The effects of breathing $He-O_2$ mixtures on maximal oxygen consumption in normoxic and hypoxic men

Fabio Esposito and Guido Ferretti*

Département de Physiologie, Centre Médical Universitaire, 1 rue Michel Servet, 1211 Genève 4, Switzerland

- 1. The hypothesis that the ventilatory resistance to O_2 flow (R_V) does limit maximal O_2 consumption $(\dot{V}_{O_2,\max})$ in hypoxia, but not in normoxia, at least in non-athletic subjects, was tested. R_V was reduced by using He- O_2 mixtures.
- 2. $\dot{V}_{O_2,max}$ was measured during graded cyclo-ergometric exercise in eight men (aged 30 ± 3 years) who breathed N_2-O_2 and $He-O_2$ mixtures in normoxia (inspired oxygen fraction $(F_{I,O_2}) = 0.21$) and hypoxia $(F_{I,O_2} = 0.11)$. O_2 consumption, expired and alveolar ventilations (\dot{V}_E and \dot{V}_A , respectively), blood lactate and haemoglobin concentrations, heart rate and arterial oxygen saturation (S_{a,O_2}) were determined at the steady state of each work load. Arterial O_2 and CO_2 partial pressures (P_{a,O_2} and P_{a,CO_2} , respectively) were measured at rest and at the end of the highest work load.
- 3. Maximal $\dot{V}_{\rm E}$ and $\dot{V}_{\rm A}$ were significantly increased by He–O₂ breathing in normoxia (+27 and +18%, respectively), without significant changes in $P_{\rm a,O_2}$, $S_{\rm a,O_2}$ and $\dot{V}_{\rm O_2,max}$. In hypoxia, $\dot{V}_{\rm E}$ and $\dot{V}_{\rm A}$ increased (+31 and +24%, respectively), together with $P_{\rm a,O_2}$ (+17%), $S_{\rm a,O_2}$ (+6%) and $\dot{V}_{\rm O_2,max}$ (+14%).
- 4. The results support the hypothesis that the role of $R_{\rm v}$ in limiting $\dot{V}_{O_2,\rm max}$ is negligible in normoxia. In hypoxia, the finding that higher $\dot{V}_{\rm E}$ and $\dot{V}_{\rm A}$ values during He–O₂ breathing led to higher $\dot{V}_{O_2,\rm max}$ values suggests a greater role of $R_{\rm v}$ as a limiting factor. It is unclear whether the finding that the $\dot{V}_{O_2,\rm max}$ values were the same during He–O₂ and N₂–O₂ breathing in normoxia is due to a non-linear response of the O₂ transfer system, as previously proposed.

In recent years, multifactorial models of maximal O₂ consumption $(\dot{V}_{O_2, \max})$ limitation have been gaining momentum against the classical unifactorial view that in normoxic man $V_{O_2,max}$ is limited only by cardiovascular O_2 transport, at least during exercises involving large muscle groups (Clausen, 1977; Blomqvist & Saltin, 1983; Ekblom, 1986). On one side, Wagner (1992, 1993) has looked at a two-site system (perfusion vs. diffusion) and stressed the role of peripheral O₂ diffusion as a limiting factor. On the other side, a quantitative model of $\dot{V}_{o_2,max}$ limitation has been proposed (di Prampero, 1985; di Prampero & Ferretti, 1990), on the assumption that the flow of O_2 from ambient air to mitochondria is driven by pressure gradients across a cascade of resistances in-series. Each resistance to O_2 flow is considered to provide a given measurable fraction of the overall $V_{O_2,\max}$ limitation. Application of this model leads to the conclusion that cardiovascular O₂ transport imposes most of the limits to $V_{O_2,max}$ (60–70%), whereas the role of pulmonary ventilation and gas exchange appears negligible, at least in healthy non-athletic subjects in normoxia (di Prampero & Ferretti, 1990; Turner *et al.* 1993; Ferretti & di Prampero, 1995).

