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Fig. S1. Regulation of genes during the neuron differentiation process. (A) Venn diagram of 

significant down-regulated differentially expressed genes (DEGs, blue) and up-regulated DEGs 

(red) at different stages of differentiation compared to the earliest time point of 4 days. (B) Overview 

of the number of significant deregulated Gene ontology (GO) terms during the differentiation 

process. 
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Fig. S2. Infection of human induced primary neurons with quasi-enveloped HEVcc Kernow-

C1 p6 strain and wild boar HEV-3 strain 83-2. (A) Immunofluorescence staining was performed 

for uninfected (Mock) and infected induced primary neurons (iPNs) with quasi-enveloped Kernow-

C1 p6 strain and the wild boar HEV-3 strain 83-2. 4′,6-diamidino-2-phenylindole (DAPI) was used 

to stain the nuclei (blue), a polyclonal rabbit anti-HEV antiserum to stain the ORF2-encoded capsid 

protein (green) and an anti-β-III-tubulin (β-III-Tub) antibody to stain the neuronal cytoskeleton. 

Scalebars represent 50 µm. (B) The susceptibility of neurons to both HEV strains was quantified 

by measuring the ORF2 signal using CellProfiler. 
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Fig. S3. The ORF2 encoded capsid protein of HEV is colocalized with the Golgi apparatus. 

(A) Virus localization was accessed by iterative indirect immunofluorescence imaging using 

multiple compartment markers. In different rounds of staining, antibodies of ORF2 (green), α-tubulin 

(α-Tub, red), GM130 (yellow) and calreticulin (cyan) were used to stain the HEV capsid protein, 

cytoskeleton, Golgi apparatus and the endoplasmic reticulum, respectively. The nucleus was 

stained by DAPI. White scalebar represents 50 µm (B) Line graphs show the fluorescence 

intensities of ORF2 capsid protein (green) and Golgi apparatus (GM130, yellow) measured across 

the regions of interest indicated by the white lines in the immunofluorescence image. White 

scalebar represents 50 µm. (C) Confocal microscope images of uninfected iPNs (Mock) and HEV-

infected neurons were acquired. A 3D reconstruction of the surfaces was performed using the 

analysis tool Imaris 9.8.0 and a video was also generated. Cells were stained with DAPI (blue), 

with an antibody against ORF2-encoded capsid protein (green) and with β-III-tubulin (red). White 

scalebar represents 10 µm. 
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Fig. S4. Neurite development during differentiation into induced primary neurons. 

Brightfield images were taken at three differentiation timepoints: neural precursor cells (day 0), 

cells during differentiation (day 6), and induced primary neurons after 21 days of differentiation. 
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Fig. S5. General response of primary neurons to HEV infection. (A) Normalized coverage of 

mapped reads along the HEV genome in uninfected (Mock) and infected neurons (+HEV, five days 

post-infection) at the timepoints of 2, 7, 14 and 21 days of differentiation. (B) The number of 

differentially expressed genes (DEGs) by HEV infection compared to uninfected cells is shown over 

the course of differentiation. An online single-cell database of interferon (IFN)-regulated genes 

(IRGs) (http://isg.data.cvr.ac.uk/) was utilized, filtered for genes significantly up- or downregulated 

(FDR ≤ 0.05 and log2 fold change of 2 or -2) in humans, and were compared to the identified DEGs. 

Lighter colors indicate the number of IRGs that were significantly upregulated (red) or 

downregulated (blue). 
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Fig. S6. Pathogen sensing in primary neurons and interferon-stimulated gene (ISG) 

expression across nervous system cell types. (A) Expression of ISGs in neuronal and liver cells 

in publicly available single-cell databases. (B) Overview and comparative analysis of the 

expression levels of pathogen-sensing genes measured in RPKM values, in both uninfected (Mock) 

and HEV-infected (+HEV) induced primary neurons and primary human hepatocytes (liver). The 

values above displayed represent the mean RPKM expression levels of all genes under each 

respective condition. (C) Expression of sensing genes in neuronal and liver cells in publicly 
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available single-cell databases. cpm: counts per million. RPKM: Reads per kilobase of transcript 

per million mapped reads. 
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Fig. S7. Shift in neurite length after HEV inoculation. The neurite length of mock-inoculated 

