Supplementary Data for 1 2 3 Modular chimaeric cytokine receptors with leucine zipper enhance the antitumor activity of CAR T cells via JAK/STAT signalling 4 5 Matthew Bell^{1,2}, Shannon Lange¹, Besian I. Sejdiu^{3,8}, Jorge Ibanez¹, Hao Shi⁴, Xiang Sun⁴, Xiaoxi 6 Meng⁴, Phuong Nguyen¹, Morgan Sutton^{1,2}, Jessica Wagner¹, Anil KC⁴, Deanna Langfitt¹, Sagar 7 8 L Patil¹, Haiyan Tan⁵, Ram Vinay Pandey⁶, Yuxin Li⁵, Zuo-Fei Yuan⁵, Alejandro Allo Anido¹, Mitchell Ho¹⁰, Heather Sheppard⁷, Peter Vogel⁷, Jiyang Yu⁶, Junmin Peng^{5,8,9}, Hongbo Chi⁴, M. 9 Madan Babu^{3,8}, Giedre Krenciute¹, Stephen Gottschalk¹ 10 11 12 ¹Department of Bone Marrow Transplantation and Cellular Therapy, ²Graduate School of Biomedical Sciences, ³Center of Excellence for Data Driven Discovery, ⁴Department of 13 Immunology, ⁵Center for Proteomics and Metabolomics, ⁶Department of Computational Biology, 14 ⁷Department of Pathology, ⁸Department of Structural Biology, ⁹Department of Developmental 15 Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA; ¹⁰Laboratory of 16

- 17 Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of
 - 18 Health, Bethesda, MD, USA

а

21 Supplementary Data Figure 1: Representative flow cytometry plots.

- 22 (a) Representative flow cytometry plots for primary T cell transduction (corresponding to Figure
- 23 1c). (b) Transduction and pSTAT5 expression with double transduction of IL-2R β (2x) and
- 24 IL-2Rγ(2x).

b Membrane

с

d

е

Rab5

27 Supplementary Data Figure 2: SNAP/CLIP tag confocal microscopy of Zip2R(1x).

- 28 (a) Representative images of Zip2R(1x) with endosomal markers. Scale bar = $10\mu m$. (b-e)
- 29 Representative images of Zip2R(1x) colocalization with (b) cell membrane, (c) Lamp1, (d) Rab11,
- 30 or (**e**) Rab5.

с

33 Supplementary Data Figure 3: STAT5 induction and cell proliferation of ZipRs

34 (a) pSTAT5 expression in NT, Zip2R(2x), and Zip7R(2x) T cells. (b) Representative histograms

of unstimulated, IL-2, or IL-15 stimulated samples. (c) Quantification of pSTAT5 expression in

- 36 unstimulated, IL-2, or IL-15 stimulated samples (N=3 biological replicates, *p<0.05, **p<0.01, one-
- 37 way ANOVA with Tukey's multiple comparisons test). (d) Representative histograms of cell
- proliferation dye (CTV-eFluor 450) labelled NT, Zip2R(2x), or Zip7R(2x) T cells at day 3 or 10. (e)
- 39 Quantification of divided and undivided cells at day 3 and day 10 (N=3 biological replicates).

а

С

b

CD8+

40

Supplementary Data Figure 4: Phosphoproteomics experimental workflow and sample quality.

- 43 (a) Phosphoproteomics sample preparation workflow. (b) Dataset characteristics. (c) Pearson
- 44 correlation analysis of biological replicates. (**d**,**e**) Principal component analysis of top 700 DE
- 45 proteins of $CD4^+$ (**d**) and $CD8^+$ (**e**) T cells.

48 Supplementary Data Figure 5: Phenotypic analysis of CAR.ZipR T cells.

(a) CD4:CD8 ratio of CAR.Zip2R T cells with indicated constructs (N=3-4, mean \pm SD). (b) Immunophenotype of CD4⁺ (left) or CD8⁺ (right) CAR.Zip2R T cells with indicated constructs (T_N-

51 Like : CCR7⁺ CD45RA⁺, T_{EM} : CCR7⁻ CD45RA⁻, T_{CM} : CCR7⁺ CD45RA⁻, T_{EMRA} : CCR7⁻ CD45RA⁺,

52 N=3-4, mean±SD). (c) CD4:CD8 ratio of CAR.Zip7R T cells with indicated constructs (N=3-4,

53 mean \pm SD). (d) Immunophenotype of CD4⁺ (left) or CD8⁺ (right) CAR.Zip7R T cells with indicated

54 constructs (N=3-4, mean±SD).

