

FIGURE S1. DT inoculation in *Cd207*^{DTR} **mice specifically depletes LCs and DC1s, without causing inflammation. (A-B)** Balb/c *Cd207*^{DTR} mice were injected with 50 ng/gr body weight DT (+DT) or left untreated (-DT), and 2 days later whole skin and sLN were analyzed by flow cytometry. **(A)** Gating strategy used for the identification of different myeloid cells in the skin. **(B)** Number of myeloid cells in the skin shown as the mean + SD (n= 3-9 mice in 2-4 exp.; Student's t-test). **(C)** B6 *Cd207*^{EGFP} mice were injected with 50 ng/gr body weight DT (+DT) or left untreated (-DT), and 2 days later whole skin was analyzed by flow cytometry. Number of myeloid cells in the skin shown as the mean + SD (n= 3-4 mice in 2 exp.; Student's t-test). **(D)** As in A, but sLN were analyzed. **(E)** As in B, but the number of myeloid cells in sLN shown as the mean + SD (n=3-6 mice in 3-4 exp.; Student's t-test).

FIGURE S2. LCs repopulate sLN, but not epidermis, at steady state. (A-C) Balb/c Cd207^{DTR} were inoculated with 50 ng/gr body weight DT (+DT) or left untreated (-DT). Epidermis, dermis and sLN were collected and analyzed at different time points. (A) Gating strategy for the identification of LCs in epidermal cell suspensions (epidermal LCs). (B) Bar graph showing the mean + SD of epidermal LCs in Balb/c Cd207^{DTR} mice at different times post-DT inoculation, normalized to non-DT controls (n=4-6 mice in 2 exp.; One-way ANOVA with Dunnett's multiple comparison). (C) Mean + SD of resident DC1s in the sLN of Balb/c Cd207^{DTR} mice at different times post-DT inoculation, normalized to non-DT controls (n=5-18 mice in 4-10 exp.; One-way ANOVA with Dunnett's multiple comparison). (D) Left, bar graph showing the mean + SD of epidermal LCs obtained from the back skin of B6 Cd207^{DTR} mice, normalized to non-DT controls (n=3-7 mice in 3 exp.; One-way ANOVA with Dunnett's multiple comparison). Right, bar graph showing the mean + SD of Mig LCs in the back skin draining LN of B6 Cd207^{DTR} mice, normalized to non-DT controls (n=4-22 mice in 3-7 exp.; One-way ANOVA with Dunnett's multiple comparison). (E) LysM^{2re} xCsf1r^{LSL-DTR} mice were injected with 50ng/gr body weight DT, and epidermis and sLN were collected 2 days (2d) or 2 months (2m) later. Top, representative flow cytometry plots of epidermal LCs. Bottom, representative flow cytometry plots of Mig LCs in sLN. (F) B6 Cd207^{DTR} were inoculated with 50ng/gr body weight DT. One-week post-DT inoculation, mice ears were tapestripped 12 times (+T/S) or not (-T/S). Two months post-DT, epidermis was collected. Left, schematic of experimental design. Right, LC numbers shown as the mean + SD (n=4-8 mice in 2 exp.; One-way ANOVA with Dunnett's multiple comparison). (G) B6 Cd207^{DTR} were inoculated with 50 ng/gr body weight DT (+DT) or left untreated (-DT). Dermis was collected and analyzed at 2 days (2d) and 2 months (2m) post-DT. Bar graph showing the number + SD of dermal LCs (n=3-10 mice in 2-3 exp.; Oneway ANOVA with Dunnett's multiple comparison).