(Mock) and HEV-inoculated (+HEV) iPNs (21-day-old cells) was examined through microscopic 

analysis five days post-inoculation. The frequency distribution is depicted as the percentage of cells 

(normalized to the total cell number) with a given neurite length. 
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Fig. S8: Differential regulation of genes in 21-day-old neurons relative to various stages of 

differentiation. The genes presented display either upregulation or downregulation in 21-day-old 

primary neurons following HEV infection. These differentially regulated genes (DEGs) are depicted 

here in comparison with their expression patterns in 2, 7, and 14-day-old cells. 
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Table S1. Association between upregulated human genes at 21 days post-HEV infection and neurite length. Related genes include only genes of 
the same family. / indicating no correlation with neurite outgrowth. 

Gene name 

(explanation) 

Involved 

in neurite 

outgrowth 

regulation 

Reported potential 

function of the encoded 

protein 

Refer-

ences 

Log2 fold 

change 

False 

discovery rate 

(FDR) 

Mock: 

Reads per 

kilobase of 

transcripts 

per million 

mapped 

reads   

+HEV: 

Reads per 

kilobase of 

transcripts 

per million 

mapped 

reads 

MOV10 

(MOV10 RISC 

complex RNA 

helicase) 

 

yes 

 

Knockout of MOV10 

gene in murine 

neuroblastoma (Neuro2a) 

cells lead to reduced 

neurite length, which 

could be rescued upon 

re-induction of MOV10 

gene 

(1, 2) 1.340118 4.392000e-09 0.58869067 1.49156581 

ATF3 

(Activating 

transcription factor 3) 

yes 

ATF3 promotes neurite 

outgrowth in rat dorsal 

root ganglion neurons 

(3, 4) 1.055239 2.749000e-06 1.73958633 3.61697248 

TREX1 (Three prime 

repair exonuclease 1) 
yes 

A TREX1 mutant 

(V91M) lead to a 

significant reduction in 

axonal outgrowth in 

mouse primary cortical 

neurons compared to the 

wildtype cells 

(5) 1.654444 2.098385e-02 0.2436382 0.7727430 

TGFBI 

(Transforming growth 

factor beta induced) 

yes 

TGFB increased neurite 

outgrowth in scratched 

primary midbrain 

(6–9) 1.148161 7.208000e-14 4.5132269 10.0050609 
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cultures of dopaminergic 

cells (Wistar rats); 

TGFBI rescued neurite 

outgrowth in inhibitory 

environment via 

canonical ALK5/SMAD3 

signaling in mouse N1E-

115 neuron-like cells; 

TGF-/31 has a capability 

of promoting axonal 

regeneration in rat 

hippocampal neurons 

ARAP3 

(ArfGAP with 

RhoGAP domain, 

ankyrin repeat and PH 

domain 3) 

yes 

Neurites outgrowth of rat 

pheochromocytoma 

(PC12) cells was affected 

by ARAP3 under NGF or 

bFGF treatment 

(10, 11) 1.355979 2.495000e-13 1.078767 2.762672 

VEGFA 

(Vascular endothelial 

growth factor A) 

yes 

VEGF enhanced 

axonal/neurite outgrowth 

of mouse dorsal root and 

superior cervical ganglia, 

rat retinal ganglion cells 

and rat cerebral cortical 

neurons 

(12–

16) 
1.027099 2.351000e-06 1.310088 2.671190 

SERPINE1 

(Serpin family E 

member 1) 

yes 

PAI-1 (plasminogen 

activator inhibitor-1, 

Serpine1), an 

endogenous inhibitor of 

tissue plasminogen 

activator (tPA), led to a 

decrease neurite length 

(17, 

18) 
1.710986 1.403000e-09 0.54960125 1.80225088 
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of rat primary neuronal 

progenitor cells 

CAV1 

(Caveolin 1) 
yes 

Caveolin 1 was required 

for axonal outgrowth of 

motor neurons (from 

Xenopus); synapsin-

Calveolin-1 enhanced 

axonal growth in 

differentiated NPCs 

derived from human 

iPSCs 

(19, 

20) 
1.406676 3.374000e-04 0.3073646 0.8167771 

ENG 

(Endoglin) 
yes 

Endoglin is a co-receptor 

of transforming growth 

factor β (TGF-β), thus it 

participates in TGF-β 

signaling pathway 

(21) 1.130649 1.031000e-12 3.97019850 8.69529148 

PLAU 

(Plasminogen activator, 

urokinase) 

