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SI Materials & Methods 
 
Stimulus selection 
Foreground sounds: To select foreground sounds for our experimental stimuli, we began with a 
set of 447 2-second-long recordings of natural sounds used in previous experiments from our 
laboratory (1, 2). Because harmonicity can aid hearing in noise (3), we manually screened these 
recordings to remove any sounds containing music, speech, or human vocalizations (e.g., 
screams or grunts). Some approximately harmonic sounds nonetheless remained in the stimulus 
set (e.g., alarms, various beeping electronics, animal vocalizations, etc.); see Fig. 6E. 
Additionally, we removed texture-like sounds (e.g., hairdryer or crumpling paper) to help ensure 
that selected foregrounds would be distinct from the sound texture backgrounds they were 
superimposed on. This left us with a set of 167 foreground sounds. These foreground sounds 
were used for Experiments 1-9. Experiment 10 used a different set of foreground sounds chosen 
to be approximately harmonic (see “Experiment 10” below).   
 
Background sounds: To select background sounds for our experimental stimuli, we screened a 
large set of audio examples (AudioSet (4)) for sound textures. Specifically, we first screened the 
“unbalanced train set” within AudioSet by excluding 1) any sound whose label indicated the 
presence of speech or music (e.g., “whispering”, “song”, etc.; see Table S1 for list of excluded 
labels), 2) any sound from the “sourceless” branch of the ontology, 3) any sound less than 10 s 
in length, and 4) any sound with greater than 1% of values equal to zero. This resulted in a set of 
222,560 sounds (which were used for computing the normalization values used in the stationarity 
measure described below). We then computed a measure of stationarity developed in previous 
work from our lab (5–7) for each sound within this set and excluded any sound with a stationarity 
score above 0, leaving us with a large set of 142,922 AudioSet “textures.” From these AudioSet 
“textures”, we selected relatively stationary sounds by keeping sounds with stationarity scores 
between -0.75 and -0.67 (approximately the 87th and 94th percentiles of the sounds with scores 
below 0). Additionally, we sought to avoid periodic textures (e.g., rhythmic clapping or waves 
crashing) because foreground detectability within such textures greatly depends on the timing of 
the foreground relative to the period of the background texture. We measured the periodicity of 
each AudioSet texture as in previous work (7) by measuring the normalized auto-correlation of 
the envelope of the stimulus waveform and selecting the maximum peak between 125 ms and 
500 ms (2–8 Hz). We kept only those sounds whose periodicity fell within 0.05 and 0.075 
(approximately the 1st and 7th percentiles across all AudioSet textures). The intersection of the 
stationary and non-periodic textures yielded 1511 textures. We note that the stationarity analyses 
that were subsequently performed in this paper used a slightly different stationarity measure than 
the one used for the initial screening described above (the new measure was similar in spirit to 
the old one, but used a different form of normalization). As a result, the stationarity scores 
referenced above differ slightly from those reported in Fig. 6B.  
 
The background noises used in our experiments were textures synthesized from statistics 
measured from the (recorded) AudioSet sound textures. There were two reasons for this choice. 
First, textures recorded in natural environments often contain distinctive acoustic events arising 
from other sources. For example, a recording of a stream might contain faintly audible bird calls. 
Such additional sources would create confusion in the experiments involving detection or 
recognition. Second, in several experiments (Experiments 3, 6 and 8) we needed to present 
multiple exemplars of the same texture, and for this purpose required more than 10 s of audio. 
For each of the 1511 textures, we created 9-second-long synthetic exemplars using a standard 
texture synthesis method (8). We found that the synthesis procedure converged (average SNR 
of all statistic classes was 20 dB or higher) for 1285 textures and selected the background noises 
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from this set. We drew 3.25 s excerpts from these 9-second-long synthesized textures (see 
Foreground-background pairings below) to use in Experiments 1, 2, 4, 5, 7 and 10.  
 
Stationarity measure:  To quantify the stationarity of a sound for the analysis of Experiment 9, we 
computed a measure based on the standard deviation of texture statistics (8) across successive 
time windows (5–7, 9), based on the idea that stationary sounds have temporally stable statistical 
properties. Specifically, we first computed a set of texture statistics (subband mean, envelope 
mean, envelope standard deviation, envelope skew, envelope correlations, modulation band 
power, C1 modulation correlations, and C2 modulation correlations) for successive segments of 
a signal (using excerpt lengths of 0.125, 0.25, 0.5, 1, and 2 s). To put each of the statistics on the 
same scale, we then z-scored each statistic using the mean and standard deviation of each 
statistic calculated across the set of screened full-length AudioSet sounds (see “Background 
sounds” section above). To quantify how much each statistic changed across excerpts, we 
computed the standard deviation of each z-scored statistic across all excerpts of the same length. 
Because some statistics are intrinsically more variable than others, we computed a normalized 
measure of the variability of each statistic by dividing the computed standard deviations 
(separately for each statistic and excerpt length) by the average (i.e., expected) standard 
deviation across all the screened AudioSet sounds. To obtain a single measure of stationarity, we 
then averaged these normalized standard deviations across statistics and excerpt lengths. 
However, because some statistics classes contain more statistics than others, we first averaged 
the normalized standard deviations across all statistics within each class before averaging across 
the statistics classes (effectively weighting each statistics class equally) and excerpt lengths. The 
result is a normalized measure of statistic variability where smaller (i.e., more negative) values 
indicate greater stationarity.  
 
Foreground-background pairings: In our initial experiments, experimental stimuli were generated 
from pairs of foregrounds and backgrounds selected to have similar long-term spectra to avoid 
large differences in foreground detectability across different foreground-background pairings. To 
select these pairs, we first created cochleagrams for each possible foreground and background 
sound. Cochleagrams were generated from the envelopes of a set of 38 bandpass filters (plus 
one low-pass and one high-pass channel) at a sampling rate of 500 Hz with tuning modeled on 
the human ear (8). Next, for each 2-second-long foreground sound, we randomly selected 100 
0.5s cochleagram segments (from the entire 2s sound) and computed the Mahalanobis distance 
(𝐷) between each foreground cochleagram segment and every background cochleagram. 
Specifically, we calculated the Mahalanobis distance for each point in time of the foreground 
cochleagram using the background cochleagram as the reference distribution, then averaged 
these distances over time: 𝐷 =	 !

"
∑ %(𝐹# −𝑚)"𝑆$!(𝐹# −𝑚)"
#%! , where 𝐹# is one column of the 

foreground cochleagram at time 𝑡, 𝑚 is the excitation pattern (time-averaged cochleagram) of the 
background, and 𝑆 is the covariance of the background cochleagram. The Mahalanobis distance 
quantifies the difference between the foreground and background excitation patterns while 
accounting for the covariance structure among cochlear channels measured from the 
background. For every possible foreground-background pair, we stored the foreground segment 
with minimum Mahalanobis distance then used the Hungarian algorithm (10)) to pair each of the 
167 foregrounds with a background sound such that the Mahalanobis distance across the pairings 
was minimized. Finally, we manually listened to each of the selected background textures and 
selected 3.25 s excerpts that subjectively sounded fairly uniform. We then selected 7 of these 
pairings to use as practice trials, leaving the remaining 160 foreground-background pairings to be 
used as experimental stimuli. Table S2 lists each of the foreground-background pairings; the 
sound waveforms for each foreground and background are provided in the data and code 
repository for this paper. 
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Experimental procedure for online participants 
The condition-rich design of our experiments (e.g., 20 experimental conditions in Experiment 1), 
resulted in obtaining relatively few trials per condition per subject. To obtain the large sample 
sizes necessary to attain reliable results, we conducted our experiments (with the exception of 
Experiment 3) online using the Amazon Mechanical Turk and Prolific crowdsourcing platforms. 
Experiments 1 and 4 were conducted in 2021-2022 on Amazon Mechanical Turk. Experiments 2 
and 5-10 were conducted in 2023-2024 on Prolific. Across multiple studies from our laboratory, 
we have found that online data can be of comparable quality to data collected in the lab provided 
a few modest steps are taken to standardize sound presentation, encourage compliance and 
promote task engagement (7, 11–15).  
 
All participants provided informed consent and the Massachusetts Institute of Technology 
Committee on the Use of Humans as Experimental Subjects (COUHES) approved all 
experiments. Amazon Mechanical Turk participants were required to be in the United States, to 
have a HIT approval rate of greater than 95%, and to have had more than 100 HITs approved. 
Prolific participants were required to be in Canada, the United Kingdom, or the United States, to 
have an approval rate of greater than 95%, and to be fluent in English.  
 
Participants were asked to perform the experiment in a quiet location and minimize external 
sounds as much as possible. Next, participants were instructed to set the computer volume to a 
comfortable level while listening to a calibration noise signal set to the maximum sound level 
presented during the main experimental task. Each experiment then began with a “headphone 
check” task to ensure participants were wearing headphones (16). Ensuring headphone use 
provides more standardized sound presentation across participants and helps to improve overall 
listening conditions by reducing external background noise. Following the headphone check task, 
each participant performed a set of practice trials for which feedback was provided after each 
response. The practice trials helped to ensure participants understood the task instructions and 
could perform the task correctly. In the main experiment, we incentivized good performance and 
task engagement by providing feedback after each trial and rewarding participants with a small 
bonus payment for each correct trial (17).  
 
Exclusion criteria 
During analysis, we screened out participants who were not able to perform the task by excluding 
those whose performance, averaged across conditions, was below a level that we expected every 
attentive and normal-hearing participant to achieve, provided they understood the instructions. 
Because the purpose of the experiments was to assess differences between conditions, rather 
than absolute performance, this exclusion procedure is neutral with respect to the hypotheses. 
For Experiments 1 and 4, participants were excluded if average detection performance (d’) was 
below 0.6. For Experiment 2, participants were excluded if average recognition performance was 
below 40% correct. For Experiment 3, we planned to exclude participants whose average 
localization error was above 30° (as it turned out, all had error levels below this criterion). For 
Experiments 5-10, participants were excluded if average detection performance (d’) was below 
0.8. This exclusion criterion excluded between 0% and 17% of participants, depending on the 
experiment. 
 