46

57 Supplementary Data Figure 6: Antigen sensitivity of CAR.ZipR T cells

(a) Percentage of CD107a positive cells after 4-hour stimulation with indicated concentration of plate-bound recombinant human B7-H3 (rhB7-H3) (N=3 biological replicates, mean \pm SD). (b) Concentration of IFN_γ in cell culture supernatant after 24-hour stimulation with rhB7-H3 (N=3 biological replicates, mean \pm SD).

- 62
- 63
- 63

04

65

- 66 67
- 68

69 Supplementary Data Figure 7: Repetitive cytokine production of B7-H3-CAR and B7-H3-

70 CAR.Zip2R T cells

71 Quantification of (a) B7-H3-CAR or (b) B7-H3-CAR.Zip2R T cell cytokine production following 1,

2, or 3 stimulations with A549 WT cells (N=2 biological replicates). One (#) or two (##) cytokine

73 concentrations were greater than the limit of detection (LOD) and the LOD was plotted (IFN_Y:

74 50,000 pg/mL; GM-CSF: 10,000 pg/mL).

76 Supplementary Data Figure 8: Zip2R improves GPC2.CD28z and GPC2.41BBz CAR T cell

77 antitumor activity

78 (a) Transduction efficiency of GPC2 CAR and Zip2R (N=2-3 biological replicates). (b) 7-day

- 79 repeat stimulation assay with GPC2.CD28z CAR T cells and LAN1 tumor cells at 2:1 E:T. (c) 7-
- 80 day repeat stimulation assay with GPC2.41BBz CAR T cells and LAN1 tumor cells at 2:1 E:T. (d)
- 81 Stimulations of tumor cell killing in 7-day repeat simulation assay with LAN1 WT cells and CAR T
- cells at 2:1 E:T ratio (N=3 biological replicates, mean±SD, ***p<0.001, ns = non-significant, one-
- 83 way ANOVA).

- 84
- 85 Supplementary Data Figure 9: Representative bioluminescence images of mice from Fig.
- **4b.** See Figure legend 4a,b for details.

88 Extended Data Figure 10: Zip2R augments the antitumor activity of B7-H3-CAR.Zip2R T 89 cells in the A549 model.

90 Same experimental scheme as described in Figure 4a. Mice received a single i.v. dose of $3x10^5$

91 CAR T cells on day 7 post A549.GFP.ffLuc cell injection. Data for a 3rd donor (N=4-5).

92 (a) Tumor burden in the lungs as determined by serial bioluminescence imaging. (b)

93 Quantification of tumor flux in the lungs of treated mice (mean±SD, *p<0.05, ***p<0.001,

94 ****p<0.0001, two-way ANOVA of log transformed BLI data).

96 Supplementary Data Figure 11: Representative IHC images of lungs from untreated or 97 CAR.Zip7R T cell treated mice.

98 Immunohistochemistry (IHC) of lungs from mice from the indicated treatment groups. Untreated 99 mice were analyzed on day 28 post tumor injection. CAR.Zip7R T cell treated mice were analyzed 100 on day 26 post tumor injection (day 19 post T cell injection). Hematoxylin and eosin (H&E) 101 staining, anti-CD3, and anti-B7-H3 staining is shown. Representative images. Top panel for 102 untreated and CAR.Zip7R T cells: (4x); scale bar: 1 mm. Bottom panel for untreated and 103 CAR.Zip7R T cells: (40x); scale bar: 100 µm.

105 Supplementary Data Figure 12: CAR.Zip2R expansion *in vivo*.

106 Same experimental scheme as described in Figure 4a. Mice received a single i.v. dose of 1x10⁶

- 107 ffLuc-expressing CAR T cells on day 7 post A549 cell injection.
- 108 (a) BLI of CAR.ffLuc and CAR.Zip2R.ffLuc T cells in A549 WT tumor bearing mice. (b) Area under
- the curve (AUC) of flux from day 0-20.
- 110

112 Supplementary Data Figure 13: Marker gene expression corresponding to Fig. 4e,f

113 Expression of marker genes defining CD8 exhaustion-like, CD8 effector-like, and CD8 memory-

¹¹⁴ like CAR T cells.

- 115
- 116 Supplementary Data Figure 14: DEGs from CD8⁺ or CD4⁺ CAR.ZipR T cells.
- 117 Corresponding to Figure 6. Global differentially expressed genes in unstimulated and stimulated
- 118 $CD8^+$ and $CD4^+$ CAR T cells.

- 120 Supplementary Data Figure 15: Example gating strategy.

Left panel: Live cell gate FSC vs SSC. Middle panel: Doublets were excluded using FSC-H vs FSC-A as cells displaying double the signal of singlets. Right panel:Gates were based on non-

transduced T cells to account for any background binding.

Supplementary Data Figure 16: Phosphoproteome dataset. See separate Excel

- 127 spreadsheet.

Supplementary Data Figure 17: ZipReceptor sequences. See separate Word document.