yes 

Inhibition of uPA 

(another abbreviation for 

PLAU) gene expression 

reduced axonal length in 

Neuro2 cells and mouse 

dorsal root ganglia 

(22, 

23) 
2.015380 1.463000e-10 0.44035605 1.78463341 

FOSL1 

(FOS like 1, AP-1 

transcription factor 

subunit) 

yes 

FOSL1 siRNA injection 

in rats led to reduced 

axon growths in 

Schwann cells 

(24) 4.547930 6.536000e-04 0.03115952 0.77415355 

NPAS4 

(Neuronal PAS domain 

protein 4) 

yes 

NPAS4 gene knockdown 

in Neuro2a cells 

inhibited neurite 

outgrowth; In NPAS4 

knockout hippocampal 

(25) 1.423217 3.957000e-04 0.31114766 0.83648270 



 

 

4 

 

neurons (mouse) neurite 

outgrowth was abolished 

NNMT 

(Nicotinamide N-

methyltransferase) 

yes 

NNMT stable expression 

in SH-SY5Y cells 

reduced the neurite 

length compared to SH-

SY5Y cells without 

NNMT, whereas the 

number of neurites and 

branches increased 

(26) 2.016775 1.567549e-02 0.1095445 0.4487772 

ROBO3 

(Roundabout guidance 

receptor 3) 

yes 

The lack of ROBO3 in 

mouse led to a decreased 

axon outgrowth in spinal 

cord explants 

(27) 1.433759 4.375000e-30 17.05178 46.07125 

CSPG4 

(Chondroitin sulfate 

proteoglycan 4) 

yes 

CSPG reduced neurite 

length in mouse cerebral 

cortical neurons and 

granule cells in a dose-

dependent manner; led 

also in human-derived 

SH-SY5Y cells to 

reduction of neurite 

length; CSPG reduced 

neurite length in mouse 

cerebellar granule cells 

in a dose-dependent 

manner; NG2 (synonym 

for CSPG4) also 

inhibited neurite growth 

from embryonic rat 

(28–

32) 
1.128576 3.951000e-06 0.40782702 0.89232606 
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dorsal root ganglia 

neurons 

ACSF2 

(Acyl-CoA synthetase 

family member 2) 

yes 

ACSF2-deficient 

Neuro2a cells showed 

significantly blunted 

neurite outgrowth in 

response to retinoic acid; 

Acyl-CoA synthetase 2 

overexpression enhanced 

neurite outgrowth in 

PC12 cells 

(33, 

34) 
1.136887 2.484000e-03 0.5538275 1.2198368 

GADD45B 

(Growth arrest and 

DNA damage inducible 

beta) 

yes 

Mutated GADD45B 

mice showed impaired 

activity-dependent 

neurogenesis and 

dendritic development; 

GADD45G/p38 

MAPK/CDC25B 

signaling pathway 

enhanced neurite 

outgrowth by promoting 

microtubule 

polymerization 

(35–

37) 
2.575122 1.250000e-14 0.5593153 3.3446735 

GDF15 

(Growth differentiation 

factor 15) 

yes 

The neurites length of the 

primary culture of rat 

retinal ganglion cells 

were increased by 

GDF15 treatment 

(38) 1.549360 2.145562e-02 0.20693118 0.60944003 

PLAUR 

(Plasminogen activator, 

urokinase receptor) 

yes 

Exogenous uPA (PLAU) 

increased neurite length 

in mouse Neuro2a cells 

(23, 

39) 
1.597618 8.919000e-05 0.2644716 0.8027418 
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most likely via the 

interaction with uPAR 

(PLAUR); blocking of 

uPAR stimulated neurite 

formation 

CCDC8 

(Coiled-coil domain 

containing 8) 

yes 

CCDC8 increased the 

number of neurites per 

cell in rat PC12 cells 

(40) 1.014808 3.547000e-07 1.96235660 3.96682179 

LIF 

(LIF interleukin 6 

family cytokine) 

yes 

LIF promoted neurite 

outgrowth of rat 

mammalian auditory 

neurons in vitro; LIF 

promoted neurite growth 

of P12-E2 cells 

(41, 

42) 
1.708004 1.181000e-03 0.14429893 0.47372902 

HSPA6 

(Heat shock protein 

family A (Hsp70) 

member 6) 