Experiment 1 (Detection) 
Stimuli: For each of the 160 foreground-background pairs, we constructed stimuli in which the 
foreground appeared at each of 10 possible temporal positions (foreground onset times of 250, 
500, 750, 1000, 1250, 1500, 1750, 2000, 2250, and 2500 ms) and each of 2 possible SNRs (-2 
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and -6 dB). This yielded a total of 3200 stimuli containing a foreground sound. We also created 
an additional 160 stimuli that consisted of the background noise only.  
 
Procedure: The experiment consisted of 320 trials. Half of these trials included the 160 
background noises without a foreground sound. The other half of these trials included each of the 
160 foreground-background pairings randomly assigned to one of the 20 experimental conditions 
(10 foreground positions crossed with 2 SNRs). On each trial, participants judged whether the 
stimulus contained one or two sound sources.  
 
Participants: A total of 200 participants were recruited through Amazon Mechanical Turk. Of 
these, 88 participants were excluded either because they failed the headphone check task, had 
self-reported hearing loss, withdrew from the experiment, or completed less than 90% of 
experimental trials. Finally, 19 participants were excluded due to low task performance (average 
d’ < 0.6). This resulted in a total of 93 participants included in data analyses. Of these participants, 
41 identified as female, 45 as male, and 1 as nonbinary (6 participants did not provide a 
response). The average age of participants was 37.3 (s.d. = 11.0). All participants were unique to 
this experiment. 
 
Sample size: To determine the sample size necessary to yield stable results, we ran a pilot version 
of the experiment with 92 participants and calculated the split-half reliability of the average 
foreground detection performance as we varied the number of participants included in the 
analysis. The pilot experiment was identical to the actual experiment apart from having 3s 
background noises (rather than 3.25s as in the actual experiment). Split-half reliability was 
computed by randomly splitting the sample in half, measuring the Pearson correlation between 
average performance results in each half, and then applying the Spearman-Brown correction. 
Because we were primarily interested in the effect of foreground onset time, we measured the 
split-half reliability separately for each SNR condition then averaged the split-half reliabilities 
across SNR conditions. Additionally, since the estimated reliability depends on the random split 
of participants, we repeated this procedure for 10,000 random splits. Because the resulting 
distribution of reliabilities was skewed, we applied the Fisher z-transform to make the distribution 
approximately normal. We then took the mean of the Fisher z-transformed distribution (i.e., mean 
across all random splits) and applied the inverse Fisher z-transformation to obtain our final 
measure of split-half reliability. We performed this procedure as we varied the number of included 
participants and found that split-half reliability increased from 0.40 with 10 participants to 0.89 
with 92 participants. We fit a curve to these reliabilities and extrapolated that a sample size of 94 
participants would be needed to achieve a split-half reliability of at least 0.9. We targeted this 
sample size, but due to the nature of the screening procedure and the need to collect online data 
in batches of participants, the actual sample was slightly below this target.  
 
Statistics and data analysis: We calculated a hit rate for each of the 20 experimental conditions 
(10 foreground onset times crossed with 2 SNRs) and a single false alarm rate using the 
background-only trials. Detection performance was quantified as d’: 𝑑& = Φ$!(Hit	Rate) −
Φ$!(False	Alarm	Rate) where Φ$! is the inverse CDF of the standard normal distribution. We 
performed a repeated measures analysis of variance (ANOVA) to analyze the effect of foreground 
onset time and SNR on foreground detection performance. We assumed data was normally 
distributed and evaluated this by eye. Mauchly’s test indicated that the assumption of sphericity 
had not been violated. For each main effect and interaction of interest, we reported F-statistics, 
p-values and 𝜂'()#*(+, . To quantitatively estimate the timescale of improvement with exposure to 
the background, we fit an elbow function to the results averaged over SNRs. The elbow function 
was a piecewise linear function consisting of a rise and plateau:  𝑓(𝑡) = =𝑎𝑡 + 𝑏, 𝑡 < 𝑐

𝑎𝑐 + 𝑏, 𝑡 ≥ 𝑐, where 𝑎 
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is the slope of the rise, 𝑏 is the intercept of the rise, 𝑐 is the transition from rise to plateau (i.e., the 
“elbow point”) and 𝑡 is time. We fit the elbow function by minimizing the absolute error between 
the estimated elbow function and the data. To obtain a confidence interval around the location of 
the elbow point, we bootstrapped over participants 10,000 times. 
 
Experiment 2 (Recognition) 
Stimuli: We used the same stimuli as in Experiment 1, including only those that contained a 
foreground sound. 
 
Procedure: Each participant heard one trial for each of the 160 foreground-background pairings 
randomly assigned to one of the 20 experimental conditions (10 foreground positions crossed 
with 2 SNRs). Thus, the experiment consisted of 160 trials. On each trial, participants were asked 
to identify the foreground by selecting a text label from five options. One option was the correct 
label of the foreground, and the remaining options were chosen randomly from the labels of the 
other foreground sounds in the stimulus set. 
 
Participants: A total of 409 participants were recruited through Prolific. Of these, 133 participants 
were excluded either because they failed the headphone check task, had self-reported hearing 
loss, withdrew from the experiment, or completed less than 90% of experimental trials. Finally, 15 
participants were excluded due to low task performance (average recognition performance < 40% 
correct). This resulted in a total of 261 participants included in data analyses. Of these 
participants, 123 identified as female, 134 as male, and 2 as nonbinary (2 participants did not 
provide a response). The average age of participants was 38.8 (s.d. = 12.1). All participants were 
unique to this experiment. 
 
Sample size: To determine the sample size necessary to yield stable results, we ran a pilot version 
of the experiment with 103 participants and calculated the split-half reliability of the average 
foreground recognition performance as we varied the number of participants included in the 
analysis. The pilot experiment was identical to the actual experiment apart from having 3s 
background noises (rather than 3.25s as in the actual experiment). The procedure for determining 
sample size was identical to that of Experiment 1. We found that split-half reliability increased 
from 0.07 with 10 participants to 0.53 with 102 participants. We fit a curve to these reliabilities and 
extrapolated that a sample size of 252 participants would be needed to achieve a split-half 
reliability of at least 0.9. We targeted this sample size, but due to the nature of the screening 
procedure, the actual sample was slightly above the target sample size. 
 
Statistics and data analysis: We performed a repeated measures ANOVA to analyze the effect of 
foreground onset time and SNR on foreground recognition performance (quantified as precent 
correct). We assumed data was normally distributed and evaluated this by eye. Mauchly’s test 
indicated that the assumption of sphericity had not been violated. For each main effect and 
interaction of interest, we reported F-statistics, p-values and 𝜂'()#*(+, . The procedure for fitting the 
elbow function was identical to that of Experiment 1. 
 
Experiment 3 (Localization) 
Stimuli: For each of the 160 background noises, we synthesized five unique 7-second-long 
exemplars and cut each exemplar into two 3.25-second-long sounds to yield a total of 10 unique 
waveforms for each background noise. We chose to synthesize 7-s exemplars rather than the 9-
s exemplars used to generate stimuli in Experiments 1 and 2 because it reduced the time for 
synthesis while still enabling two excerpts to be cut from each exemplar. On a given trial, these 
10 noise exemplars were played from 10 randomly chosen speakers to create diffuse background 
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noise. Each background noise was played at a level 52 dBA such that the total level of background 
noise was 62 dBA. The foreground sounds were identical to the 0.5s clips used in previous 
experiments and were played at a random speaker location (distinct from the 10 locations of the 
background noise) at a level of 50 dBA (i.e., at an SNR of -12 dB).  
 
Procedure: Each participant heard one trial for each of the 160 foreground-background pairings, 
randomly assigned to one of the five experimental conditions (foreground onset times of 250, 750, 
1250, 1750, and 2250 ms). Participants were instructed to fixate on the speaker directly in front 
of them, with their head still, for the duration of sound presentation. At the end of the sound 
presentation, participants could move their head to note the label of the speaker from which they 
judged the foreground sound to have played from. This label was entered using a keyboard. 
Participants were then instructed to reorient to the speaker directly in front of them before 
beginning the next trial. Trials were presented in two blocks of 80 trials with a short break between 
the blocks.  
 
Participants: A total of 22 participants were recruited from the area around Cambridge, MA. Of 
these participants, 7 identified as female and 15 as male. The average age of participants was 
26.4 (s.d. = 3.6). All participants were unique to this experiment. All participants provided informed 
consent and the Massachusetts Institute of Technology Committee on the Use of Humans as 
Experimental Subjects (COUHES) approved this experiment. No participants were excluded due 
to low task performance (average localization error > 30°). 
 
Sample size: To determine an appropriate sample size, we performed a power analysis using 
G*Power (18). We sought to be 90% likely to detect an effect as big as that observed in 
Experiment 1, at a p<0.01 significance level using a repeated measures ANOVA with 5 repeated 
measurements (foreground onset times), assuming sphericity and a correlation among repeated 
measures of 0.2 (estimated from Experiment 1). This yielded a target sample size of 17 
participants. We ran somewhat more than this to be conservative. 
 
Statistics and data analysis: We performed a repeated measures ANOVA to analyze the effect of 
foreground onset time on foreground localization performance. Localization performance was 
quantified as the absolute localization error in azimuth. We assumed data was normally 
distributed and evaluated this by eye. Mauchly’s test indicated that the assumption of sphericity 
had not been violated. For the main effect of interest, we reported F-statistics, p-values and 
𝜂'()#*(+, . The procedure for fitting the elbow function was identical to that of Experiment 1. 
 
Experiment 4 (Cued Detection) 
Stimuli: The stimuli were identical to those of Experiment 1 but with lower SNRs (-5 and -8 dB). 
The cue sound was always the same waveform as the foreground sound that could appear within 
the background, the only difference being that the foreground amplitude was scaled to achieve 
the desired SNR for that trial. The cue was presented at the same level as the background, and 
thus differed in level from the foreground. 
 
Procedure: The experiment consisted of 320 trials. On each trial, participants first heard a 
foreground sound in isolation (the “cued sound”), followed by continuous background noise. Half 
of the trials contained the cued foreground sound superimposed somewhere on the background 
noise, randomly assigned to one of the 20 experimental conditions (10 foreground positions 
crossed with 2 SNRs). Participants judged whether the stimulus contained the cued sound. 
 
