

B16F1

B16F10

Representative microangiography images of B16F1 and B16F10 tumors grown in the cranial windows. FITC-dextran (2 million MW) was injected systemically to visualize blood vessels. Bar = $100 \mu m$.

Effect of host iNOS deletion on B16F10 tumor vessels in the cranial window. (A-C) Vessel parameters quantified by off line analyses of the digitized microangiography images. There was no significant difference between wild-type C57BL/6 (n=5) and *iNOS*^{-/-} mice (n=5) in vascular density (*A*), vessel diameter (*B*) and branching (*C*). (**D**) Histological quantification of endothelial cell nuclei per vessel cross-section in B16F10 tumors grown in C57BL/6 (132 vessels in 3 tumors, 5 locations in each) or *iNOS*^{-/-} mice (134 vessels in 3 tumors, 5 locations in each).

Effects of the acute (24hrs) application of L-NMMA on the DAF-2 associated fluorescence in the pial microvessels. (A, C, D), microangiography using tetramethylrhodamine-dextran (2 million MW); (B, E), Representative microfluorography captured after the 60-minute loading of DAF-2; (C, F), pseudocolor representation of DAF-2 microfluorographs. The animals were treated with D-NMMA (*A-C*) or L-NMMA (*D-F*). Note that DAF-2 associated fluorescence mainly distributed along the arteriole and was abolished with L-NMMA treatment. Color bars in the top right represent calibration of the pseudocolor with known concentrations of DAF-2T. (G-I), microangiograph (*G*), microfluorograph captured at 60 minutes after injection of 4-AF (*H*), an NO-insensitive control fluorochrome, and its pseudocolor representation (*I*). Color bars in the bottom right shows calibration with known concentrations of 4-AF. *a*, arteriole; *v*, venule, Bar = 100 μ m.

Effects of exogenous NO and NO suppression on HUVECs and 10T1/2 cell proliferation. HUVECs or 10T1/2 cells were plated in uncoated 6-well plates at 5×10^4 cells per well in EGM with 2% FBS or BME with 10% FBS, respectively. Twenty-four hours later, the culture medium was changed and the cells were challenged with 1 μ M, 10 μ M, 100 μ M and 1 mM of L-NMMA or with 10 μ M, 100 μ M, 1mM and 10mM of DETA NONOate in their respective media. Seventy-two hours after the treatment, cells were suspended and number of cells was determined using a hemocytometer. All proliferation assays were conducted in triplicate and each set of experiments was performed at least 5 times.

Supplemental Table S1.

	B16F10	B16F1	eNOS-/-	iNOS-/-	D-NMMA	L-NMMA
Vessel Density	165 ± 17	91±21*	87± 9*	140 ± 6	139±17	85 ± 16#
(/mm ²)						
Vessel perimeter	67 ± 5	93± 8*	87± 8*	57±6	63 ± 5	113 ± 11#
(µm)						

Vessel morphology of B16 melanomas in paraffin histological specimens.

* # p<0.05 as compared with corresponding B16F10 and D-NMMA treated tumors, respectively. Five random locations per tumor were examined in 3 tumors per group, respectively. The numbers of vessels examined (from the left to the right) are 127, 91, 105, 114, 109, 77.

Supplemental Table S2.