 

Related 

genes 

 

HSP70 alone and 

especially in combination 

with HSP40 increased 

neurite outgrowth in 

Neuro2a cells; 

Hsp27 is involved in 

GDNF-induced neurite 

outgrowth in rat PC12-

GFRR1-RET cells; 

Neurite outgrowth was 

mediated by the heat 

shock protein HSP90a 

(43–

45) 
5.420693 4.269000e-49 0.23718946 

10.2284998

4 

CNPY1 

(Canopy FGF signaling 

regulator 1) 

Related 

genes 

 

CNPY2 (MSAP) 

increased the number of 

neurites on mouse N2-A 

and rat PC12 cells 

(46) 1.105491 1.345000e-06 0.9920355 2.1358922 
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TNFRSF10D 

(TNF receptor 

superfamily member 

10d) 

Related 

genes 

 

Tumor necrosis factor 

(TNF) decreased the total 

neurite length per cell, 

the axonal length and the 

number of branch points 

of primary mice 

hippocampal neurons 

cocultured with 

astrocyte-enriched glial 

cells 

(47) 1.009861 6.689000e-05 0.9730365 1.9607246 

CA2 

(Carbonic anhydrase 2) 

Related 

genes 

CA8 induced neurite 

outgrowth in Neuro-2a 

cells but not in human 

SK-N-SH cells 

(48) 1.173081 1.356000e-05 1.55652100 3.51307191 

PRDM12 

(PR/SET domain 12) 

Related 

genes 

 

Disruption of the 

PRDM14 gene resulted 

in axon growth defects in 

zebrafish 

(49) 1.605972 2.794000e-13 1.303463 3.971309 

PLD5P1 

(Phospholipase D 

family member 5 

pseudogene 1) 

Related 

genes 

 

Phospholipase D1 

inhibited neurite 

outgrowth of rat neural 

stem cells via increase of 

synapsin 1 expression; 

Overexpression of PLD1 

resulted in neurons to 

increase tissue 

plasminogen activator 

(tPA) release and 

therefore to tPA-

dependent neurite 

extension 

(50, 

51) 
1.077125 2.514724e-02 0.2453015 0.5186789 
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ADAMTS14 

(ADAM 

metallopeptidase with 

thrombospondin type 1 

motif 14) 

Related 

genes 

 

ADAMTS4 and 

ADAMTS5 led to an 

increase in neurite length 

in rat primary neurons 

(52) 1.414671 3.603000e-06 0.3116316 0.8320400 

SLC15A3 

(Solute carrier family 

15 member 3) 

Related 

genes 

 

SLC25A12 expression 

was associated with 

dendrites outgrowth in 

mouse embryonic 

cortical neurons 

(53) 1.547206 7.039000e-03 0.1887240 0.5542340 

SLC38A4 

(Solute carrier family 

38 member 4) 

Related 

genes 

 

SLC25A12 expression 

was associated with 

dendrites outgrowth in 

mouse embryonic 

cortical neurons 

(53) 2.649440 2.497000e-05 0.07092644 0.44991230 

RNF135 

(Ring finger protein 

135) 

Related 

genes 

 

Molluscan RING-finger 

protein L-TRIM is 

essential for neuronal 

outgrowth 

(54) 1.374997 4.669022e-02 0.1963424 0.5120273 

VMAC 

(Vimentin type 

intermediate filament 

associated coiled-coil 

protein) 

Related 

genes 

The length of astrocytic 

processes after entorhinal 

cortex lesion was shorter 

in GFAP-/-Vim-/- than 

wildtype mice 

(Vim=Vimentin) 

(55) 1.107776 3.657000e-03 0.6299788 1.3598131 

DKKL1 

(Dickkopf like 

acrosomal protein 1) 

Related 

genes 

Dickkopf-1 protein 

(Dkk1) induced neurite 

outgrowth in TC-32 cells 

 

(56) 1.540152 2.998727e-02 0.2884431 0.8444769 

SNAI1 
Related 

genes 

SNAIL transcription 

factor in prostate cancer 
(57) 4.665358 6.446000e-06 0.05172846 1.36721883 
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(Snail family 

transcriptional 

repressor 1) 

cells promoted neurite 

outgrowth 

RSC1A1 

(regulator of solute 

carriers 1) 