Participants: A total of 240 participants were recruited through Amazon Mechanical Turk. Of 
these, 81 participants were excluded either because they failed the headphone check task, had 
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self-reported hearing loss, withdrew from the experiment, or completed less than 90% of 
experimental trials. Finally, 23 participants were excluded due to low task performance (average 
d’ < 0.6). This resulted in a total of 136 participants included in data analyses. Of these 
participants, 61 identified as female, 68 as male, and 1 as nonbinary (6 participants did not provide 
a response). The average age of participants was 38.5 (s.d. = 11.3). All participants were unique 
to this experiment.  
 
Sample size: To determine the sample size necessary to yield stable results, we ran a pilot version 
of the experiment with 95 participants and calculated the split-half reliability of the average 
foreground detection performance as we varied the number of participants included in the 
analysis. The pilot experiment was identical to the actual experiment apart from having 3s 
background noises (rather than 3.25s as in the actual experiment) and SNRs of -2 and -6 dB 
(rather than -5 and -8 dB in the actual experiment). The procedure for determining sample size 
was identical to that of Experiment 1. We found that split-half reliability increased from 0.37 with 
10 participants to 0.88 with 94 participants. We fit a curve to these reliabilities and extrapolated 
that a sample size of 105 participants would be needed to achieve a split-half reliability of at least 
0.9. We targeted this sample size, but due to the nature of the screening procedure and the need 
to collect online data in batches of participants, the actual sample was slightly above the target 
sample size. 
 
Statistics and data analysis: We calculated a hit rate for each of the 20 experimental conditions 
(10 foreground onset times crossed with 2 SNRs) and a single false alarm rate using the 
background-only trials, then quantified detection performance as d’. We performed a repeated 
measures ANOVA to analyze the effect of foreground onset time and SNR on foreground 
detection performance. We assumed data was normally distributed and evaluated this by eye. 
Mauchly’s test indicated that the assumption of sphericity had not been violated. For each main 
effect and interaction of interest, we reported F-statistics, p-values and 𝜂'()#*(+, . The procedure 
for fitting the elbow function was identical to that of Experiment 1. 
 
Observer model 
Overview: First, an input sound waveform is passed through a standard model of auditory 
processing consisting of two stages: a peripheral stage modeled after the cochlea, yielding a 
“cochleagram”, followed by a set of spectrotemporal filters (inspired by the auditory cortex) that 
operate on the cochleagram, yielding time-varying activations of different spectrotemporal 
features. Next, a probability distribution is estimated from the filter activations over a past time 
window. This distribution is then used to evaluate the surprisal of samples in a present time 
window. The process is then stepped forward in time and repeated, resulting in a set of surprisal 
values for each time point of the stimulus. Finally, this surprisal curve is compared to a time-
varying decision threshold to decide whether a foreground sound is present. 
 
Cochleagram: Cochleagrams were computed with a set of 40 filters (38 bandpass filters plus one 
low-pass and one high-pass filter). Filter cutoffs were evenly spaced on an ERB-scale (19) and 
thus mirrored the frequency resolution believed to characterize the human cochlea. Filters had 
transfer functions that were a half-cycle of a cosine function. The cochleagram resulted from the 
following sequence of steps (8). First, the filters were applied to the audio signal (at an audio 
sampling rate of 20000 Hz), yielding subbands. Second, subband envelopes were computed 
using the Hilbert transform. Third, the subband envelopes were passed through a compressive 
nonlinearity (by raising them to a power of 0.3). Fourth, the compressed envelopes were 
downsampled to a sampling rate of 2000 Hz.  
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Spectrotemporal filters: We selected spectrotemporal filters that were principal components of a 
large set of natural textures, as these captured the variance within natural background sounds. 
We first extracted 100 random 50-ms-long segments from the cochleagram representation of 
1000 sound textures not used in our experiments, and then ran principal component analysis on 
these cochleagram segments. We found that 541 principal components were sufficient to explain 
95% of the variance in the random segments and subsequently used these components as the 
spectrotemporal filters for our model. The filter activations were the dot product of the filter with 
the stimulus cochleagram.  
 
Surprisal: Surprisal is defined as the negative log-probability of an event. Because we model filter 
activations using a continuous, normal distribution, we calculate surprisal using the negative log-
density. For a univariate normal random variable 𝑋	~	𝒩(𝜇, 𝜎,), surprisal can be written as:  
𝑆(𝑥) = − lnL𝑝(𝑥)N = !

,
O-$.

/
P
,
+ ln(𝜎) + lnL√2𝜋N	 = !

,
(𝐷), + ln(𝜎) + lnL√2𝜋N,  

where 𝐷 is the Mahalanobis distance. Thus, any event that occurs with low likelihood will have 
high surprisal. On the grounds that foreground sounds should be unlikely under a distribution of 
the background, our model detects the presence of a foreground sound by tracking when the 
surprisal exceeds some criterion threshold. However, because the surprisal scales with the 
natural logarithm of the standard deviation, any threshold used for this purpose must similarly 
scale with the standard deviation of the background. In practice, rather than scale the decision 
threshold for each stimulus, we instead scale the surprisal by subtracting off the standard 
deviation term then use a fixed decision threshold across all stimuli.  
 
Distribution fitting procedure: Due to the large number of spectrotemporal filters used, fitting a 
single high-dimensional joint distribution to the activations of all filters was intractable. Thus, we 
assumed activations across filters to be independent and fit separate univariate distributions to 
each filter’s activations. In particular, we assumed filter activations were univariate Gaussians. 
We estimated the mean and variance of the activations within a past window and used these 
values to calculate the surprisal in a present window (averaging the surprisal over each time point 
within the window). We repeated this procedure at a sequence of time points, stepping forward in 
increments of 10 ms. This yielded a surprisal curve (surprisal over time) for each spectrotemporal 
filter. We then averaged across filters to yield the final surprisal curve. The size of the past window 
over which distributional parameters are estimated is a model hyperparameter. We tested past 
window sizes of 500, 750, 1000, 1250, 1500, 1750, 2000, 2250 and 2500 ms and present window 
sizes of 100, 250 and 500 ms. We found the 1000 ms past window and 500 ms present window 
to give the best fit with human results, as measured by the correlation with human results. The 
latter value is intuitively sensible given the 500 ms foreground duration. Figure 3 shows results 
for these window lengths. 
 
Boundary handling: Boundaries pose a challenge for the estimation process in our model (and for 
the human perceptual system), for two reasons. First, at the onset of a stimulus, there is not yet 
enough stimulus history with which to estimate distribution parameters for the computation of 
surprisal (because there are not enough data points to reliably estimate parameters). Second, the 
filter activations contain boundary artifacts caused by the stages of filtering applied to the stimulus 
onset. We mitigated these issues by taking a weighted average of the estimated distributional 
parameters (𝜃U# at time 𝑡) and a prior (𝜋# at time 𝑡) whenever the available stimulus history is less 
than the past window size (𝑙 in samples) over which parameters are estimated. Because the 
model was fit to the activations of spectrotemporal filters derived from PCA, the prior on the mean 
was 0 and the prior on the variance was given by the variance of each principal component across 
the set of random texture segments from which the principal components were computed (see 
“Spectrotemporal filters” section above). The weight (𝑤# at time 𝑡) was linearly relaxed from full 
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weight on the prior at stimulus onset to full weight on the estimated parameters once the available 
stimulus history was equal to the size of the past window. Thus, the model parameters (𝜃# at time 
𝑡) were given by:  

𝜃# = 𝜃U#(1 − 𝑤#) + 𝜋#𝑤# 

where 𝑤# = Y1 −
0!
+
			if	𝑛# < 𝑙

0									otherwise
 and 𝑛# is the number of samples available at time 𝑡.  

 
Time-varying decision threshold: To determine a decision threshold, we ran the model on 100 
random 3.25s excerpts of the 160 textures used in our experiments (see “Simulation of 
Experiment 1” below). This yielded a total of 16,000 surprisal curves. Then, for each point in time, 
we took the mean and standard deviation across all surprisal curves to quantify the distribution of 
surprisal in the absence of a foreground sound. The main idea is that surprisal values greater 
than that expected by chance (i.e., falling in the tail of this distribution) should indicate the 
presence of a foreground sound. We thus took the mean plus some number of standard deviations 
as the decision threshold. The number of standard deviations was chosen via grid search (1000 
samples linearly spaced between 0.5 and 5) to best match the model’s false alarm rate to that of 
human participants in Experiment 1. This was done separately for each set of model 
hyperparameters (i.e., past and present window sizes).  
 
Decision rule: For each point in time, we evaluated whether the measured surprisal exceeded the 
decision threshold. The model decided a foreground sound was present if the surprisal exceeded 
the decision threshold for at least 50% of the time in any 500ms window.   
 
Simulation of Experiment 1 (Fig. 3B): 
Because the model could be run on arbitrarily many stimuli, we opted to show the model results 
in the limit of a very large amount of data. We simulated the experiment on a larger set of stimuli 
obtained by generating multiple texture exemplars for each of the background textures used in 
the human experiments. The stimuli were otherwise identical to those used in Experiment 1. To 
generate these stimuli, we synthesized 10 unique exemplars of each background noise texture 
then randomly took 10 different excerpts from each to yield a total of 100 unique excerpts of each 
background noise. We then ran the model on each of the 3,360 possible stimulus configurations 
(see “Stimuli” section in Experiment 1 above) for all 100 excerpts of a given background to yield 
model responses to a total of 336,000 stimuli. To provide a sense of the variability in model results 
for different subsets of stimuli, we computed model performance (quantified as d’) over 10,000 
subsets of the total 336,000 stimuli. Specifically, for each of the 20 experimental conditions, one 
stimulus was chosen randomly for each of the 160 foreground-background pairings and a model 
hit rate was computed from these 160 trials. Thus, a total of 3,200 (20 conditions x 160 pairings) 
trials were used to calculate the model hit rates for each experimental condition. To compute a 
model false-alarm rate, we randomly selected 20 background-only stimuli for each of the 160 
backgrounds, giving another 3,200 trials. Together, this yielded a total of 6,400 stimuli (with half 
containing a foreground) for which performance was evaluated at each bootstrapped sample. 
Final model performance was taken as the mean performance across the 10,000 bootstrapped 
samples. 
 