The latter statement relies on the postulate that in normoxia any change in the ventilatory resistance $(R_{\rm v})$ would be counteracted by an equivalent opposite change in the cardiovascular resistance $(R_{\rm q})$, due to the shape of the O₂ equilibrium curve. In fact, higher alveolar ventilation $(\dot{V}_{\rm A})$ would lead to an increase in alveolar O₂ partial pressure $(P_{\rm A,O_2})$ and probably in arterial O₂ partial pressure $(P_{\rm a,O_2})$. Any increase in $P_{\rm a,O_2}$, however, cannot be accompanied by a concurrent increase in arterial O₂ concentration $(C_{\rm a,O_2})$, because it occurs on the flat part of the O₂ equilibrium curve. This implies a decrease in the oxygen transport coefficient in the blood phase, $\beta_{\rm b}$, which is equal to:

$$\beta_{\rm b} = (C_{\rm a,O_2} - C_{\rm \bar{v},O_2}) / (P_{\rm a,O_2} - P_{\rm \bar{v},O_2}), \tag{1}$$

where $C_{\bar{\mathbf{v}},O_2}$ is mixed venous O_2 concentration and $P_{\bar{\mathbf{v}},O_2}$ is mixed venous O_2 partial pressure. Since $R_{\mathbf{Q}} = \dot{Q}^{-1}\beta_{\mathbf{b}}^{-1}$, where \dot{Q} is cardiac output, this necessarily implies an increase in $R_{\mathbf{Q}}$. In contrast, in hypoxia any increase in $\dot{V}_{\mathbf{A}}$, and

subsequently in P_{A,O_2} and P_{a,O_2} , would also lead to a significant increase in C_{a,O_2} , since the P_{a,O_2} values lie on the steep part of the O_2 equilibrium curve. As a consequence, the postulated compensation through changes in R_Q cannot operate, and $\dot{V}_{O_2,\max}$ can vary as a function of R_V .

This topic was examined by Ferretti & di Prampero (1995), who simulated the effects of independent changes in $R_{\rm V}$ on $\dot{V}_{\rm O_2,max}$ in normoxia and in hypoxia. The results showed that $R_{\rm V}$ provides less than 5% of the $\dot{V}_{\rm O_2,max}$ limitation in normoxia. In hypoxia, it appeared that the lower the inspired O₂ partial pressure ($P_{\rm I,O_2}$), the greater the contribution of $R_{\rm V}$ to $\dot{V}_{\rm O_2,max}$ limitation. If this is the case, the lower the $P_{\rm I,O_2}$ and thus $P_{\rm a,O_2}$, the greater the effects of a reduction in $R_{\rm V}$ on $\dot{V}_{\rm O_2,max}$.

Such a reduction can be achieved, for instance, by breathing low-density gas mixtures, such as He–O₂. In fact in the horse, He–O₂ breathing had no effect on $\dot{V}_{\rm O_2,max}$ in normoxia (Erickson *et al.* 1994), but increased (Erickson *et al.* 1995) $\dot{V}_{\rm O_2,max}$ in hypoxia. As far as humans are concerned, He–O₂ breathing has been reported to increase (Robertson & McRae, 1966; Brice & Welch, 1983), decrease (Murphy, Clark, Buckingham & Young, 1969; Spitler, Horvath, Kobayashi & Wagner, 1980) or have no effects (Bowers & Fox, 1967) on $\dot{V}_{\rm O_2,max}$ in normoxia. No previous studies, to our knowledge, have investigated the effects of He–O₂ breathing on $\dot{V}_{\rm O_2,max}$ in humans exposed to acute hypoxia.

The aim of the present study was to test the hypothesis that the role played by pulmonary ventilation in limiting $\dot{V}_{\rm O_2,max}$ is negligible in normoxia, at least in healthy non-athletic subjects, but is noticeable in hypoxia. To this purpose, $R_{\rm V}$ was specifically reduced by administering He-O₂ gas mixtures during exercise, and $\dot{V}_{\rm O_2,max}$ was measured in normoxia and in hypoxia.

METHODS

Subjects

After approval by the local ethical committee, eight male nonathletic subjects (age, 30 ± 3 years; mean \pm s.E.M.) were admitted to this study. All subjects gave written informed consent. They were all clinically healthy and had a normal resting and exercise electrocardiogram. None of them were involved in a specific training programme nor underwent prolonged altitude exposure during the six months preceding this study.

