)
0j ‖∞ = max{0.0002, 0.0006, 0.0005} = 0.0006.

The data generating distributions and the assumed ones are summarised in Table 2.

T A B L E 2 Summary of the assumed distributions of Scenario 1 and Scenario 2. Misspecified distributions are in bold.

Model 1 Model 2
State 1 State 2 State 3 State 1 State 2 State 3

Scenario 1
Data generating distribution Gompertz Gompertz Weibull Gompertz Gompertz Weibull
Assumed distribution Gompertz Gompertz Exponential Gompertz Gompertz Exponential

Scenario 2
Data generating distribution Exponential Exponential Exponential Exponential Exponential Exponential
Assumed distribution Gompertz Gompertz Weibull Gompertz Gompertz Weibull

According to the main paper, we consider several similarity thresholds ∆ and a range of different sample sizes, based on the
application example, where n1 = 213 and n2 = 482 patients are observed in the first and second group. Thus we simulate a variety
of choices of n1, n2, ranging from 200 to 500. Also driven by the application example, we assume administrative censoring with
a given follow-up period of 90 days. Consequently, we consider two competing risk models, each with j = 3 states over the time
range T = [0, 90]. If there is no transition to one of the three states, an individual is administratively censored at these 90 days.

The data in all simulations is generated according to the algorithm described in Beyersmann et al. [1] All simulations have
been run using R Version 4.3.0. The total number of simulation runs is N = 500 for each configuration and due to computational
reasons the test is performed using B = 250 bootstrap repetitions. The computation time using an Intel Core i7 CPU with 32GB
RAM for one particular dataset with B = 250 bootstrap repetitions varies between 3min and 11min, depending on the sample
size under consideration.
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1.2 Results of Scenario 1

Scenario 1 reflects a situation of a rather low degree of misspecification, as only the third state is not correctly specified (see
Table 2). Table 3 displays the simulated Type I errors and the power for different configurations of the sample size. It becomes
obvious that, on the margin of the null hypothesis, i.e. when ∆ = d, the type I errors are slightly inflated for small sample sizes,
reaching values between 0.056 and 0.108. However, for small and moderate sample sizes, these values are very similar to the
simulated type I errors for correctly specified models (see Table 3 of the main paper), while for increasing sample sizes the
type I error decreases and converges to the nominal level. A similar conclusion can be drawn regarding the power, which is
slightly smaller, but still very close to the values obtained from the correctly specified models. Thus, we conclude that the effect
of misspecification, that is a mild type I error inflation and a slight loss of power, is not very strong in this scenario.

T A B L E 3
Simulated type I error rates and power of the Test proposed in Algorithm 1 under Scenario 1 of misspecification. Numbers in
bold correspond to the margin of the null hypothesis.

Type I error Power
(n1, n2) ∆ = 0.0006 ∆ = 0.0015 ∆ = 0.0028 ∆ = 0.004 ∆ = 0.005 ∆ = 0.01

(200, 200) 0.048 0.062 0.105 0.194 0.298 0.860
(250, 300) 0.034 0.054 0.096 0.197 0.318 0.965
(300, 300) 0.038 0.056 0.108 0.203 0.321 0.964
(250, 450) 0.016 0.034 0.086 0.189 0.405 0.990
(300, 500) 0.006 0.024 0.090 0.191 0.367 0.998
(500, 500) 0.014 0.032 0.096 0.224 0.446 0.996

(1000, 1000) 0.002 0.008 0.056 0.360 0.704 0.999

1.3 Results of Scenario 2

Since in Scenario 2 all transition intensities are assumed to be different from the underlying data generation process, the level of
misspecification is higher than in Scenario 1. Table 4 displays the simulated Type I errors and the power. It can be seen that, in
contrast to Scenario 1, the behaviour of the test is now conservative, as the type I errors are very small, i.e. below 2%. This effect
even increases with increasing sample sizes. Consequently, the power of the test is also very low and is far away from the results
obtained from correctly specified models (see Figure 1 in the main paper).

T A B L E 4
Simulated type I error rates and power of the Test proposed in Algorithm 1 under Scenario 2 of misspecification. Numbers in
bold correspond to the margin of the null hypothesis.

Type I error Power
(n1, n2) ∆ = 0.0006 ∆ = 0.001 ∆ = 0.0015 ∆ = 0.002

(200, 200) 0.010 0.010 0.038 0.108
(300, 300) 0.018 0.028 0.086 0.192
(250, 450) 0.022 0.026 0.068 0.202
(300, 500) 0.016 0.024 0.080 0.209
(500, 500) 0.004 0.012 0.084 0.224

1.4 Summary

Taking the results of both scenarios into account, we conclude that both slight type I error inflation and a conservative behaviour,
can occur, depending on how strong the misspecification of the models is. Of note, this is a general drawback of parametric
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approaches and underlines the urgency of fitting the model with great care. However, we observe that for a moderate level of
misspecification, the simulated values are very close to the ones obtained from correctly specified models, while the test could
suffer from a loss of power in case of strong misspecification. If the sample sizes are large, the performance of the test is very
good, even in case of misspecification.

All results presented here rely on simulations based on the real data application which comes along with only few events
and, consequently, a very high censoring rate (approx. 80%). Numerically, this makes the estimation procedure in general quiet
challenging. Thus, the results presented here are very promising. Further investigations are part of ongoing research.
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