Experiment 5a (Short Interruptions in Background Noise) 
Stimuli: For each of the 160 foreground-background pairs, we constructed 4-second-long stimuli 
in which the middle 500 ms of background noise was replaced with either silence or white noise 
(12 dB higher in level relative to the background). The foreground sound appeared at each of 8 
possible temporal positions (foreground onset times of 250, 500, 750, 1000, 2500, 2750, 3000, 
and 3250 ms), at an SNR of -2 dB. This yielded a total of 2560 stimuli containing a foreground 
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sound. We also created an additional 320 stimuli that consisted of the background noise only with 
each of the two possible “interrupters” (silence or white noise).  
 
Procedure: The experiment consisted of 320 trials. Half of these trials presented the 160 
background noises without a foreground sound, randomly assigned to one of the two interrupter 
conditions. The other half of these trials included each of the 160 foreground-background pairings 
randomly assigned to one of the 16 experimental conditions (8 foreground positions crossed with 
2 interrupter types). Participants were instructed to ignore the interrupter and judge whether the 
stimulus contained one or two sound sources. 
 
Participants: A total of 105 participants were recruited through Prolific. Of these, 27 participants 
were excluded either because they failed the headphone check task, had self-reported hearing 
loss, withdrew from the experiment, or completed less than 90% of experimental trials. No 
participants were excluded due to low task performance (average d’ < 0.8). This resulted in a total 
of 78 participants included in data analyses. Of these participants, 45 identified as female, 32 as 
male, and 1 as nonbinary. The average age of participants was 38.3 (s.d. = 12.2). All participants 
were unique to this experiment. 
 
Sample size: To determine the sample size necessary to yield stable results, we ran a pilot version 
of the experiment with 57 participants and calculated the split-half reliability of the average 
foreground detection performance for foreground onset times prior to the interrupter as we varied 
the number of participants included in the analysis. The pilot experiment was identical to the actual 
experiment apart from being run on Mechanical Turk rather than Prolific. At the time the pilot 
experiment was run, data quality on Mechanical Turk had declined due to an uptick in fraudulent 
workers, and so we opted to run the actual experiment on Prolific but still considered the 
Mechanical Turk data to be reasonable as a pilot. The procedure for determining sample size was 
identical to that of Experiment 1. We found that split-half reliability increased from 0.40 with 10 
participants to 0.84 with 56 participants. We fit a curve to these reliabilities and extrapolated that 
a sample size of 78 participants would be needed to achieve a split-half reliability of at least 0.9. 
 
Statistics and data analysis: We calculated a hit rate for each of the 16 experimental conditions 
(8 foreground onset times crossed with 2 interrupter types) and false alarm rates using the 
background-only trials for each interrupter type, then quantified detection performance as d’. We 
performed a repeated measures ANOVA to analyze the effect of interrupter type and foreground 
position (relative to the interrupter) on foreground detection performance. We assumed data was 
normally distributed and evaluated this by eye. Mauchly’s test indicated that the assumption of 
sphericity had not been violated. For each main effect and interaction of interest, we reported F-
statistics, p-values and 𝜂'()#*(+, .  
 
Experiment 5b (Longer Interruptions in Background Noise) 
Stimuli: The stimuli were created in a manner similar to that of Experiment 5a. Previous work 
using EEG to measure adaptation in auditory-evoked cortical potentials in humans found that the 
recovery from adaptation (in silence) followed an exponential function with a time-constant of 
around 1300 ms (20). Thus, it seemed possible that the timescale of recovery from adaption 
exceeded the duration of the 500 ms interrupter used in Experiment 5a, causing the benefit of 
background exposure to persist across the interruption. Thus, in Experiment 5b, we increased the 
duration of the interrupter to 1500 ms. For each of the 160 foreground-background pairs, we 
constructed 5-second-long stimuli in which the middle 1500 ms of background noise was replaced 
with either silence or white noise (12 dB higher in level relative to the background). Because it 
seemed plausible that gaps between the noise and the background texture might make the noise 
more salient, making for a stronger test, the first and last 125 ms of the white noise interrupter 
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was replaced with silence. The foreground sound appeared at each of 8 possible temporal 
positions (foreground onset times of 250, 500, 750, 1000, 3500, 3750, 4000, and 4250 ms), at an 
SNR of -2 dB. This yielded a total of 2560 stimuli containing a foreground sound. We also created 
an additional 320 stimuli that consisted of the background noise only with each of the two possible 
“interrupters” (silence or white noise).  
 
Procedure: The procedure was identical to that of Experiment 5a. 
 
Participants: A total of 121 participants were recruited through Prolific. Of these, 49 participants 
were excluded either because they failed the headphone check task, had self-reported hearing 
loss, withdrew from the experiment, or completed less than 90% of experimental trials. Finally, 1 
participant was excluded due to low task performance (average d’ < 0.8). This resulted in a total 
of 71 participants included in data analyses. Of these participants, 31 identified as female, 39 as 
male, and 1 as nonbinary. The average age of participants was 34.3 (s.d. = 10.2). All participants 
were unique to this experiment. 
 
Sample size: Because we planned to compare the results of Experiment 5b to that of Experiment 
5a, we targeted the size of the sample collected in Experiment 5a (n=78), but due to the nature 
of the screening procedure, the actual sample was slightly below the target sample size. 
 
Statistics and data analysis: Like Experiment 5a, we calculated a hit rate for each of the 16 
experimental conditions (8 foreground onset times crossed with 2 interrupter types) and false 
alarm rates using the background-only trials for each interrupter type, then quantified detection 
performance as d’. We performed a repeated measures ANOVA to analyze the effect of 
interrupter type and foreground position (relative to the interrupter) on foreground detection 
performance. We assumed data was normally distributed and evaluated this by eye. Mauchly's 
test indicated that the assumption of sphericity had not been violated. To compare foreground 
detection performance following different interrupter durations (between Experiments 5a and 5b), 
we also performed a mixed model ANOVA with interrupter type as a within-subject factor and 
interrupter duration as a between-subject factor, including only onset times after the interruption 
in each experiment. For each main effect and interaction of interest, we reported F-statistics, p-
values and 𝜂'()#*(+, .  
 
Experiment 6 (Repeating Background Noises on Every Trial) 
Stimuli: For each of the 160 background noises, we synthesized 20 7-second-long exemplars and 
cut each exemplar into two 3.25-second-long sounds to yield a total of 40 unique waveforms for 
each background noise. For each of these 6,400 unique background noise waveforms, each of 
the 160 foregrounds could appear at each of 10 possible temporal positions (foreground onset 
times of 250, 500, 750, 1000, 1250, 1500, 1750, 2000, 2250, and 2500 ms) at an SNR of -8 dB, 
yielding a total of 10,240,000 possible stimuli containing a foreground sound and 6,400 possible 
stimuli consisting of background noise only. Rather than create all possible experimental stimuli, 
we pre-generated enough stimulus sets (see Procedure below) such that each participant in our 
sample would receive a unique set, generating only the stimuli needed for these sets.   
 
Procedure: For each subject, we randomly selected 8 of the 160 possible backgrounds to repeat 
on every trial in blocks of 40 trials. On half of these trials, the background noise appeared in 
isolation. The other half of these trials also contained a randomly selected foreground randomly 
assigned to one of the foreground onset time conditions such that each foreground onset time 
condition occurred twice during a block. Each background noise was a unique exemplar, and 
foregrounds were never repeated. The order of the blocks was chosen at random, as was the 
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order of stimuli within a block. On each trial, participants judged whether the stimulus contained 
one or two sound sources and were not explicitly informed that backgrounds would repeat. 
 
Participants: A total of 289 participants were recruited through Prolific. Of these, 93 participants 
were excluded either because they failed the headphone check task, had self-reported hearing 
loss, withdrew from the experiment, or completed less than 90% of experimental trials. No 
participants were excluded due to low task performance (average d’ < 0.8). This resulted in a total 
of 196 participants included in data analyses. Of these participants, 90 identified as female, 100 
as male, and 6 as nonbinary. The average age of participants was 36.5 (s.d. = 11.9). All 
participants were unique to this experiment. 
 
Sample size: We targeted the same sample size as in Experiment 7 (which is presented later in 
the text, but which was in practice run first), but due to the nature of the screening procedure, the 
actual sample was slightly below the target sample size. 
 
Statistics and data analysis: We calculated a hit rate for each of the 10 experimental conditions 
(10 foreground onset times) and a single false alarm rate using the background-only trials, then 
quantified detection performance as d’. We performed a repeated measures ANOVA to analyze 
the effect of foreground onset time on foreground detection performance. We assumed data was 
normally distributed and evaluated this by eye. Mauchly's test indicated that the assumption of 
sphericity had not been violated. For each main effect and interaction of interest, we reported F-
statistics, p-values and 𝜂'()#*(+, .  
 
Experiment 7 (Non-repeated Background Noises with Random Foreground Pairings) 
Stimuli: For each of the 160 background noises from Experiment 1, we constructed stimuli in 
which each of the 160 foregrounds appeared at each of 10 possible temporal positions 
(foreground onset times of 250, 500, 750, 1000, 1250, 1500, 1750, 2000, 2250, and 2500 ms) at 
an SNR of -8 dB. This yielded a total of 256,000 stimuli containing a foreground sound. We also 
created an additional 160 stimuli that consisted of the background noise only.  
 
Procedure: The experiment consisted of 320 trials. Half of these trials included the 160 
background noises without a foreground sound. The other half of these trials contained a 
randomly selected foreground randomly assigned to one of the foreground onset time conditions. 
On each trial, participants judged whether the stimulus contained one or two sound sources. 
 
Participants: A total of 361 participants were recruited through Prolific. Of these, 158 participants 
were excluded either because they failed the headphone check task, had self-reported hearing 
loss, withdrew from the experiment, or completed less than 90% of experimental trials. Finally, 2 
participants were excluded due to low task performance (average d’ < 0.8). This resulted in a total 
of 201 participants included in data analyses. Of these participants, 82 identified as female, 112 
as male, and 5 as nonbinary (2 participants did not provide a response). The average age of 
participants was 37.1 (s.d. = 12.0). All participants were unique to this experiment. 
 