Methods

The O₂ consumption at the exercise steady state (\dot{V}_{O_2}) was measured by the standard open circuit method. During N₂-O₂ breathing, expired gas was collected into Douglas bags, and its volume was determined by means of a dry gas meter (Singer DTM 15; USA). During He-O₂ breathing, expired air was collected into an 80 l Tissot spirometer, which had previously been re-equilibrated for the use of He-O₂ mixtures. Expired O₂ and CO₂ fractions were measured by a paramagnetic O₂ analyser (Oxynos 1-C; Leybold Haereus, Hanau, Germany) and an infrared CO₂ analyser (LB-2; Leybold Haereus), respectively. The gas analysers were calibrated with gas mixtures of known composition, balanced with either N₂ or He. \dot{V}_{O_2} was computed by a standard procedure. CO_2 output, expired ventilation (\dot{V}_E) and the gas exchange ratio (R) were also calculated.

Blood lactate concentration ([La]_b) was measured by an electroenzymatic method (ESAT 6661 Lactat; Eppendorf, Hamburg, Germany) on 20 μ l blood samples from an ear lobe. Heart rate ($f_{\rm H}$) was measured continuously by electrocardiography (ETM 2000; Elmed, Augsburg, Germany). Arterial O₂ saturation ($S_{\rm a,O_2}$) was measured continuously by finger-tip infrared oxymetry (Pulsox-5; Minolta, Japan). Haemoglobin concentration ([Hb]) was determined by a standard photometric technique (B-Hemoglobin, Hemocue AB, Angelholm, Sweden) on 10 μ l ear lobe blood samples. Arterial blood pH, $P_{\rm a,O_2}$ and arterial CO₂ partial pressure ($P_{\rm a,CO_2}$) were measured by means of microelectrodes (Ciba Corning 280 blood gas system, Medfield, MA, USA) on 80 μ l arterialized blood samples from an ear lobe. $\dot{V}_{\rm A}$ was then calculated from the Bohr equation, assuming that $P_{\rm A,CO_2}$ was equal to $P_{\rm a,CO_2}$.

Exercise testing protocol

 $\dot{V}_{O_2,\max}$ was determined during graded exercise on the cycle ergometer. Each submaximal work load lasted 5 min. The lowest powers were 50 and 100 W for hypoxic and normoxic conditions, respectively. Power was then progressively increased by 50 W steps. The step increase was reduced to 25 W as the individual maximum was approached. \dot{V}_{O_2} was determined during the last minute of each work load. Successive work loads were separated by 5 min recovery intervals, during which blood samples were taken at 1, 3 and 5 min for the determination of $[La]_b$. At rest prior to exercise and immediately after the end of the highest work load, arterialized blood samples were obtained from the ear lobe and immediately analysed.

The individual $\dot{V}_{O_2,max}$ was established from the plateau attained by the relationship between oxygen uptake and mechanical power above a given power. When the plateau was not evident, the following criteria for establishing $\dot{V}_{O_2,max}$ were used: (i) the lack of increase in $f_{\rm H}$ between two successive work loads ($\Delta f_{\rm H} <$ 5 beats min⁻¹), (ii) R values higher than 1·1, and (iii) [La]_b higher than 10 mM. The minimum power requested at which \dot{V}_{O_2} was equal to $\dot{V}_{O_2,max}$ was defined as \dot{W}_{max} .

Four $\dot{V}_{O_2,\max}$ measurements were carried out. The first was always in ambient air (normoxia, $P_{I,O_2} = 150$ Torr). The other tests were performed while the subjects breathed either a N_2-O_2 mixture with an inspired O_2 fraction, F_{I,O_2} , of 0.11 ($P_{I,O_2} = 80$ Torr) or He- O_2 mixtures with F_{I,O_2} of 0.21 and 0.11 in a random order. Successive tests were separated by at least 2 days to avoid specific training effects. Except for ambient air, inspired gas was provided by a cylinder, and was administered via a Douglas bag acting as a volume buffer, through a 2.5 cm diameter hose. The length of the hose was 2.8 and 1.8 m for He- O_2 and N_2-O_2 breathing, respectively, in order to minimize differences in resistance along the hose between the two conditions. F_{I,O_2} at the entrance of the valve was continuously monitored. Ten minutes at rest were allowed for equilibration, before the exercise test was carried out.

Statistical analysis -

Data are reported as means \pm s.e.m. A two-way ANOVA for repeated measurements was used for statistical analysis. When significant interactions were found, a *post hoc* test (Tukey's test) was then applied for evaluation of the effect of He–O₂ breathing, both in normoxia and in hypoxia. Linear relationships were studied by regression analysis. The results were considered significant if P < 0.05.