FIGURE S3. Few monocytes infiltrate the epidermis, and differentiate into moLCs that undergo proliferation. (A) B6 CD45.1 *Cd207*^{DTR} mice were lethally irradiated and reconstituted with CD45.2 *Ms4a3*^{cre} x *Rosa*^{LSL-TdTomato} bone marrow. Two months later, 50ng/gr body weight DT was inoculated. One-week post-DT, mice were tape-stripped (T/S) 12 times, and epidermis, LN, and blood was collected 2 months after that. Left, experimental design. Right, bar graph showing mean + SD of TdTomato expression in each cell population, normalized to blood monocytes (n=3 mice in 1 exp.). (**B-D**) B6 *Cd207*^{DTR} mice were treated (+DT) with 50ng/gr body weight DT, or not (-DT). (**B**) Left, gating strategy used to identify epidermal monocytes and MHCII⁺ cells. Right, number of epidermal monocytes and MHCII⁺ cells shown as the mean + SD (n=3-20 in 2-5 exp.; One-way ANOVA with Dunnett's multiple comparison). (**C**) Marker expression heatmap for each population of epidermal cells (n=2-3 mice in 1 exp.). (**D**) Frequency of Ki67⁺ epidermal LCs, shown as the mean +SD (n=3-9 mice in 2-3 exp.; One-way ANOVA with Dunnett's multiple comparison). ND: not determined; d: days; m: months.

FIGURE S4. Generation of *Ccr7^{t/f}* **mouse.** B6 murine zygotes were injected with sgRNA, Cas9 protein, and donor DNA containing homologous arms and loxp sites flanking exon 3 of the *Ccr7* gene. *Ccr7^{t/f}* mice were bred to *Cd11c*-Cre mice to generate Ccr7 conditional knockout (Ccr7 cKO) mice. **(A)** Schematic showing CRISPR-Cas9 targeting strategy of exon 3 of the *Ccr7* gene (top), ssDNA donor DNA (middle), and final inserted transgene (bottom). **(B)** Schematic showing primer design for the detection of *Ccr7^{t/f}* (top) and *Ccr7^{wt/wt}* (bottom) mice. **(C)** Top, primer set used to screen founders for presence of inserted loxp sites. Middle, gRNA sequences used to target Cas9 for double stranded-breaks. Bottom, genotyping primers used to identify flox, WT, and germline deletions (KO). **(D)** Representative PCR showing examples of *Ccr7^{t/f}* (1), *Ccr7^{t/wt}* (2), and *Ccr7^{wt/wt}* (3) genotyping results. **(E)** Skin and sLN of Ccr7 cKO (*Cd11c*-Cre^{+/-} x*Ccr7^{t/f}*) and control (*Cd11c*-Cre^{-/-} x*Ccr7^{t/f}*) mice were collected for myeloid cell quantification. Top, epidermal LCs (left) and dermal DC1s (right) shown as the mean + SD (n=3-6 mice in 3 exp.). Bottom, migratory DCs (left) and lymphoid-resident DCs (right) in sLNs shown as the mean + SD (n=3-5 mice in 2-3 exp; Student's t-test). **(F)** Experimental design as in Figure 3F-G. Representative flow cytometry plots (left) and frequency of cells expressing CD45.1 or CD45.2 (right) (mean + SD; n=9 mice in 2 exp.). **(G)** Ears of B6 WT mice were painted with 0.5% TRITC. 48-96 hrs later, sLN were collected and processed for flow cytometry analysis. %TRITC⁺ cells shown as the mean + SD (n=4 mice in 2-3 exp.). chr: chromosome; gRNA: guide RNA; HA: homologous arm; bp: base pair; hrs: hours; Mig: Migratory; Res: lymphoid-resident.

FIGURE S5. Epidermal moLCs express higher levels of migration/maturation markers. B6 *Cd207^{DTR}* mice were inoculated with 50ng/gr body weight DT or left untreated. Two months after DT inoculation, whole skin (A) or epidermis (B) cell suspensions were collected, and analyzed by CyTOF. **(A)** Expression of the indicated markers in skin LCs, shown in the PHATE map of Figure 4A. **(B)** Expression of the indicated markers in epidermal eLCs (-DT) and moLCs (+DT) (n=2 mice in 2 exp.). MSI: Mean Signal Intensity.

