
Supplementary Information: 
 
The effect of ImageNet 
ImageNet is often used as a basis for transfer learning, specifically because of the flexibility of the 
patterns it already recognizes. To confirm that both weights of the beans and the beer model are 
indeed changing and learning new patterns beyond what ImageNet knows, it can be helpful to 
compare against the baseline performance of a pure ImageNet-based model. To do this, we 
trained a series of models to predict the confounding/latent variables (Sex, Race, etc.) and the 
diet variables using the original ImageNet weights, allowing only the final linear layer to change. 
By comparing the performance of these models against the fully trained models described in the 
paper, we can confirm that these results are not a side-effect of the generalizability of ImageNet-
based weights but truly from new learning from fine-tuning training. 
 
Results 
The models that use the original ImageNet-based weights all show significant drops in 
performance when compared across the confounding and latent variables (Table S1). This is 
expected, but it confirms that shortcutting is not just a side effect of the original ImageNet 
weights. When compared to the results in Table 4, it can also be seen that the weights trained to 
predict beer preferences exceed the performance of raw ImageNet weights for predicting Sex and 
Site. 
 

Accuracy 
Adjusted Balanced 

Accuracy 
 Fine-tuned ImageNet Fine-tuned ImageNet 

SEX 0.987 0.829 0.973 0.636 
RACE 0.921 0.838 0.244 0.014 

SITE 0.982 0.947 0.873 0.764 
MFG 0.999 0.999 0.955 0.635 

YEAR 0.644 0.546 0.338 0.184 
Table S1. Performance of fine-tuned confounding/latent variable models vs models using 
original ImageNet weights. Fine-tuned models are initialized with ImageNet weights, but all 
weights are modified during training. ImageNet models only allowed for modification of the final 
layer weights during training. 
 
As binary variables, refired bean and beer consumption use AUC and accuracy, which make the 
differences less stark (Table S2). These results show both how much ImageNet alone weights can 
do in making surprising predictions, but also that the last mile does come from fine-tuning 
training. 
 Accuracy AUC 
 Fine-tuned ImageNet Fine-tuned ImageNet 

Refried Beans 0.600 0.541 0.631 0.591 
Beer 0.702 0.659 0.734 0.677 

Table S2. Performance of fine-tuned diet models vs models using original ImageNet weights. 
Fine-tuned models are initialized with ImageNet weights, but all weights are modified during 
training. ImageNet models only allowed for modification of the final layer weights during training. 
 
Methods 



This experiment repeats steps 1-5 in the original study methods, with two exceptions. First, all Z-
score normalization was done according to the ImageNet mean and standard deviation values. 
Second, all layers of the neural networks were frozen except for the final layer. The models from 
steps 1-5 in the original methods trained over 11 million parameters. Training only the final layer 
limits the number of trainable parameters in the new models to between 513 and 5,643 (based on 
the number of prediction classes for each variable). 
 
 
Normalization 
Image variations created from differences across X-ray machines and their setup across collection 
sites can create statistical fingerprints within the images. Min-max normalization and then Z-
score normalization, as done in this work, limit the most obvious issues (range and scale 
differences). It is natural to question whether more aggressive normalization would alter these 
findings. While removal of these differences is an active area of research in medical imaging1, for 
X-rays, the only commonly used technique beyond what was used is contrast limited adaptive 
histogram equalization (CLAHE)2. Though originally designed to enhance image contrast, its 
redistribution of pixel values does provide a more aggressive alteration of an image’s histogram. 
 
To examine whether applying CLAHE as a final normalization step makes a noticeable difference, 
we looked at how it changed model performance in predicting two latent variables: Site and Mfg. 
CLAHE was applied to the images at two different values. First, the mild clipping threshold 
parameter of 2, which is typically used on X-rays. Second, a more aggressive clipping threshold of 
40 was tried for greater smoothing of the image histograms. 
 
Results 
Overall, when CLAHE was applied, the network's ability to predict the X-ray site or manufacturer 
saw only negligible change. The adjusted balanced accuracy scores only changed to the third 
decimal place (see Table S3). 
 

 SITE  MFG 
 None CLAHE 

2 
CLAHE 

40 
 None CLAHE 

2 
CLAHE 

40 
Accuracy 0.982 0.978 0.979  0.999 0.998 0.998 

Adjusted Balanced 
Accuracy 0.947 0.941 0.942  0.999 0.999 0.994 

Table S3. Model accuracy learning differences in predicting latent variables with and without 
more normalization. None is the original experiment results. CLAHE 2 is for images processed 
with a clipping threshold of 2. CLAHE 40 used a clipping threshold of 40. 
 
Method 
This experiment was applied to predictions of Site and Mfg. For both predictions, it repeated 
steps 1-4 in the original study methods three times. In the first case, exactly. In the CLAHE cases, 
CLAHE was applied after Min-max normalization and before the images were Z-score normalized 
according to the mean and standard deviation of the training data set. In one case, a CLAHE 
clipping threshold of 2 and a tile grid of 8x8 pixels was used. In the other, a clipping threshold of 
40 and a tile grid of 8x8 pixels was used. 
 



 
X-ray Manufacturer vs. Clinical Sites 
 
 AGFA FUJI Swissray GE LS100 Siemens Philips Total 

A 6 1 3,952 3 1  65 4,031 
B  2,206   1,884   5,724 
C 3,933   3,881    7,814 
D 4727 1,495  406    6,628 
E  1,198 401  248 324 30 2,298 

Total 8,666 4,900 4,353 4,290 2,133 324 95 24,761 

 
Table S4. Distribution of X-ray manufacturers across clinical sites. X-ray manufacturer was 
listed for all but 1,759 of the available X-rays. 
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