ົ	1	7
4	T	1

	conditions at maximal exercise							
	$\dot{V}_{ m O_2,max}$ (1 min ⁻¹)	$\dot{V}_{O_2,max}$ (ml min ⁻¹ kg ⁻¹)	R	$\dot{W}_{ m max}$ (W)	\dot{V}_{E} BTPS (l min ⁻¹)	<i>V</i> _A BTPS (l min ^{−1})	$f_{\rm H}$ (beats min ⁻¹)	[La] _b (тм)
Normoxia								
$N_2 - O_2$	2.99 ± 0.26	43·9 ± 3·5	1·19 ± 0·06	236·3 ± 17·4	109·9 <u>+</u> 5·8	95.1 ± 6.6	186·0 ± 1·6	11·1 <u>+</u> 0·6
He–O ₂	3.07 ± 0.27	45.2 ± 3.7	1.20 ± 0.04	242.6 ± 16.4	139·1 <u>+</u> 14·2*	112.1 ± 11.0	186.0 ± 2.1	11.4 ± 0.8
Hypoxia								
N _a –O _a	1.96 ± 0.09	28.7 ± 1.4	1.23 ± 0.05	156.4 ± 9.9	107.8 ± 8.8	$82 \cdot 1 \pm 7 \cdot 4$	176.9 ± 3.3	$11\cdot 2 \pm 0\cdot 9$
He–O ₂	2.23 ± 0.16	* $32.6 \pm 2.3 *$	1.24 ± 0.03	183·6 ± 14·4*	141·3 ± 13·3*	$101.5 \pm 10.6*$	180.3 ± 3.0	11·7 ± 1·0

 Table 1. Mean values (± s.E.M.) of the measured and calculated variables in the four tested conditions at maximal exercise

 $\dot{V}_{O_2,max}$, maximal oxygen consumption; R, respiratory exchange ratio; \dot{W}_{max} , minimum power for which O_2 consumption is equal to $\dot{V}_{O_2,max}$; \dot{V}_E , expired ventilation; \dot{V}_A , alveolar ventilation; BTPS, body temperature and pressure, saturated; f_H , heart rate; [La]_b, blood lactate concentration. * P < 0.05 compared with N₂ breathing.

RESULTS

Submaximal exercise

All submaximal 5 min work loads could be completed by all the subjects. At any work load, the same submaximal \dot{V}_{O_2} values were observed with He–O₂ and N₂–O₂ breathing, whether in normoxia or in hypoxia. Thus, as appears from Fig. 1, the relationships between the corresponding \dot{V}_{O_2} values in He–O₂ and N₂–O₂ were not significantly different

from the identity line. This allowed the establishment of an overall linear relationship between \dot{V}_{O_2} and power, independent of F_{1,O_2} and breathed gas mixtures. This relationship (not shown in a figure) is described by the equation: $\dot{V}_{O_2} = 0.307 + 0.011 \ \dot{W} \ (\dot{W} \text{ being power, in W}; n = 128; adjusted <math>r^2 = 0.95; P < 0.001$), from which an average mechanical efficiency of exercise of 0.25 was obtained.

Figure 1. Oxygen consumption during $He-O_2$ and N_2-O_2 breathing at submaximal exercise

Oxygen consumption (\dot{V}_{O_2}) during He–O₂ breathing as a function of \dot{V}_{O_2} during N₂–O₂ breathing in normoxia (A) and in hypoxia (B). The regression lines (continuous lines; y = -0.03 + 0.99x, $r^2 = 0.97$, P < 0.001; and y = 0.04 + 0.98x, $r^2 = 0.93$, P < 0.001; for normoxia and hypoxia, respectively) are not significantly different from the identity lines (dotted lines).