FIGURE S6. Transcriptomic analysis of epidermal eLCs and moLCs. (A-D) B6 CD45.1 *Cd207^{DTR}* mice were lethally irradiated and transplanted with CD45.2 WT bone marrow. Two months later, a low dose of 5 ng/gr body weight DT was inoculated. Epidermal eLCs (CD45.1) and moLCs (CD45.2) were analyzed by SMART-seq2 two months post-DT. **(A)** Schematic of the experimental design. **(B)** Epidermal LCs were sorted using Fig.S2A strategy (lineage markers included Ly6G and SiglecF). Shown is the cell purity after sort via index sorting. **(C)** UMAP of eLCs (CD45.1) and moLCs (CD45.2). **(D)** Violin plot of *Timd4* expression. **(E)** B6 *Cd207^{DTR}* were inoculated with 50 ng/gr body weight DT or left untreated. Two months later, sLN were collected and stained for flow cytometry. Expression of CD207 in migratory eLCs (-DT) and moLCs (+DT) in sLN, shown as the mean + SD (n=6-15 in 4 exp.; Student's t-test). **(F)** B6 *Cd207^{DTR}* CD45.1 mice were lethally irradiated and transplanted with 50% WT (CD45.1) and 50% *Cd207^{-/-}* bone marrow (CD45.2). Two months later, 50ng/gr body weight DT was inoculated. Skin, sLN, and blood were analyzed two months post-DT. Top, schematic of the experimental design. Bottom, ratio CD45.2/CD45.1 positive cells normalized to monocytes, and shown as the mean + SD (n=4 in 2 exp.).

TABLE S1: Antibodies used for flow cytometry analysis and cell sorting.

