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1 GeM-LR and expectation-maximization (EM) algorithm for fit-
ting the model

Let the sample points be pxi, yiq, i “ 1, ..., n, where xi is the realization of the random feature vector Xi,
Xi P Rp and yi is the realization of the class Yi, Yi P t0, 1u. We describe the formulation of GeM-LR. For
GeM-LR, we assume a latent component/cluster label Z, Z P t1, 2, ..., Cu, for a given sample point. An instance
of Z is denoted by z. GeM-LR assumes that given Z “ c, c “ 1, ..., C, X follows a Gaussian distribution with
mean µc and covariance Σc. In addition, GeM-LR assumes that given Z “ c and X “ x, Y follows a logistic
regression (LR) model with coefficients βc (p-dimensional and excluding the intercept term) and βc,0 (intercept
term). Consider a general sample point pX, Y q,

P pZ “ cq “ πc, c “ 1, ..., C, (1)

P pX|Z “ cq “ NpX|µc,Σcq, (2)

P pY “ 1|X “ x, Z “ cq “
exp pβT

c x ` βc,0q

1 ` exp pβT
c x ` βc,0q

. (3)

Since we consider binary classification here, P pY “ 0|X “ x, Z “ cq “ 1 ´ P pY “ 1|X “ x, Z “ cq. Based
on the above Eqs. (1), (2) and (3), we can write down the joint probability for X and Y :

P pY “ 1|Xq “

C
ÿ

c“1

P pZ “ c|Xq ¨ P pY “ 1|X, Z “ cq

“

C
ÿ

c“1

πcNpX|µc,Σcq
řC

c1“1 πc1NpX|µc1 ,Σc1 q
¨

exp pβT
c x ` βc,0q

1 ` exp pβT
c x ` βc,0q

. (4)

To estimate GeM-LR in Eq. (4), we use the EM algorithm with regularization where the latent state Z
is regarded as missing data. Denote the parameters in GeM-LR collectively by θ “ tπc,µc,Σc,βc, βc,0, c “

1, . . . , Cu, the mixture log likelihood of a point pxi, Yiq, i “ 1, ..., n, is given by

lpθ;xi, yiq

“ log
C
ÿ

c“1

πcNpxi | µc,Σcq ¨

”

yiP pYi “ 1 | xi, zi “ cq ` p1 ´ yiqP pYi “ 0 | xi, zi “ cq
ı

,

where we denote P pYi “ 1|xi, zi “ cq “ pi,c and P pYi “ 0|xi, zi “ cq “ 1 ´ pi,c. The objective function (to be
maximized), denoted by L, is a penalized version of the sum of log likelihoods over all the points. Without loss
of generality, let λ denote the (set of) tuning parameter(s) for the sparsity regularization on β1:C , denoted by
Rpβ1:Cq. Since the penalty Rpβ1:Cq is usually additive over the latent labels, we denote the penalty on βc by

Rpβcq, and hence Rpβ1:Cq “
řC

c“1 Rpβcq. The objective function based on λ is written as

Lpλq “

n
ÿ

i“1

lpθ;xi, yiq ´ λRpβ1:Cq. (5)

For example, λRpβ1:Cq “ λ
řC

c“1

řp
j“1 |βc,j | results in the L1 Lasso regularization, and λRpβ1:Cq “

řC
c“1

“

λ1

řp
j“1p 1´λ2

2 β2
c,j ` λ2|βc,j |q

‰

is the elastic net regularization. Elastic net is the same as Lasso when λ2 “ 1.
As λ2 shrinks toward 0, elastic net approaches ridge regression.

E step
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Let θptq denote the parameter values at the tth iteration. We first calculate the posterior probability

distribution of zi, γ
ptq
ci ” P pzi “ c|yi,xi, θ

ptqq, i “ 1, ..., n:

P pzi “ c|yi,xi, θ
ptqq 9 πptq

c Npxi|µ
ptq
c ,Σptq

c qryip
ptq
i,c ` p1 ´ yiqp1 ´ p

ptq
i,cqs , c “ 1, ..., C.

To increase the impact of yi on the choice of zi, we transform the likelihood of Y by a shifted sigmoid function:

eαpyip
ptq

i,c`p1´yiqp1´p
ptq

i,cq´0.5q

1 ` eαpyip
ptq

i,c`p1´yiqp1´p
ptq

i,cq´0.5q

where we set α “ 1 in our experiments. The complete log-likelihood of pXi, Yi, Ziq “ pxi, yi, cq is

lpθ;xi, yi, cq “ ´ logp1 ` exp pβT
c xi ` βc,0qq ` yipβ

T
c xi ` βc,0q ` logNpxi|µc,Σcq ` logpπcq .

We then find the expectation of the complete data log-likelihood with respect to the posterior probability
distributions of Zi, i “ 1, ..., n:

Qpθ|θptqq “

n
ÿ

i“1

EZi|Xi,Yi,θptq lpθ;xi, yi, Ziq ´ λRpβ1:Cq

“

n
ÿ

i“1

C
ÿ

c“1

γ
ptq
ci ¨ lpθ;xi, yi, cq ´ λRpβ1:Cq .

M step

In the M step, we solve the new parameter θpt`1q by maximizing Qpθ|θptqq. For each latent label c, c “

1, ..., C, update the parameters as follows:

µpt`1q
c “

1

nc

n
ÿ

i“1

γ
ptq
ci xi , where nc “

n
ÿ

i“1

γ
ptq
ci

Σpt`1q
c “

1

nc

n
ÿ

i“1

γ
ptq
ci pxi ´ µpt`1q

c qpxi ´ µpt`1q
c qT

πpt`1q
c “

nc
řC

c1
“1 nc1

pβ
pt`1q

c,0 ,βpt`1q
c q “ argmax

βc,0,βc

n
ÿ

i“1

γ
ptq
ci ¨ r´ logp1 ` exp pβT

c xi ` βc,0qq ` yipβ
T
c xi ` βc,0qs ´ λRpβcq .

Note that the optimization of pβ
pt`1q

c,0 ,β
pt`1q
c q is solved by fitting an elastic net model. Iterate E and M steps

until the objective function Lpλq in Eq. 5 converges.

Initialization and Convergence Issues for EM

For a chosen C value, we apply Kmeans clustering algorithm on the feature matrix X to cluster the data
points. We use the cluster means, covariance matrices and cluster proportions as the initial values of the
parameters associated with GMM. To initialize the coefficients in the logistic regression models, we fit a model
by elastic net using data points in every cluster. We run EM algorithm on 300 starting points/initializations,
and we pick the seed that yields the best within-training classification accuracy according to AUC.
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