Sample size: Because we expected that the randomized foreground-background pairings used in 
this experiment would increase the variability of the results, we targeted double the sample size 
of Experiment 1 (n=93) to help ensure sufficient power. Due to the nature of the screening 
procedure, the actual sample was slightly above the target sample size. 
 
Statistics and data analysis: We calculated a hit rate for each of the 10 experimental conditions 
(10 foreground onset times) and a single false alarm rate using the background-only trials, then 
quantified detection performance as d’. We performed a repeated measures ANOVA to analyze 
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the effect of foreground onset time on foreground detection performance. We assumed data was 
normally distributed and evaluated this by eye. Mauchly's test indicated that the assumption of 
sphericity had not been violated. To compare foreground detection performance for repeated 
(Experiment 6) versus non-repeated (Experiment 7) backgrounds, we performed a mixed model 
ANOVA with foreground onset time as a within-subject factor and background type as a between-
subject factor. To compare foreground detection performance for controlled (Experiment 1) versus 
non-controlled (Experiment 7) foreground-background pairings, we performed a mixed model 
ANOVA with foreground onset time as a within-subject factor and foreground-background pairing 
type as a between-subject factor. For each main effect and interaction of interest, we reported F-
statistics, p-values and 𝜂'()#*(+, . To estimate the overall magnitude of improvement in detection 
performance with foreground onset time, we fit an elbow function to the results and quantified the 
delay benefit as the difference between the values of the elbow function at the first (250 ms) and 
last (2500 ms) foreground onset times. We performed permutation tests to test for differences in 
the delay benefit across experiments (Experiment 6 versus Experiment 7 or Experiment 1 versus 
Experiment 7) by randomly shuffling participants across experiments and estimating the 
difference between the magnitude of improvement in each set of shuffled data. We repeated this 
procedure 10,000 times to build up a distribution of the test statistic (difference in delay benefit) 
under the null hypothesis (there is no difference across experiments) and calculated the p-value 
(two-tailed) as the proportion of times that absolute values from the null distribution were at least 
as large as the actual absolute difference in delay benefit between experiments. We performed 
an analogous permutation test to test for a difference in the timescale of improvement (quantified 
as the location of the elbow point) between Experiments 1 and 7.  
 
To ensure that differences in the delay benefit were not driven by Experiment 6 having more 
participants with near-ceiling performance compared to Experiment 7, we ran a control analysis 
in which we selected groups of participants from each experiment to have similar asymptotic 
performance. To avoid errors of non-independence, we used data from foreground onset times 
of 1500, 2000, and 2500 ms to select the participant groups, and then measured the delay benefit 
using the data from the remaining foreground onset times for these participants. In practice, we 
found that naively matching asymptotic performance for the “selection” conditions (1500, 2000, 
and 2500 ms) did not result in fully matched performance for the held-out conditions (1250, 1750, 
and 2250 ms), presumably because the group selection criterion (i.e., the difference in 
performance between groups for the 1500, 2000, and 2500 ms conditions) had some contribution 
from noise, which left a residual difference in performance between groups in the held-out 
conditions. To minimize this difference in performance, we imposed a bias during the matching 
procedure and selected participant groups whose difference in performance in the selection 
conditions was as close as possible to the bias value. This bias value was determined by selecting 
the value which minimized the performance difference between groups via three-fold cross-
validation across the three foreground onset times used as the selection conditions. In this way 
we obtained participant groups whose performance was approximately matched in independent 
data from the regime in which performance was asymptotic. 
 
Experiment 8 (Repeating Background Noises on Alternate Trials) 
Stimuli: The stimuli were identical to those of Experiment 6 but were sampled differently over the 
course of the experiment due to the constraints of the design (see Procedure below). 
 
Procedure: For each subject, we randomly selected 8 of the 160 possible backgrounds to repeat 
on every other trial in blocks of 40 trials. On half of these trials, the background noise appeared 
in isolation. The other half of these trials contained a randomly selected foreground randomly 
assigned to one of the foreground onset time conditions such that each foreground onset time 
condition occurred once. For the remaining trials, we randomly selected 80 backgrounds to serve 
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as “non-repeating” trials. Each of these backgrounds appeared twice: once in isolation and once 
with a randomly selected foreground randomly assigned to one of the foreground onset time 
conditions. These non-repeating background trials were randomly ordered subject to the 
constraint that each foreground onset time condition (for the non-repeating backgrounds) 
occurred once during a block. Each background noise was a unique exemplar, and foregrounds 
were never repeated. The order of the blocks was chosen at random. On each trial, participants 
judged whether the stimulus contained one or two sound sources and were not explicitly informed 
that backgrounds would repeat. 
 
Participants: A total of 528 participants were recruited through Prolific. Of these, 153 participants 
were excluded either because they failed the headphone check task, had self-reported hearing 
loss, withdrew from the experiment, completed less than 90% of experimental trials, or did not 
complete all critical trials at the start and end of each block. Finally, 7 participants were excluded 
due to low task performance (average d’ < 0.8). This resulted in a total of 368 participants included 
in data analyses. Of these participants, 181 identified as female, 178 as male, 5 as nonbinary (4 
participants did not provide a response). The average age of participants was 38.3 (s.d.=12.7). 
All participants were unique to this experiment. 
 
Sample size: We targeted the same sample size as in Experiment 6 (n=196) but multiplied it by 
two to account for the fact that there were half as many trials per condition (20 total conditions: 
10 foreground onset times crossed with background type: repeated or non-repeated) in this 
experiment. Due to the nature of the screening procedure, the actual sample was slightly below 
the target sample size.  
 
Statistics and data analysis: We calculated a hit rate for each of the 20 experimental conditions 
(10 foreground onset times crossed with 2 background types) and false alarm rates using the 
background-only trials for each background type (repeated or non-repeated), then quantified 
detection performance as d’. We performed a repeated measures ANOVA to analyze the effects 
of foreground onset time and background repetition on foreground detection performance. We 
assumed data was normally distributed and evaluated this by eye. Mauchly's test indicated that 
the assumption of sphericity had not been violated. For each main effect and interaction of 
interest, we reported F-statistics, p-values and 𝜂'()#*(+, . To test for a difference in the delay benefit 
between background types (repeated versus non-repeated), we performed a permutation test 
using the same procedure described above in Experiment 7. The control analysis matching 
asymptotic performance was also performed using the same procedure described above for 
Experiment 7. However, we note that performing this analysis for Experiment 8 necessitated using 
distinct but partially overlapping sets of participants for the repeated and non-repeated conditions, 
because the same participants completed both conditions in the original experiment. 
 
Experiment 9 (Stationary Noise) 
Stimuli: To create stationary noise backgrounds, we replaced each of the 160 texture 
backgrounds with spectrally matched noise. The spectrally matched noise was generated by 
setting the Fourier amplitudes of a noise signal equal to the Fourier amplitudes of the 
corresponding sound texture, randomizing the phases, and then performing the inverse Fourier 
transform. For each of the 160 foreground-background pairs, we constructed stimuli in which the 
foreground appeared at each of 10 possible temporal positions (foreground onset times of 250, 
500, 750, 1000, 1250, 1500, 1750, 2000, 2250, and 2500 ms) and each of 2 possible SNRs (-6 
and -10 dB). This yielded a total of 3200 stimuli containing a foreground sound. We also created 
an additional 160 stimuli that consisted of the stationary background noise only. 
 
Procedure: The procedure was identical to that of Experiment 1. 
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Participants: A total of 294 participants were recruited through Prolific. Of these, 86 participants 
were excluded either because they failed the headphone check task, had self-reported hearing 
loss, withdrew from the experiment, or completed less than 90% of experimental trials. Finally, 3 
participants were excluded due to low task performance (average d’ < 0.8). This resulted in a total 
of 205 participants included in data analyses. Of these participants, 84 identified as female, 119 
as male, and 2 as nonbinary. The average age of participants was 37.6 (s.d. = 12.3). All 
participants were unique to this experiment. 
 
Sample size: We did not have pilot data for this experiment. Thus, we targeted double the sample 
size of Experiment 1 because of the possibility that the effect of foreground onset time might be 
smaller. Due to the nature of the screening procedure, we were slightly above the target sample 
size. 
 
Statistics and data analysis: We calculated a hit rate for each of the 20 experimental conditions 
(10 foreground onset times crossed with 2 SNRs) and a single false alarm rate using the 
background-only trials, then quantified detection performance as d’. We performed a repeated 
measures ANOVA to analyze the effect of foreground onset time and SNR on foreground 
detection performance. We assumed data was normally distributed and evaluated this by eye. 
Mauchly's test indicated that the assumption of sphericity had not been violated. For each main 
effect and interaction of interest, we reported F-statistics, p-values and 𝜂'()#*(+, . To analyze the 
effect of stationarity on the pattern of foreground detection performance, we compared the results 
of Experiment 9 (more stationary spectrally matched noise backgrounds) to the pooled results of 
Experiments 1 and 7 (less stationary texture backgrounds; data from Experiments 1 and 7 were 
pooled to increase power given that they showed very similar results). To test for differences in 
both the magnitude and the timescale of improvement in foreground detection performance 
between background types (textures versus spectrally matched noises), we performed 
permutation tests using the same procedure described above in Experiment 7. The control 
analysis matching asymptotic performance was performed using the same procedure described 
above in Experiment 7. 
 
Foreground-Background Similarity Analysis 
Selection of stimulus pairings: We divided the foreground-background pairings from Experiment 
7 (in which foregrounds and backgrounds were randomly paired) into two groups. The groups 
were selected to be matched in a measure of spectral difference between foreground and 
background, but to differ in the difference between foreground and background in a 
spectrotemporal filter basis. Specifically, for each foreground and background, we measured the 
mean excitation pattern as a summary measure of the spectrum. We also measured the power in 
each of the 541 PCA-derived spectrotemporal filters used in the observer model. Then, for each 
foreground-background pair, we computed the Euclidean distance between the excitation 
patterns and between the spectrotemporal filter powers for the two sounds. Because the two 
distances are on different scales, we performed min-max normalization for each to scale them 
between 0 and 1. Next, to select pairings, we calculated the ratio of the spectrotemporal distance 
to the spectral distance. This ratio is largest when the spectrotemporal distance is large and the 
spectral distance is small. We then used this measure to split pairings into two groups (low and 
high spectrotemporal similarity) subject to the constraint that the two groups of pairings contained 
the same number of occurrences of each foreground and background. This ensures that the 
results we see are due to the pairings rather than to differences in the specific foregrounds or 
backgrounds in the two stimulus groups. The free parameter in this procedure was the proportion 
of total pairings included in the two groups (including all pairings maximized the number of pairings 
in each group, but led to a smaller difference between groups than if not all pairings were included. 
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We opted to use 75% of all possible pairings, discarding the middle 25% of pairings surrounding 
the median spectrotemporal distance. This yielded groups containing 9,600 pairings. Because 
participants were presented with randomly chosen pairings, not all of these 9,600 pairings had 
been presented to participants (6,923 of the large spectrotemporal distance group and 6,854 of 
the small spectrotemporal distance group were actually used in the experiment). Figure S5 plots 
the results separately for trials whose stimuli fell into one group or the other. 
 