/ 

 
/ / 2.927757 3.623000e-04 0.07599916 0.58922164 

ID3 

(Inhibitor Of DNA 

Binding 3) 

/ 

 
/ / 1.748242 3.465000e-30 

11.0787844

4 

37.2322951

4 

ACY1 

(Aminoacylase 1) 
/ / / 1.214575 5.344000e-03 0.4597700 1.0693794 

AHSG 

(Alpha 2-HS 

glycoprotein) 

/ 

 
/ / 1.638499 6.277000e-04 0.4287744 1.3402270 

CYTL1 

(Cytokine like 1) 

/ 

 
/ / 1.380700 1.976895e-02 0.5647939 1.4770756 

ALB 

(albumin) 
/ / / 2.926996 1.716000e-22 0.45646804 3.48247791 

ARRDC3 

(Arrestin domain 

containing 3) 

/ 

 
/ / 1.051950 6.683000e-14 8.266954 17.142819 

PRDM13 

(PR/SET domain 13) 

/ 

 
/ / 1.489413 5.248000e-03 0.19102079 0.53853983 

NUDT18 

(Nudix hydrolase 18) 
/ / / 1.008633 7.463000e-03 0.8883395 1.7897523 

COL13A1 

(Collagen type XIII 

alpha 1 chain) 

/ 

 
/ / 1.657751 1.174000e-11 0.6850415 2.1640083 

NUDT8 

(Nudix hydrolase 8) 

/ 

 
/ / 1.076710 3.940508e-02 0.8883395 1.7897523 
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GSX1 

(GS homeobox 1) 
/ / / 1.575707 5.544000e-03 0.2902809 0.8695302 

NPIPA8 

(Nuclear pore complex 

interacting protein 

family member A8) 

/ 

 
/ / 1.261234 4.423000e-03 0.59556003 1.43100559 

SLX1B 

(SLX1 homolog B, 

structure-specific 

endonuclease subunit) 

/ 

 
/ / 5.257244 3.554000e-20 0.1814754 7.0508826 

TMEM100 

(Transmembrane 

protein 100) 

/ / / 1.055878 2.705273e-02 0.37648448 0.78435276 

ID1 

(Inhibitor Of DNA 

Binding 1) 

/ 

 
/ / 2.002127 7.104000e-13 1.28754784 5.16763625 

PABPC1L 

(Poly(A) binding 

protein cytoplasmic 1 

like) 

/ 

 
/ / 1.165967 2.460000e-04 0.60324994 1.35526644 

COL9A3 

(Collagen type IX 

alpha 3 chain) 

/ / / 1.177167 3.118000e-03 0.4791457 1.0854985 

GGT1 

(Gamma-

glutamyltransferase 1) 

/ 

 
/ / 1.093269 4.897000e-03 0.34972246 0.74733914 

HMOX1 

(Heme oxygenase 1) 

/ 

 
/ / 1.390076 7.152000e-06 0.8629264 2.2650443 

FAM156A / / / 1.007986 1.842000e-10 2.654675 5.340031 
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(Family with sequence 

similarity 156 member 

A) 

RENBP 

(Renin binding protein) 

/ 

 
/ / 1.017142 3.818000e-03 1.112195 2.253698 

gene:ENSG000002717

41 

/ 

 
/ / 2.823195 1.416000e-05 0.0853795 0.6117999 

gene:ENSG000002547

06 
/ / / 1.233511 1.727228e-02 0.6527534 1.5394736 

HSPE1-MOB4 

Readthrough 

/ 

 
/ / 2.099540 1.567000e-03 0.3633585 1.5715336 

gene:ENSG000002848

20 

/ 

 
/ / 1.405860 6.634000e-05 0.2522317 0.6696288 

STIMATE-MUSTN1 

Readthrough 
/ / / 1.252719 4.557356e-02 0.3728846 0.8921909 

gene:ENSG000002860

01 

/ 

 
/ / 1.012625 2.275000e-03 0.5374444 1.0855183 

gene:ENSG000002890

27 

/ 

 
/ / 5.189919 2.232000e-12 0.02737338 1.02447209 

gene:ENSG000002842

92 

/ 

 
/ / 1.213351 2.323063e-02 0.2717099 0.6319702 

gene:ENSG000002886

40 

/ 

 
/ / 1.230503 4.934000e-09 1.4441618 3.3907027 

gene:ENSG000002545

36 

/ 

 
/ / 1.179328 2.286894e-02 0.3346430 0.7600015 

ZFP91-CNTF 

Readthrough 

/ 

 
/ / 1.918956 8.172000e-04 0.1824514 0.6944137 

gene:ENSG000002859

01 
/ / / 2.267598 7.375000e-15 0.3936985 1.9001755 
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ATF7-NPFF 