	[Hb] (g l ⁻¹)	$S_{\mathbf{a},\mathbf{O_2}}$	P_{a,O_2} (Torr)	pH	P_{a,CO_2} (Torr)
Normoxia					
$N_2 - O_2$	173·1 ± 5·7	0.95 ± 0.01	86.5 ± 0.3	7.29 ± 0.01	29.9 ± 1.1
He-O ₂	171·5 ± 3·4	0.96 ± 0.00	$85\cdot4 \pm 1\cdot2$	7.28 ± 0.02	$27\cdot3 \pm 1\cdot8$
Hypoxia					
N,-O,	169.9 ± 3.6	0.66 ± 0.02	40.0 ± 2.2	7.32 ± 0.03	27.4 ± 1.7
He–O,	170.3 ± 2.5	$0.70 \pm 0.02*$	$46.6 \pm 1.9*$	7.30 ± 0.03	$24.7 \pm 1.4*$

Table 2. Mean values (\pm s.E.M.) of arterial blood parameters in the four tested conditions at maximal exercise

[Hb], haemoglobin concentration; S_{a,O_2} , arterial O_2 saturation; P_{a,O_2} , arterial O_2 partial pressure; pH, arterial pH; P_{a,CO_2} , arterial CO₂ partial pressure. * P < 0.05 compared with N₂ breathing.

Similarly, the same submaximal $\dot{V}_{\rm E}$ values were observed at each work load during He–O₂ and N₂–O₂ breathing, both in normoxia and hypoxia. Thus, the relationships between the corresponding $\dot{V}_{\rm E}$ values in He–O₂ and N₂–O₂ (Fig. 2) were not significantly different from the identity line. This indicates that the ventilatory equivalent was unaffected by helium breathing.

Maximal exercise

The measured and calculated metabolic variables at maximal exercise during the four experimental conditions are shown in Table 1. The corresponding blood O₂ transport parameters and blood pH data are shown in Table 2. Figure 3 shows the percentage gain in $\dot{V}_{\rm O_2,max}$, $\dot{W}_{\rm max}$, $\dot{V}_{\rm E}$, $\dot{V}_{\rm A}$ and $S_{\rm a,O_2}$ induced by replacing N₂ with He, in normoxia and

Figure 2. Pulmonary ventilation during $He-O_2$ and N_2-O_2 breathing at submaximal exercise

Expired ventilation ($\dot{V}_{\rm E}$) during He–O₂ breathing as a function of $\dot{V}_{\rm E}$ during N₂–O₂ breathing in normoxia (A) and in hypoxia (B). The regression lines (continuous lines; y = 0.51 + 1.12x, $r^2 = 0.81$, P < 0.001; and y = 4.5 + 1.04x, $r^2 = 0.87$, P < 0.001; for normoxia and hypoxia, respectively) are not significantly different from the identity lines (dotted lines).

hypoxia, respectively. In normoxia, $\dot{V}_{\rm E}$ (+27 ± 8%) and $\dot{V}_{\rm A}$ (+18 ± 7%) increased significantly without any change in $\dot{V}_{\rm 0_2,max}$ (+3 ± 2%, n.s. (not significant)). In contrast, in hypoxia, the significantly higher $\dot{V}_{\rm E}$ (+31 ± 9%) and $\dot{V}_{\rm A}$ (+24 ± 9%) values were accompanied by a significant increase in $\dot{V}_{\rm 0_2,max}$ (+14 ± 4%). The variations in $\dot{V}_{\rm 0_2,max}$ were paralleled by the changes in mechanical power (+3 ± 2%, n.s.; and +17 ± 2% in normoxia and hypoxia, respectively).

The increases in $\dot{V}_{\rm E}$ and $\dot{V}_{\rm A}$ were associated with a drop in $P_{\rm a,CO_2}$, which was significant in hypoxia (-10 ± 4%), but not in normoxia (-9 ± 6%). At maximal exercise R, [La]_b, [Hb] and $f_{\rm H}$ were the same in normoxia and in hypoxia. $S_{\rm a,O_2}$ and $P_{\rm a,O_2}$ were significantly higher during He–O₂ than during N₂–O₂ breathing (+6 ± 2 and +17 ± 5%, respectively) in hypoxia. This was not the case for normoxia.

DISCUSSION

The reduction in the ventilatory resistance to O_2 flow

The reduction in $R_{\rm v}$ induced by He–O₂ breathing can be related to the combined effects of lower density and higher viscosity of He with respect to N₂ (Murphy *et al.* 1969; Papamoschou, 1995). At a given Reynolds number, all other variables being constant, gas flow is inversely proportional to the ratio of inertial to viscous forces. Since the density of He is about 7 times lower and its viscosity 8% higher than that of N₂, higher gas flows occur at all Reynolds numbers when He–O₂ mixtures rather than N₂–O₂ mixtures are breathed. As a consequence: (i) the transition from laminar to turbulent flow takes place at higher flows in the former than in the latter case, and (ii) the respiratory unloading during He-O_2 breathing persists also under fully turbulent flow conditions.