Antibody	Source	Cat#	RRID
Anti-mouse B7-H1 (MIH5) SuperBright 780	eBioscience	78-5982-82	RRID: AB_2724081
Anti-mouse CCR7 (4B12) APC-eFluor®780	Thermo Fisher Scientific	47-1971-82	RRID:AB_2573974
Anti-mouse CD11b (M1/70) BV650	BioLegend	101239	RRID: AB_11125575
Anti-mouse CD11b (M1/70) APC-eFluor®780	Thermo Fisher Scientific	47-0112-82	RRID:AB_1603193
Anti-mouse CD11b (M1/70) eFluor®450	eBioscience	48-0112	RRID: AB_1582237
Anti-mouse CD11c (HL3) PE	BD Biosciences	561044	RRID:AB 2033996
Anti-mouse CD11c (HL3) BUV737	BD Biosciences	564986	RRID: AB 2870123
Anti-mouse CD172a (P84) BUV395	BD Biosciences	740282	RRID:AB_2740021
Anti-mouse CD19 (6D5) Alexa Fluor® 700	BioLegend	115528	RRID: AB_493735
Anti-mouse CD19 (eBioD3) eFluor®450	eBioscience	48-0193-82	RRID: AB_2734905
Anti-mouse CD207 (ebioL31) PE	Thermo Fisher Scientific	12-2075-82	RRID:AB_763452
Anti-mouse CD207 (L31) AF647	home-made		
Anti-mouse CD24 (M1/69) APC-eFluor®780	eBioscience	47-0242-82	RRID: AB_10853190
Anti-mouse CD24 (M1/69) BUV395	BD Biosciences	744471	RRID: AB_2742259
Anti-mouse CD25 (PC61) PerCP Cy5.5	BioLegend	102030	RRID: AB_893288
Anti-mouse CD3e (17A2) eFluor®450	BioLegend	100228	RRID:AB_2562553
Anti-mouse CD3e (17A2) Alexa Fluor® 700	BioLegend	100216	RRID: AB_493697
Anti-mouse CD326 (G8.8) PE	eBioscience	12-5791	RRID: AB_953615
Anti-mouse CD326 (G8.8) Alexa Fluor® 700	Biolegend	118239	RRID:AB_2810353
Anti-mouse CD326 (G8.8) PE-Cy7	eBioscience	25-5791-80	RRID: AB_1724047
Anti-mouse CD4 (GK1.5) BUV395	BD Biosciences	563790	RRID: AB_2738426
Anti-mouse CD45 (30-F11) Brilliant Violet 510™	BioLegend	103138	RRID: AB_2563061
Anti-mouse CD45 (30-F11) BV785	BioLegend	103149	RRID: AB_2564590
Anti-mouse CD45.1 (A20) PE	BD Biosciences	561872	RRID:AB_10897174
Anti-mouse CD45.1 (A20) APC-eFluor®780	Thermo Fisher Scientific	47-0453-82	RRID:AB_1582228
Anti-mouse CD45.2 (104) BV650	BioLegend	109835	RRID:AB_2563065
Anti-mouse CD45.2 (104) PE	BioLegend	109807	RRID:AB_313445
Anti-mouse CD45.2 (104) PE-Cy7	BioLegend	109829	RRID: AB_1186098
Anti-mouse CD64 (X54-5/7.1) APC	BioLegend	139306	RRID: AB_11219391
Anti-mouse CD86(GL1) AF647	Biolegend	105019	RRID:AB_493465
Anti-mouse F4/80 (BM8) eFluor®450	eBioscience	48-4801-82	RRID: AB_1548747
Anti-mouse Foxp3 (FJK-16s) APC	eBioscience	17-5773-82	RRID: AB_469457
Anti-mouse Ki67 (SolA15) PE	Thermo Fisher Scientific	12-5698-82	RRID:AB_11150954
Anti-mouse Ly6C (HK1.4) PerCP Cy5.5	Thermo Fisher Scientific	45-5932-82	RRID:AB_2723343
Anti-mouse Ly6C (HK1.4) BV510	Biolegend	128033	RRID:AB_2562351
Anti-mouse Ly6C (HK1.4) Alexa Fluor® 700	BioLegend	128024	RRID: AB_10643270
Anti-mouse Ly6G (1A8) BUV395	BD Biosciences	563978	RRID:AB_2716852
Anti-mouse Ly6G (1A8) Alexa Fluor® 700	BioLegend	127622	RRID: AB_10643269
Anti-mouse MHCII (M5/114.15.2) BUV737	BD Biosciences	748845	RRID:AB_2873248
Anti-mouse MHCII (M5/114.15.2) Brilliant Violet 510™	BioLegend	107635	RRID: AB_2561397
Anti-mouse NK1.1 (PK136) eFluor®450	Thermo Fisher Scientific	48-5941-82	RRID: AB_2043877
Anti-mouse NK1.1 (PK136) Alexa Fluor® 700	BioLegend	108730	RRID: AB_2291262
Anti-mouse SiglecF (E50-2440) eFluor®450	BD Biosciences	562681	RRID:AB_2722581
Anti-mouse Tim4 (RMT4-54) PE	Biolegend	130005	RRID:AB_2201843
Anti-mouse XCR1 (ZET) APC	BioLegend	148205	RRID:AB_2563931
Anti-mouse XCR1 (ZET) PerCP Cy5.5	BioLegend	148208	RRID: AB_2564364