gene	D-NMMA	L-NMMA	gene	D-NMMA	L-NMMA	gene	D-NMMA	L-NMMA
Adamts1	0.881	0.647	Figf	0.015	0.027	Plau	0.242	0.192
Adamts8	0.019	0.015	Kdr	0.172	0.183	Ptgs1	0.048	0.018
Angpt1	0.015	0.008	Flt1	0.978	0.800	Ptgs2	0.014	0.020
Angpt2	0.277	0.235	Fn1	0.471	0.391	Rsn	0.945	0.881
Ang	0.312	0.253	Cxcl1	0.039	0.032	Ccl2	0.072	0.040
Cd36	0.067	0.088	Hgf	0.221	0.245	Serpinb5	0.017	0.030
Cdh5	0.503	0.435	Hif1a	0.949	0.885	Serpine1	0.473	0.310
Chga	0.697	0.525	Idb1	0.056	0.037	Serpinb2	0.013	0.023
Col18a1	0.051	0.030	Ifna1	0.410	0.222	Serpinf1	0.008	0.011
Csf3	0.080	0.051	Ifnb1	0.039	0.059	Sparc	0.849	0.755
Ctgf	0.575	0.630	Ifng	0.065	0.091	Spp1	0.798	0.716
Edg1	0.744	0.536	Igf1	0.070	0.078	Tek	0.423	0.418
Efna5	0.639	0.576	II10	0.050	0.043	Tgfa	0.457	0.255
Efnb2	0.196	0.164	Il12a	0.011	0.018	Tgfb1	0.402	0.346
Egf	0.268	0.142	Itga5	0.375	0.320	Tgfb2	0.558	0.560
Egfr	0.027	0.030	Itgav	0.797	0.701	Tgfb3	0.457	0.555
Eng	0.710	0.561	Itgb3	0.205	0.295	Tgfbr1	0.810	0.659
Ephb4	0.216	0.246	Smad1	0.033	0.060	Tgfbr2	0.608	0.417
Erbb2	0.037	0.071	Mdk	0.007	0.014	Tgfbr3	0.180	0.131
Ets1	0.661	0.646	Mmp2	0.030	0.043	Thbs1	0.123	0.214
F2	0.011	0.014	Mmp9	0.017	0.029	Thbs2	0.551	0.553
Fgf1	0.265	0.193	Msr1	0.131	0.167	Thbs3	0.020	0.021
Fgf16	0.545	0.438	Nos3	0.459	0.286	Tie1	0.194	0.153
Fgf2	0.019	0.012	Nrp1	0.598	0.341	Timp1	0.259	0.169
Fgf4	0.191	0.104	Pdgfa	0.443	0.305	Timp2	0.686	0.578
Fgf6	0.051	0.033	Pdgfb	0.011	0.009	Tnc	0.029	0.019
Fgf7	0.767	0.756	Pdgfra	0.020	0.036	Vcam1	0.039	0.051
Fgfr1	0.938	1.027	Pdgfrb	0.035	0.026	Vegfa	0.517	0.479
Fgfr3	0.126	0.144	Pecam1	0.227	0.129	Vegfb	0.448	0.621
Fgfr4	0.243	0.127	Pgf	0.276	0.146	Vegfc	0.237	0.347

Angiogenic gene array analysis of B16F10 malanoma.

Three tumors of each treatment group were examined. Values represent relative gene expression normalized to β -actin.

Supplemental Table S3.

gene	PDGF-B	Angiopoietin-1	Angiopoietin-2	Sphingosine kinase type1	VEGF-A
D-NMMA	1.34 ± 0.33	1.15 ± 0.28	1.22 ± 0.04	1.10 ± 0.21	1.67 ± 0.53
L-NMMA	2.08±0.26	1.67±0.59	1.33±0.19	1.74±0.32	1.46 ± 0.28
gene	PDGFRβ	Tie-2	EDG-1	VEGFR-1	VEGFR-2
D-NMMA	0.90 ± 0.05	0.70 ± 0.02	1.46 ± 0.36	1.08 ± 0.17	1.16 ± 0.05
L-NMMA	1.19 ± 0.24	0.80 ± 0.10	2.47 ± 0.34	1.63 ± 0.28	1.20 ± 0.20

Realtime PCR analysis of endogenous angiogenic and vessel maturation factors.

Three tumors per each group were independently analyzed. Values represent relative gene expression normalized to β -actin. There was no statistical significant difference between D-NMMA and L-NMMA treated tumors in any factors.

Supplemental Table S4.

Realtime PCR primers

Gene	Fam-labeled primer (5'-3')	Unlabeled primer (5'-3')
PDGF-B	GACCCTCAGACTTGGGGCTTGGAGG[FAM]C	CTGCCTGCTGGCTTAGCTT
Angiopoietin-1	CAACCTCGTGCTGGGTCTGG[FAM]TG	GCAGGGTGAGGTTAGGCTTC
Angiopoietin-2	CACCAGATCACTTCTACCTCGCTGG[FAM]G	CCGTGAGTCCTGTAAGGTGAA
Sphingosine kinase type1	GAACCACAGCTCCCTGGCATGG[FAM]TC	CAGAGTGCTGGTGCTGCTGA
VEGF-A	CACTCCTAACGATGAAGCCCTGGAG[FAM]G	TTGGTCTGCATTCACATCTGC
PDGFRβ	CAACATCCATTCTCGATCACAGAGATG[FAM]TG	TGAGTGATTCGGGGCACCTAT
Tie-2	GACCATTGTTGACGCATCTTCATGG[FAM]C	GCCTTAATGAACCAGCACCAA
EDG-1	CACAAAGCGGGAAGGGAGTATGTTTG[FAM]G	AGCTGTTGCTCCCGTTGTGT
VEGFR-1	CGGAAGAGGTAGTTGGACAGGTTTC[FAM]G	CAAGGAGGGCCTCTGATGGT
VEGFR-2	CGGACACAGTGGGCAGTCAAGTC[FAM]G	GGGCCTTCCATTTCTGTACCAT
β-actin	CACAGGTCTTGGGTATGGAATCCTG[JOE]G	TCTTTACGGATGTCAACGTCA

Note that β -actin was JOE-labeled and the genes of interest were FAM-labeled.