Statistics and data analysis: Re-analyzing the data from Experiment 7, we calculated a hit rate for 
each of the 2 groups of pairings for each of the 10 foreground onset times. Using the false alarm 
rate from the background-only trials of Experiment 7, we quantified detection performance as d’. 
We performed a repeated measures ANOVA to analyze the effect of foreground onset time and 
foreground-background similarity on foreground detection performance. We assumed data was 
normally distributed and evaluated this by eye. Mauchly's test indicated that the assumption of 
sphericity had not been violated. For each main effect and interaction of interest, we reported F-
statistics, p-values and 𝜂'()#*(+, . To test for differences in the timescale of improvement in 
foreground detection performance between pairing types (more similar versus less similar), we 
performed permutation tests using the same procedure described above for Experiment 7. 
 
Experiment 10 (Harmonic Foregrounds) 
Stimuli: To obtain a set of (approximately) harmonic foreground sounds, we selected human 
vocalizations and musical instrument sounds from a dataset of isolated sound events (GISE-51 
training set (21)). Specifically, we selected human vocalization sounds from the “human_speech”, 
“laughter” and “screaming” categories and selected musical instrument sounds from the “gong”, 
“guitar”, “harmonica”, “harp”, “marimba_and_xylophone”, “organ”, “piano”, and “trumpet” 
categories. For each sound in the training set category, we used YIN (22) to measure the average 
periodicity (one minus aperiodicity) in a sliding 0.5 s window, discarding windowed segments that 
were mostly quiet or were outside of a periodicity range of 0.9 to 0.99. We set the lower bound to 
ensure selected sounds would be highly periodic and set the upper bound because windowed 
segments whose periodicity was greater than 0.99 tended to be tones (e.g., dial tones present in 
clips labeled as “human_speech”) rather than speech or musical instruments. From the windowed 
segments of a given sound, we selected the segment with the maximum periodicity (i.e., the most 
harmonic segment). This resulted in a single 0.5 s clip for each sound in the training set categories 
described above. Finally, we removed any sounds that were near duplicates (by measuring the 
power in a set of spectrotemporal filters, computing the correlation of spectrotemporal filter power 
across sounds, and removing sounds whose correlation exceeded 0.8) or had an estimated F0 
below 100 Hz or above 1000 Hz. From the sounds that remained, we chose the most periodic 
from each category, selecting 40 examples of human speech, 20 examples of laughter and 
screaming each, as well as 10 examples from each musical instrument category (see Table S3 
for a list of the selected sounds). 
 
Procedure: The procedure was identical to that of Experiment 7. 
 
Participants: A total of 485 participants were recruited through Prolific. Of these, 193 participants 
were excluded either because they failed the headphone check task, had self-reported hearing 
loss, withdrew from the experiment, or completed less than 90% of experimental trials. Finally, 5 
participants were excluded due to low task performance (average d’ < 0.8). This resulted in a total 
of 287 participants included in data analyses. Of these participants, 127 identified as female, 151 
as male, and 3 as nonbinary (6 participants did not provide a response). The average age of 
participants was 32.2 (s.d. = 9.7). All participants were unique to this experiment. 
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Sample size: Because we did not have pilot data for this experiment, we initially targeted a sample 
size double that of Experiment 1 to account for the possibility that the effect of foreground onset 
time might be smaller. However, we found it difficult to reliably fit elbow functions to this data 
because the effect of foreground onset time was so small. Thus, we increased the sample size 
by about 50% to improve the reliability of the elbow function fits to this data.  
 
Statistics and data analysis: We calculated a hit rate for each of the 10 experimental conditions 
(10 foreground onset times) and a single false alarm rate using the background-only trials, then 
quantified detection performance as d’. We performed a repeated measures ANOVA to analyze 
the effect of foreground onset time on foreground detection performance. We assumed data was 
normally distributed and evaluated this by eye. Mauchly's test indicated that the assumption of 
sphericity had not been violated. For each main effect and interaction of interest, we reported F-
statistics, p-values and 𝜂'()#*(+, . To analyze the effect of harmonicity on the pattern of foreground 
detection performance, we compared the results of Experiment 10 (harmonic foregrounds) to the 
pooled results of Experiments 1 and 7 (less harmonic foregrounds; data from Experiments 1 and 
7 were pooled to increase power given that they showed very similar results). To test for 
differences in both the magnitude and the timescale of improvement in foreground detection 
performance between foreground types, we performed permutation tests using the same 
procedure described above in Experiment 7. The control analysis matching asymptotic 
performance was also performed using the same procedure described above in Experiment 7. 
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SI Figures & Tables 

 
Figure S1. Experiment 4: Benefit of background exposure persists despite knowing what to listen 
for. 
(A) Experiment 4 task. On each trial, participants first heard a foreground sound in isolation (left, black), 
followed by continuous background noise (right, gray). Half of the trials contained the cued sound 
superimposed on the background (e.g., trial 2), and participants judged whether the stimulus contained the 
cued sound. Because detection performance typically benefits from knowing what to listen for (23), we 
reduced the SNR of the foreground relative to the background to approximately match the level of 
performance observed in Experiment 1.  (B) Experiment 4 results. Average foreground detection 
performance (quantified as d’; green circles) is plotted as a function of SNR and foreground onset time. 
Shaded regions plot standard errors. Dashed lines plot elbow function fit. Solid line below main axis plots 
one standard deviation above and below the median elbow point, obtained by fitting elbow functions to the 
results averaged over SNR and bootstrapping over participants; dot on this line plots the fitted elbow point 
from the complete participant sample. 
 

Experiment 4: Cued Detection
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Figure S2. Observer model results for different window sizes. 
(A) Human-model correlations for different window sizes. The Spearman correlation between the model 
results and the human results from Experiment 1 is plotted as a function of past window length for each 
present window length (100ms in purple, 250 ms in orange, and 500 ms in green). (B) Overall model 
performance for different window sizes. The overall model performance (computed by averaging detection 
performance over SNR and foreground onset time) is plotted as a function of past window length for each 
present window length. Same conventions as A. (C) Model results using 1000 ms past window. Each panel 
plots model foreground detection performance as a function of SNR and foreground onset time for a 
different present window length (100ms left, purple; 250 ms middle, orange; 500 ms right, green) using a 
fixed past window length of 1000 ms. Shaded regions plot standard deviations of performance obtained by 
bootstrapping over stimuli. (D) Model results using 1250 ms past window. Same conventions as C but using 
a fixed past window length of 1250 ms. 
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Figure S3. Experiment 6: Repetition of background noise enhances foreground detection. 
Average foreground detection performance (quantified as d’) is plotted as a function of foreground onset 
time for the first half of trials (light red circles) versus the second half of trials (dark red circles) within a 
block. Shaded regions plot standard errors. Dashed lines plot elbow function fit. Vertical brackets denote 
the delay benefit.  
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Figure S4. Experiments 1 & 7: Benefit of exposure to background noise is unaffected by choice of 
foreground-background pairings. 
Average foreground detection performance (quantified as d’) is plotted as a function of foreground onset 
time for Experiment 1 (controlled foreground-background pairings; blue circles) versus Experiment 7 
(uncontrolled foreground-background pairings; gray circles). Shaded regions plot standard errors. Dashed 
lines plot elbow function fit. Solid lines below main axis plot one standard deviation above and below the 
median elbow points (Experiment 1 shown in blue; Experiment 7 shown in gray), obtained by fitting elbow 
functions to the results averaged over SNR and bootstrapping over participants; dots on these lines plot 
the fitted elbow points from the complete participant samples. Vertical brackets denote the delay benefit.  
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Figure S5. Effect of background exposure depends on foreground-background similarity. 
(A) Spectral and spectrotemporal similarity of foreground-background pairs. The average normalized 
distance between foregrounds and backgrounds is plotted as a function of distance type for two groups of 
foreground-background pairings. The two groups of pairings were approximately matched in spectral 
distance but differed in spectrotemporal distance. Error bars plot standard deviations. (B) Foreground-
background similarity results. Average foreground detection performance (quantified as d’) is plotted as a 
function of foreground onset time for the two groups of foreground-background pairs. Shaded regions plot 
standard errors. Dashed lines plot elbow function fit. Solid lines below main axis plot one standard deviation 
above and below the median elbow points (more similar pairs shown in gray; less similar pairs shown in 
black), obtained by bootstrapping over participants; dots on these lines plot the fitted elbow points from the 
complete participant samples.  
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Table S1. AudioSet labels that were excluded in the process of obtaining texture sounds from which the 
background noises were drawn. 
 