Readthrough 

/ 

 
/ / 3.141335 1.104214e-02 0.05481481 0.50224828 

gene:ENSG000002588

30 

/ 

 
/ / 1.653482 2.940749e-02 0.15348320 0.48679998 

gene:ENSG000002731

67 
/ / / 1.298390 8.305000e-03 0.1909486 0.4710442 

ARHGAP11A-SCG5 

Readthrough 

/ 

 
/ / 1.304814 6.584000e-04 0.3203187 0.7929361 

gene:ENSG000001738

67 

/ 

 
/ / 1.029718 4.505890e-02 0.2787915 0.5704761 

gene:ENSG000002554

39 
/ / / 3.833119 9.724000e-09 0.07577064 1.09860765 
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Table S2. Association between downregulated human genes at 21 days post-HEV infection and neurite length. Related genes include only genes 
of the same family. / indicating no correlation with neurite outgrowth. 

Gene name 

(explanation) 

Involved 

in neurite 

outgrowth 

regulation 

Reported potential 

function of the encoded 

protein 

Referen

ces 

Log2 fold 

change 

False 

discovery rate 

(FDR) 

Mock: 

Reads per 

kilobase of 

transcripts 

per million 

mapped 

reads   

+HEV: 

Reads per 

kilobase of 

transcripts 

per million 

mapped 

reads 

BCAN 

(Brevican) 

yes Brevican inhibits neurite 

outgrowth from rat 

cerebellar granule 

neurons; Brevican is an 

inhibitor of neurite 

outgrowth in the 

proteoglycan-enriched 

myelin fraction in 

cerebellar granule cells 

(58, 59) -1.358337 1.465000e-21 13.3752915 5.2167392 

PCP4L1 

(Purkinje cell protein 

4 like 1) 

yes PCP4 enhance neurite 

outgrowth, while a 

knockdown reduces 

neurite outgrowth in 

PC12 cells 

(60) -1.344553 1.421000e-04 2.53007119 0.99478298 

RGS5 

(Regulator of G 

protein signaling 5) 

yes RGS5 leads to an 

inhibitory effect of 

neurite outgrowth by 

sonic hedgehog in mouse 

primary cortical neurons; 

RGS5 switched 

astrocytes from 

neuroprotective to 

(61, 62) -1.426282 8.729000e-10 1.3988044 0.5201488 
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pro-inflammatory 

property via binding to 

the receptor TNFR2 

PITX2 

(Paired like 

homeodomain 2) 

yes Loss of PITX2 disrupts 

axonal growth in the 

dorsal midbrain in mouse 

(63) -1.336801 3.957000e-04 0.60078189 0.23744417 

PENK 

(Proenkephalin) 

yes Proenkephalin produces 

the peptide 

[Met]enkephalin and 

[Let]enkephalin via 

proteolytic cleavage; 

[Met]enkephalin and 

[Leu]enkephalin both has 

a neurite growth-

promoting effect in rat 

dorsal root ganglia 

(64) -1.529499 1.205000e-10 2.83594972 0.98163152 

CDC42EP2 

(CDC42 effector 

protein 2) 

yes bind to, and negatively 

regulate the function of 

CDC42;  

CDC42 stimulates 

neurite outgrowth in 

primary chick spinal cord 

neurons ; Cdc42 plays a l 

role in  neurite outgrowth 

of PC12 cells and 

cerebellar granule 

neurons 

(65, 66) -2.061407 8.766000e-05 0.9645701 0.2298073 

NTF3 

(Neurotrophin 3) 

yes NTF3 promotes neurite 

outgrowth in rat 

hippocampal cells and 

sensory neurons 

(67–69) -1.199443 3.067719e-02 1.17344583 0.50953183 
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ADORA2A 