Metal	Marker	Clone	Company/RRID		
Pd104	CD45	30-F11	Thermo Fisher Scientific AB_467251		
Pd106	CD45	30-F11	Thermo Fisher Scientific AB 467251		
Pd108	CD45	30-F11	Thermo Fisher Scientific AB 467251		
Y89	CD45	30-F11	Fluidigm RRID: AB_2651152		
In113	CD45	30-F11	Thermo Fisher Scientific AB_467251		
ln115	PDCA1	eBio927	Biolegend RRID: AB_1953281		
Pr141	Ly6G	1A8	Fluidigm RRID: AB_2814678		
Nd143	CD11b	M1/70	Fluidigm RRID: AB_2811240		
Nd144	B220	RA3-6B2	Fluidigm RRID: AB_2811239		
Nd145	MHCII	M5/114.15.2	Biolegend RRID: AB_2563771		
Nd146	EpCAM	G8.8	Biolegend RRID: AB_2563743		
Sm147	CD172a	P84	Biolegend RRID: AB_11203723		
Nd148	CD127	A7R34	Biolegend RRID: AB_2563716		
Sm149	CD19	6D5	Fluidigm RRID: AB_2814679		
Nd150	Ly6C	HK1.4	Biolegend RRID: AB_2563783		
Eu151	CD64	X54-5/7.1	Fluidigm RRID: AB_2814680		
Sm152	CD3	1452C11	RRID:AB_468847		
Eu153	CD335	29A1.4	Biolegend RRID: AB_2563744		
Sm154	CD24	M1/69	Biolegend RRID: AB_2563732		
Gd155	FceR1a	Mar-1	Biolegend RRID: AB_2563768		
Gd156	CD14	Sa14-2	Fluidigm RRID: AB_2814681		
Gd157	CD205	NLDC	homemade		
Gd158	SiglecH	551	Biolegend RRID: AB_1227757		
Tb159	F4/80	BM8	Fluidigm RRID: AB_2811238		
Gd160	MGL2	URA-1	Biolegend RRID: AB_2562711		
Dy161	CD8	53-6.7	Biolegend RRID: AB_2562796		
Bi209	CD11c	N418	Fluidigm RRID: AB_2814682		
Dy163	XCR1	Zet	Biolegend RRID: AB_2563841		
Dy164	CCR7	4B12	Fluidigm RRID: AB_2814683		
Ho165	CCR2	475301	R&D Systems RRID: AB_10718414		
Er166	Cx3CR1	SA011F11	Biolegend RRID: AB_2564313		
Er167	CD115	AFS98	Biolegend RRID: AB_2563709		
Er168	CD116	698423	ThermoFisher Scientific RRID AB_2608189		
Tm169	PDL1	MiH5	Thermo Fisher Scientific RRID: AB_467781		
Yb171	CD103	M290	BD Pharmingen RRID: AB_394995		
Yb172	CD86	GL1	Biolegend RRID: AB_313144		
Yb173	CD117	2B8	Fluidigm RRID: AB_2811230		
Yb174	CD135	A2F10	ThermoFisher Scientific RRID AB_467481		
Lu175	Cadm1	3E1	MBL RRID: AB_592783		
CD116	Ly6D	49-H4	BD Pharmingen RRID: AB_396664		

TABLE S2: Antibodies used for CyTOF analysis.

TABLE S3: Antibodies used for microscopy analysis.

Antibody	Fluorohrome	RRID	Isotype	Final concentration	Source	2 nd antibody	RRID 2 nd antibody	Final concentration 2 nd antibody	Source 2 nd antibody
CD45.1	Biotin	AB_3950 42	Mouse (SJL) IgG2a, к	3 μg/ml	BD Biosciences	Sva Brilliant Violet 421	-	2 μg/ml	Biolegend
CD45.2	Purified	AB_4672 61	Mouse (SJL) IgG2a, к	3 μg/ml	Thermo Fisher Scientific	anti-Rat Alexa Fluor® 555	AB_2896 336	1 μg/ml	Thermo Fisher Scientific
GFP	Purified	AB_2215 69	Rabbit IgG	4 μg/ml	Thermo Fisher Scientific	anti-Rabbit Alexa Fluor® 488	AB_1431 65	1 μg/ml	Thermo Fisher Scientific
I-A/I-E	Alexa Fluor® 647	AB_4935 25	Rat lgG2b, к	1 μg/ml	Biolegend	-	-	-	-
ΤCRγδ	Alexa Fluor® 488	AB_2562 771	Ar. Hamster IgG	2.5 μg/ml	Biolegend	-	-	-	-
ΤCRγδ	PE	AB_4659 34	Ar. Hamster IgG	1 μg/ml	Thermo Fisher Scientific	Anti-Ar. Hamster Alexa Fluor® 555	AB_2925 787	1 μg/ml	Thermo Fisher Scientific