Speech 
0,/m/09x0r,”Speech” 13,/t/dd00135,”Children shouting” 
1,/m/05zppz,”Male speech, man speaking” 15,/m/02rtxlg,”Whispering”  
2,/m/02zsn,”Female speech, woman speaking” 27,/m/015lz1,”Singing” 
3,/m/0ytgt,”Child speech, kid speaking” 28,/m/0l14jd,”Choir” 
4,/m/01h8n0,”Conversation” 29,/m/01swy6,”Yodeling” 
5,/m/02qldy,”Narration, monologue” 30,/m/02bk07,”Chant” 
6,/m/0261r1,”Babbling” 31,/m/01c194,”Mantra” 
7,/m/0brhx,”Speech synthesizer” 32,/t/dd00003,”Male singing” 
8,/m/07p6fty,”Shout” 33,/t/dd00004,”Female singing” 
9,/m/07q4ntr,”Bellow” 34,/t/dd00005,”Child singing” 
10,/m/07rwj3x,”Whoop” 35,/t/dd00006,”Synthetic singing” 
11,/m/07sr1lc,”Yell” 36,/m/06bxc,”Rapping” 
12,/m/04gy_2,”Battle cry”  
 
Music 
137,/m/04rlf,”Music” 210,/m/0192l,”Bagpipes” 
138,/m/04szw,”Musical instrument” 211,/m/02bxd,”Didgeridoo” 
139,/m/0fx80y,”Plucked string instrument” 212,/m/0l14l2,”Shofar” 
140,/m/0342h,”Guitar” 213,/m/07kc_,”Theremin” 
141,/m/02sgy,”Electric guitar” 214,/m/0l14t7,”Singing bowl” 
142,/m/018vs,”Bass guitar” 215,/m/01hgjl,”Scratching (performance 

technique)” 
143,/m/042v_gx,”Acoustic guitar” 216,/m/064t9,”Pop music” 
144,/m/06w87,”Steel guitar, slide guitar” 217,/m/0glt670,”Hip hop music” 
145,/m/01glhc,”Tapping (guitar technique)” 218,/m/02cz_7,”Beatboxing” 
146,/m/07s0s5r,”Strum” 219,/m/06by7,”Rock music” 
147,/m/018j2,”Banjo” 220,/m/03lty,”Heavy metal” 
148,/m/0jtg0,”Sitar” 221,/m/05r6t,”Punk rock” 
149,/m/04rzd,”Mandolin” 222,/m/0dls3,”Grunge” 
150,/m/01bns_,”Zither” 223,/m/0dl5d,”Progressive rock” 
151,/m/07xzm,”Ukulele” 224,/m/07sbbz2,”Rock and roll” 
152,/m/05148p4,”Keyboard (musical)” 225,/m/05w3f,”Psychedelic rock” 
153,/m/05r5c,”Piano” 226,/m/06j6l,”Rhythm and blues” 
154,/m/01s0ps,”Electric piano” 227,/m/0gywn,”Soul music” 
155,/m/013y1f,”Organ” 228,/m/06cqb,”Reggae” 
156,/m/03xq_f,”Electronic organ” 229,/m/01lyv,”Country” 
157,/m/03gvt,”Hammond organ” 230,/m/015y_n,”Swing music” 
158,/m/0l14qv,”Synthesizer” 231,/m/0gg8l,”Bluegrass” 
159,/m/01v1d8,”Sampler” 232,/m/02x8m,”Funk” 
160,/m/03q5t,”Harpsichord” 233,/m/02w4v,”Folk music” 
161,/m/0l14md,”Percussion” 234,/m/06j64v,”Middle Eastern music” 
162,/m/02hnl,”Drum kit” 235,/m/03_d0,”Jazz” 
163,/m/0cfdd,”Drum machine” 236,/m/026z9,”Disco” 
164,/m/026t6,”Drum” 237,/m/0ggq0m,”Classical music” 
165,/m/06rvn,”Snare drum” 238,/m/05lls,”Opera” 
166,/m/03t3fj,”Rimshot” 239,/m/02lkt,”Electronic music” 
167,/m/02k_mr,”Drum roll” 240,/m/03mb9,”House music” 
168,/m/0bm02,”Bass drum” 241,/m/07gxw,”Techno” 
169,/m/011k_j,”Timpani” 242,/m/07s72n,”Dubstep” 
170,/m/01p970,”Tabla” 243,/m/0283d,”Drum and bass” 
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171,/m/01qbl,”Cymbal” 244,/m/0m0jc,”Electronica” 
172,/m/03qtq,”Hi-hat” 245,/m/08cyft,”Electronic dance music” 
173,/m/01sm1g,”Wood block” 246,/m/0fd3y,”Ambient music” 
174,/m/07brj,”Tambourine” 247,/m/07lnk,”Trance music” 
175,/m/05r5wn,”Rattle (instrument)” 248,/m/0g293,”Music of Latin America” 
176,/m/0xzly,”Maraca” 249,/m/0ln16,”Salsa music” 
177,/m/0mbct,”Gong” 250,/m/0326g,”Flamenco” 
178,/m/016622,”Tubular bells” 251,/m/0155w,”Blues” 
179,/m/0j45pbj,”Mallet percussion” 252,/m/05fw6t,”Music for children” 
180,/m/0dwsp,”Marimba, xylophone” 253,/m/02v2lh,”New-age music” 
181,/m/0dwtp,”Glockenspiel” 254,/m/0y4f8,”Vocal music” 
182,/m/0dwt5,”Vibraphone” 255,/m/0z9c,”A capella” 
183,/m/0l156b,”Steelpan” 256,/m/0164x2,”Music of Africa” 
184,/m/05pd6,”Orchestra” 257,/m/0145m,”Afrobeat” 
185,/m/01kcd,”Brass instrument” 258,/m/02mscn,”Christian music” 
186,/m/0319l,”French horn” 259,/m/016cjb,”Gospel music” 
187,/m/07gql,”Trumpet” 260,/m/028sqc,”Music of Asia” 
188,/m/07c6l,”Trombone” 261,/m/015vgc,”Carnatic music” 
189,/m/0l14_3,”Bowed string instrument” 262,/m/0dq0md,”Music of Bollywood” 
190,/m/02qmj0d,”String section” 263,/m/06rqw,”Ska” 
191,/m/07y_7,”Violin, fiddle” 264,/m/02p0sh1,”Traditional music” 
192,/m/0d8_n,”Pizzicato” 265,/m/05rwpb,”Independent music” 
193,/m/01xqw,”Cello” 266,/m/074ft,”Song” 
194,/m/02fsn,”Double bass” 267,/m/025td0t,”Background music” 
195,/m/085jw,”Wind instrument, woodwind 
instrument” 

268,/m/02cjck,”Theme music” 

196,/m/0l14j_,”Flute” 269,/m/03r5q_,”Jingle (music)” 
197,/m/06ncr,”Saxophone” 270,/m/0l14gg,”Soundtrack music” 
198,/m/01wy6,”Clarinet” 271,/m/07pkxdp,”Lullaby” 
199,/m/03m5k,”Harp” 272,/m/01z7dr,”Video game music” 
200,/m/0395lw,”Bell” 273,/m/0140xf,”Christmas music” 
201,/m/03w41f,”Church bell” 274,/m/0ggx5q,”Dance music” 
202,/m/027m70_,”Jingle bell” 275,/m/04wptg,”Wedding music” 
203,/m/0gy1t2s,”Bicycle bell” 276,/t/dd00031,”Happy music” 
204,/m/07n_g,”Tuning fork” 277,/t/dd00032,”Funny music” 
205,/m/0f8s22,”Chime” 278,/t/dd00033,”Sad music” 
206,/m/026fgl,”Wind chime” 279,/t/dd00034,”Tender music” 
207,/m/0150b9,”Change ringing (campanology)” 280,/t/dd00035,”Exciting music” 
208,/m/03qjg,”Harmonica” 281,/t/dd00036,”Angry music” 
209,/m/0mkg,”Accordion” 282,/t/dd00037,”Scary music” 
 
Sourceless 
500,/m/028v0c,”Silence” 503,/m/0hdsk,”Chirp tone” 
501,/m/01v_m0,”Sine wave” 504,/m/0c1dj,”Sound effect” 
502,/m/0b9m1,”Harmonic” 505,/m/07pt_g0,”Pulse” 
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Table S2. Foreground-background pairings used in Experiments 1-5 and 9. Experiments 6-8 used the same 
set of foregrounds and backgrounds but paired randomly. Experiment 10 used the same backgrounds but 
different foregrounds (see Table S3). 
 

# Foreground Background 
(YouTube ID) 

 