(Adenosine A2a 

receptor) 

yes An ADORA2A 

antagonist rescued the 

decreased neurite length 

in rat primary cortical 

neurons from an attention 

deficit and hyperactivity 

disorder model; the 

suppression of 

ADORA2A seems to 

correlate with neurite 

outgrowth promoted by 

ultrasound stimulation in 

PC12 cells 

(70, 71) -1.614159 8.454000e-06 1.0091193 0.3289512 

SNCB 

(Synuclein beta) 

Related 

genes 

Alpha-Synuclein 

reversed the SPTBN1-

induced neurite over-

branching in SH-SY5Y 

cells; Beta-synuclein is 

discussed as a natural 

negative regulator of 

alpha-synuclein 

aggregation 

(72, 73) -1.033695 2.206000e-05 4.7782508 2.3330362 

PHOX2A 

(Paired like 

homeobox 2A) 

Related 

genes 

PHOX2B knockdown 

reduced neurite length in 

human motor neurons 

and induced short spinal 

neurons in zebrafish 

(74) -2.067991 3.509352e-02 0.4672003 0.1097638 

SEZ6L 

(Seizure related 6 

homolog like) 

Related 

genes 

SEZ6 suppression leads 

to decreased neurite 

length in PC12 cells; 

SEZ6 family member are 

(75, 76) -1.166480 2.178000e-07 1.35654181 0.60410517 
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known to affect neurite 

length (SEZ6 and 

SEZ6L2) 

SYNPR 

(Synaptoporin) 

/ 

 
/ / 

-1.002154 4.107603e-02 0.66902816 0.33344849 

MAFA 

(MAF bZIP 

transcription factor 

A) 

/ 

 
/ / 

-1.084093 4.790000e-07 3.8772766 1.8283201 

ADRA2A 

(Adrenoceptor alpha 

2A) 

/ / / 

-1.381024 2.780000e-08 1.8795963 0.7211471 

NKX1-2 

(NK1 homeobox 2) 

/ 

 
/ / 

-1.445285 4.276000e-08 2.00510214 0.73565542 

NPIPA3 

(Nuclear pore 

complex interacting 

protein family 

member A3) 

/ 

 
/ / 

-1.304036 2.042396e-02 0.7830245 0.3160825 

SULT1A4 

(Sulfotransferase 

family 1A member 

4) 

/ / / 

-2.107897 7.278000e-06 1.7434995 0.4025545 

BOLA2B 

(BolA family 

member 2B) 

/ 

 
/ / 

-1.307911 1.149725e-02 1.4269165 0.5746954 

PRSS53 

(Serine protease 53) 

/ 

 
/ / 

-1.794549 2.217000e-07 1.8605236 0.5351388 

DIPK1C (FAM69C) / / / -1.007293 2.264083e-02 0.76087239 0.37797824 
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(Divergent protein 

kinase domain 1C) 

FAM156B 

(TMEM29B) 

(Family with 

sequence similarity 

156 member B) 

/ 

 
/ / 

-1.189186 9.333000e-14 6.426085 2.817976 

P3R3URF-PIK3R3 

Readthrough 

/ 

 
/ / 

-1.833480 1.452810e-02 0.7193576 0.2001381 

gene:ENSG0000025

8465 

/ 

 
/ / 

-1.602100 1.054000e-05 1.09259278 0.35915470 

gene:ENSG0000025

5872 

/ 

 
/ / 

-1.477783 3.862000e-03 0.7375282 0.2639103 

gene:ENSG0000028

4057 
/ / / 

-1.088332 1.605000e-07 3.8209871 1.7965551 

TBCEL-TECTA 

Readthrough 

/ 

 
/ / 

-1.183985 4.005257e-02 1.0880918 0.4775082 

gene:ENSG0000027

2921 

/ 

 
/ / 

-1.046384 3.162111e-02 2.515808 1.215900 

gene:ENSG0000026

2304 
/ / / 

-1.626821 2.406000e-05 0.66801872 0.21579793 

RPL36A-HNRNPH2 

Readthrough 

/ 

 
/ / 

-3.273787 1.058000e-03 1.776631 0.178886 

 
 
  



 

 

1 

 

 

Movie S1 (separate file): The ORF2 encoded capsid protein of HEV is around the nucleus 
and in neurites Confocal microscope images of HEV-infected neurons were acquired. A 3D 
reconstruction of the surfaces was performed using the analysis tool Imaris 9.8.0. Cells were 
stained with DAPI (blue), with an antibody against ORF2-encoded capsid protein (green) and with 
β-III-tubulin (red). 
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