# Foreground Background 
(YouTube ID) 

1 cuckoo clock f4BDxEci8Nk 81 rooster BS_RcUnRB_g 
2 cutting scissors DNuH5JyeF28 82 running hard surface 4ZqibG97oXc 
3 dentist drill ujNf-Q9q8BQ 83 running gravel uREJNYW9Zgc 
4 dial tone ul285Kv4Zzw 84 run up stairs ZwFsvLQoqhw 
5 dialing auW7P6Fla1s 85 blacksmith hammering RhYlsWU4xkA 
6 rotary dialer LrP3e_XDEn0 86 saltshaker WGJvqPhmbx8 
7 dialup 7CSwogGrVXE 87 sander k7JefMIMghA 
8 dice roll HgmZlVe3W18 88 school bell XoG5PD231R4 
9 dish clanking YkxxnlvB3mk 89 screw lid off C9IHMPdX_3w 
10 dog barking oDQuFo9Yl60 90 seagull EQW7Tq1TpTA 
11 dog drinking 0CahCF_csFE 91 seal 1lsFTFuLmtw 
12 dog whining u-oxLds6JvI 92 glass shattering 0SsaL_YNyjY 
13 door open 1pSbmqnIrb8 93 blowing on bottle j4AAuB9XLVA 
14 door squeak mlEy1yQpUYs 94 sheep DOIX0j6Eg98 
15 doorbell Q8G3Y_b3GKc 95 shuffling pJGThhDN_ZQ 
16 dove cooing d9lZjw66ow0 96 sipping J8dsyhhvRO0 
17 dreidel spinning 9amjTzhfO_0 97 siren FqigDul5Mts 
18 drawer close MiEfLgS0v6k 98 sleighbells uYXXcFA8NXE 
19 drawer opening k-VZj_uYyjg 99 slicing PicbqGLxpbM 
20 drinking 7A14Op2mCFQ 100 slot machine vSFbqLgy3hA 
21 dripping Kc3-d4yhnr4 101 birdsong OE94H63nLOw 
22 bass drum MRz22sll8Ko 102 splash water eTaaBEx8Uz0 
23 duck quack F1j9FIeij8g 103 stapling 17XCtcwI74Y 
24 handheld drill GyaYw1BQ7tE 104 space ship door 5eO0cJNgV74 
25 elevator door f36dN2cr4j8 105 sword fighting yPTe-JL28xU 
26 faucet J0kO9X49cIQ 106 tap dancing XoENpj5z6Oc 
27 fax -3KtNOqHb2A 107 telephone ring WXT0aIPTRXM 
28 balloon deflating Xlr0Maz4jvI 108 tennis rally ChDKSOopmUs 
29 finger tapping 14gMYPgWBk0 109 toy squeak tU5X5sCZj3U 
30 fire alarm w41FKuP0HT8 110 train warning bell -mQyAYU_Bd4 
31 fireworks 1kBruu0XiCk 111 trampoline DCHJSNDvkYs 
32 foghorn PZ4j2qcmvGk 112 bowling BOeA1ya8Bwk 
33 frog croak -e_wUbIdJuk 113 triangle Cyi_IJ2Z4Yc 
34 gavel oA96zEIi58o 114 truck backup beeping TVX2OXNhvE4 
35 geese honking AhG32tIdaaE 115 turkey gobble 6VcCuP4YeU4 
36 gong vS6ERMn4_58 116 typing IDg45ezSvZE 
37 gorilla PBuW6_LuAAk 117 walking hard surface KI5tat_bJio 
38 grandfather clock O9gqbLxkA7I 118 walking with heels Yrz6NzBsoOk 
39 gunshots bcU49USpFcY 119 whale call u2o-xqEvKUk 
40 hammer O_kxjfU50lc 120 wolves howling Cy2zzRtUDDI 
41 dribble Nf0K0I00WMY 121 writing chalkboard z_cfAqGxyT4 
42 hawk screech CHEJS1BA0_0 122 writing on whiteboard iOfxRUARYBQ 
43 horse neighing yCvz0W1Spv8 123 zipper 7aoxC_WRv3I 
44 ice machine 8K6acvCdQqU 124 crack nuts J4gtEa7HC3s 
45 jumping rope IXljCR3iqLY 125 mac startup 63USLppGyX8 
46 kazoo 4EyYLQ9QQLY 126 noisemaker aDvPcdwm0_8 
47 kettle PBe8eexve2Q 127 peeling potato VNos6WvqE-o 
48 key opening door tshdgKCaea8 128 radar beeps DmDPTWAChc0 
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49 keys jingling JjkxEDKt_WI 129 scrubbing dishes BgONm1BKM68 
50 knocking on door pDppR23BSrE 130 sports arena buzzer DK7CYXsz8TI 
51 knuckle cracking UAidYn4tDuQ 131 busy signal nIeOtZISuVw 
52 laser gun _9roxFqE_0s 132 windows startup sound PSkAi5SysFQ 
53 lion growl pGx04X2S8Vo 133 windup toy X9hEru96BO0 
54 locker closing Zb4c7wX7MGc 134 air hockey ZumNxD30rO8 
55 locker opening -x5fDrtsR-M 135 camera taking picture _eyfihZLgkE 
56 bear growling gYUb7ZEx2ig 136 heart beat LjnfmSFcv8I 
57 morse code 22rlvtV9tjY 137 owl hooting 873MpPwYc0s 
58 nose blowing X9HsMWDHhDs 138 battle sounds GfiRcVgqRhk 
59 reception desk bell 1DKHkGt6A5Y 139 monkey scream C5oSLRvLVOA 
60 bike bell 6UDbuFKXaR0 140 car alarm VXpimpAohoE 
61 pager beeps XXmxZdWEfDU 141 car crash YRixc_jc9S8 
62 paper cutter 8FNGAEJom4k 142 alarm clock qlJ1JZ5chP8 
63 paper shredder eY-Z97PApDo 143 car horn Jdm3aEGx5LI 
64 parrot MDs84SJcUlI 144 car wheels skidding YeghkUAmB7I 
65 pepper grinder NTWLwrQZ2xA 145 cash register 3LKkiKyWqlQ 
66 pet collar jingling VZwHbQCLeBY 146 castanet M4MWeVg6Rh0 
67 pig snort vsOjgzS4ZF8 147 cat meow eGE475m0FcE 
68 pinball Xwg3gNWSg1U 148 cat purring jNWjIt-qjAs 
69 ping pong J_qoxB9ytXY 149 alien sound effects CR_pvgUzL5M 
70 pool ball M9i6UvtYtpA 150 phone vibrate e5Qk-uZSDQ0 
71 popcorn popping uPYXAScbHt8 151 chainsaw revving iP5TKSoB3-Y 
72 pour out bottle OF7A3vsntYk 152 chair being raised 7xfgJ9VVGdo 
73 printer startup wfHeoPDLMaM 153 chicken cluck _Habb1lwnPM 
74 printing WjCndbbxq54 154 wind chimes KORQwq2m20I 
75 ratchet TGNzh4wMT0k 155 chopping wood RB28Vj9j-yY 
76 crow nH5SVpHQRRs 156 clipping hair IaCX2UnQZAE 
77 whistle cIUorSTElSM 157 coins dropping TL7iX2d72Y0 
78 rock fall water c6m6ZPOnAJ0 158 coin vending machine 4IEpPBzMCN4 
79 rock fall ground JOyDnPX8WRk 159 cow moo SU3VCol6mSY 
80 rocking chair gUJzqny-Ph0 160 ATM Qd1RHwg2Duw 
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Table S3. Foregrounds used in Experiment 10, taken from GISE-51 training set 
 

# Category  Stimulus ID 

 

# Category  Stimulus ID 
1 Human_speech 107100 81 Gong 209917_filtered 
2 Human_speech 92940 82 Gong 222192 
3 Human_speech 80641 83 Gong 57389 
4 Human_speech 63334 84 Gong 222191 
5 Human_speech 181948_filtered 85 Gong 57419 
6 Human_speech 106439 86 Gong 206023 
7 Human_speech 32168 87 Gong 57424 
8 Human_speech 93787_filtered 88 Gong 222923_filtered 
9 Human_speech 91076 89 Gong 222217 
10 Human_speech 278944 90 Gong 222922_filtered 
11 Human_speech 95238 91 Guitar 128844_filtered 
12 Human_speech 77409 92 Guitar 40438 
13 Human_speech 109838_filtered 93 Guitar 251187_filtered 
14 Human_speech 82710 94 Guitar 64791_filtered 
15 Human_speech 50497_filtered 95 Guitar 251161_filtered 
16 Human_speech 216567 96 Guitar 28399 
17 Human_speech 108875 97 Guitar 251156_filtered 
18 Human_speech 92951 98 Guitar 48355 
19 Human_speech 92961 99 Guitar 252448 
20 Human_speech 18287 100 Guitar 18474 
21 Human_speech 77416 101 Harmonica 116903_filtered 
22 Human_speech 235110 102 Harmonica 116897_filtered 
23 Human_speech 77421 103 Harmonica 116902 
24 Human_speech 184432_filtered 104 Harmonica 325376 
25 Human_speech 92941 105 Harmonica 330759_filtered 
26 Human_speech 371581 106 Harmonica 116887_filtered 
27 Human_speech 235114 107 Harmonica 325377 
28 Human_speech 422718_filtered 108 Harmonica 116874_filtered 
29 Human_speech 104707 109 Harmonica 116875_filtered 
30 Human_speech 92965 110 Harmonica 116869 
31 Human_speech 109865 111 Harp 53854 
32 Human_speech 104728 112 Harp 53867 
33 Human_speech 107099 113 Harp 53846 
34 Human_speech 77413 114 Harp 53864 
35 Human_speech 67627 115 Harp 373563_filtered 
36 Human_speech 106428 116 Harp 53866 
37 Human_speech 181316 117 Harp 415387 
38 Human_speech 106440 118 Harp 415463 
39 Human_speech 77412 119 Harp 415433 
40 Human_speech 92919 120 Harp 415466 
41 Laughter 132812 121 Marimba_and_xylophone 373585_filtered 
42 Laughter 364485_filtered 122 Marimba_and_xylophone 202584 
43 Laughter 171707 123 Marimba_and_xylophone 216753_filtered 
44 Laughter 95814 124 Marimba_and_xylophone 202576 
45 Laughter 174625 125 Marimba_and_xylophone 216755_filtered 
46 Laughter 411082 126 Marimba_and_xylophone 216761_filtered 
47 Laughter 198263 127 Marimba_and_xylophone 216752_filtered 
48 Laughter 266004 128 Marimba_and_xylophone 202577 
49 Laughter 57734 129 Marimba_and_xylophone 216751_filtered 
50 Laughter 172923_filtered 130 Marimba_and_xylophone 216756_filtered 
51 Laughter 132809_filtered 131 Organ 245073 
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52 Laughter 364444_filtered 132 Organ 373682_filtered 
53 Laughter 95816 133 Organ 160297 
54 Laughter 62257_filtered 134 Organ 11856 
55 Laughter 198252_filtered 135 Organ 373685_filtered 
56 Laughter 132746_filtered 136 Organ 373688 
57 Laughter 393342_filtered 137 Organ 160301 
58 Laughter 366173 138 Organ 373691_filtered 
59 Laughter 196066 139 Organ 373687_filtered 
60 Laughter 9557 140 Organ 333753 
61 Screaming 219665 141 Piano 148539_filtered 
62 Screaming 163729_filtered 142 Piano 11655_filtered 
63 Screaming 220665 143 Piano 173763_filtered 
64 Screaming 219663 144 Piano 351928 
65 Screaming 59163 145 Piano 11656_filtered 
66 Screaming 131709 146 Piano 382533_filtered 
67 Screaming 219666_filtered 147 Piano 32019_filtered 
68 Screaming 9434_filtered 148 Piano 11644_filtered 
69 Screaming 58794 149 Piano 83132 
70 Screaming 104035 150 Piano 11626_filtered 
71 Screaming 222586 151 Trumpet 374138_filtered 
72 Screaming 351630 152 Trumpet 357321_filtered 
73 Screaming 104028_filtered 153 Trumpet 357560_filtered 
74 Screaming 261853_filtered 154 Trumpet 247248_filtered 
75 Screaming 166154_filtered 155 Trumpet 247220_filtered 
76 Screaming 42849_filtered 156 Trumpet 247276_filtered 
77 Screaming 221151 157 Trumpet 357419 
78 Screaming 104033 158 Trumpet 247216_filtered 
79 Screaming 220291 159 Trumpet 247110 
80 Screaming 61219 160 Trumpet 247381 
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