For a given length, average diameter and pressure gradient of the airways, the gas flow ratio is given by (Papamoschou, 1995):

$$\frac{\dot{V}_{\rm He-O_2}}{\dot{V}_{\rm N_2-O_2}} \approx \sqrt{\frac{\rho f_{\rm N_2-O_2}}{\rho f_{\rm He-O_2}}},\tag{2}$$

where ρ is the gas density and f the friction factor. Under conditions of turbulent flow, f is constant, and the increase in gas flow during He– O_2 breathing can be predicted from ρ changes only. Assuming that air flow at maximal exercise is turbulent in most of the airways, it can be calculated that $V_{\rm E}$ should increase by approximately 70 and 100% during $He-O_2$ breathing in normoxia and hypoxia, respectively. In contrast to this prediction, $\dot{V}_{\rm E}$ was 27 and 31 % and $\dot{V}_{\rm A}$ was 18 and 24% higher during $He-O_2$ than N_2-O_2 breathing in normoxia and hypoxia, respectively, i.e. less than expected on a merely physical basis. These findings in normoxia are in good agreement with previous reports at maximal exercise (Wilson & Welch, 1980; Brice & Welch, 1983), although other investigators (Spitler et al. 1980) observed a lower increase in $\dot{V}_{\rm E}$ during He–O₂ breathing. Three factors may explain this apparent discrepancy. Firstly, transitional and turbulent flows are attained at ${\sim}3$ times higher flows in $He-O_2$ than in N_2-O_2 . Thus turbulent flow would appear in a smaller fraction of the airways and for a shorter time during a respiratory cycle in the former than in the latter

Figure 3. Percentage changes in mechanical and respiratory variables at maximal exercise during $He-O_2$ breathing

Percentage increase in maximal O_2 consumption $(\dot{V}_{O_2,max})$, minimum power requiring an O_2 consumption equal to $\dot{V}_{O_2,max}$ (\dot{W}_{max}), expired ventilation (\dot{V}_E), alveolar ventilation (\dot{V}_A) and arterial O_2 saturation (S_{a,O_2}), induced by He– O_2 breathing in normoxia (\Box) and hypoxia (\blacksquare). * P < 0.05. Error bars are s.E.M.

case (Murphy et al. 1969). Secondly, mechanical limitation of exercise hyperphoea, although barely apparent during maximal exercise in air (Olafsson & Hyatt, 1969; Younes & Kivinen, 1984), may prevent a greater increase in $\dot{V}_{\rm E}$ than that observed in the present study. Finally, the hyperventilation induced by respiratory unloading is obviously accompanied by a reduction of $P_{\rm a,CO_2}$. This, in turn, may inhibit central chemoreceptor activity, and thus depress the activity of the respiratory centres. The outcome would be a lower increase in $\dot{V}_{\rm E}$ and $\dot{V}_{\rm A}$ than predicted. These three mechanisms may also explain the finding of similar $\dot{V}_{\rm E}$ values during N₂-O₂ and He-O₂ breathing at submaximal exercise (Fig. 2), in good agreement with other studies in normoxia (Bowers & Fox, 1967; Murphy et al. 1969; Brice & Welch, 1983).

Factors limiting maximal O_2 consumption after ventilatory unloading

The main finding of the present study is that the reduction in $R_{\rm v}$ induced by He–O₂ breathing resulted in a significant increase in $\dot{V}_{\rm O_2,max}$ during hypoxic exercise. This was not the case in normoxia. The present results agree with those obtained by others in the horse (Erickson *et al.* 1994, 1995), and appear compatible with the tested hypothesis that the role played by pulmonary ventilation and the gas exchange system in limiting $\dot{V}_{\rm O_2,max}$ is important in hypoxia, but negligible in normoxia. The results of the present study can be interpreted by means of the multifactorial model of $\dot{V}_{O_2,\max}$ limitation. As previously pointed out, this model is an application of the O_2 conductance equation to maximal exercise. As far as the ventilatory conductance to O_2 flow ($G_{\rm V} = R_{\rm V}^{-1}$) is concerned, ventilatory O_2 transfer is equal to:

$$\dot{V}_{O_2,max} = G_V(P_{I,O_2} - P_{A,O_2}) = \dot{V}_A \beta_g (P_{I,O_2} - P_{A,O_2}),$$
 (3)

where $\beta_{\rm g}$ is the O₂ transfer coefficient in the gas phase. Since in standard conditions $\beta_{\rm g}$ is a constant (1·16 ml l⁻¹ Torr⁻¹ at 37 °C; see Piiper, Dejours, Haab & Rahn, 1971), the increase in $G_{\rm V}$ in this study turns out to be equivalent to that in $\dot{V}_{\rm A}$. A quantitative analysis of the ventilatory limitation to $\dot{V}_{\rm O_2,max}$ can thus be attempted, on the assumption of a steady state for $\dot{V}_{\rm A}$ and $\dot{V}_{\rm O_2,max}$.

If one resistance to O_2 flow is specifically and independently modified and the resulting effect on $\dot{V}_{O_2,\max}$ is looked at, the fractional limitation to $\dot{V}_{O_2,\max}$ imposed by that resistance (F_1) is given by:

$$F_{\rm i} = {\rm d}(\dot{V}_{\rm O_2, max} \text{ ratio})/{\rm d}(\Delta R_{\rm i}/R_{\rm i}), \tag{4}$$

where the $\dot{V}_{O_2,max}$ ratio is the $\dot{V}_{O_2,max}$ before, divided by the $\dot{V}_{O_2,max}$ after, an acute manoeuvre leading to a change in the resistance at stake, and the term $\Delta R_{\rm l}/R_{\rm l}$ is the induced relative change in the resistance at stake (di Prampero & Ferretti, 1990; Ferretti & di Prampero, 1995). The $\dot{V}_{O_2,max}$ ratio is plotted as a function of the relative changes in $R_{\rm V}$ in

Figure 4. Effect of a change in ventilatory resistance to O_2 flow on maximal O_2 consumption

The changes in maximal O_2 consumption $(\dot{V}_{O_2,\max})$ following the acute changes in the ventilatory resistance to O_2 flow (R_V) , are presented on the y-axis as the ratio between the $\dot{V}_{O_2,\max}$ before and the $\dot{V}_{O_2,\max}$ after the ventilatory unloading. The relative changes in R_V , expressed as the R_V difference divided by the R_V before ventilatory unloading $(\Delta R_V/R_V)$ are given on the x-axis. $\dot{V}_{O_2,\max}$ ratios below 1 indicate an increase in $\dot{V}_{O_2,\max}$ and $\Delta R_V/R_V$ values below 0 indicate a decrease in R_V . The continuous lines refer to the results of a simulation in normoxia (O; Ferretti & di Prampero, 1995) and hypoxia (inspired O_2 fraction of 0.11, Δ). The dashed line represents the relationship that would apply in the case of a linear O_2 transport system in normoxia (Ferretti & di Prampero, 1995). The slopes of these lines are equal to the fractional limitation to $\dot{V}_{O_2,\max}$ imposed by R_V . The results of the present study are plotted as \bullet and \blacktriangle , for normoxia and hypoxia, respectively. Fig. 4. As far as normoxia is concerned, two lines are shown, for a linear (dashed line) and non-linear (continuous line, O) solution of the model, respectively (Ferretti & di Prampero, 1995). The point corresponding to the mean results of this study (\bullet) is also given. The experimental point lies between the two lines, closer to that for a linear solution. This, associated with the lack of increase in P_{a,O_2} in normoxia, may undermine the argument of a compensatory increase in $R_{\rm Q}$ preventing $\dot{V}_{\rm O_2,max}$ from changing. It is noteworthy, however, that for the decrease in $R_{\rm v}$ attained in this study, the average error of a $\dot{V}_{\mathrm{O}_2,\mathrm{max}}$ determination (Katch, Sady & Freedson, 1982; Howley, Bassett & Welch, 1995) does not allow discrimination between the linear and the non-linear solution of Fig. 4. Concerning hypoxia, the experimental point \blacktriangle lies somewhat below the theoretical line (continuous line, Δ), suggesting a potential additional effect on a different resistance, perhaps related to pulmonary gas exchange.

In conclusion, the results of this study agree with the tested hypothesis that the lungs play a negligible role in limiting $V_{O_{2,\max}}$ in normoxia, at least in non-athletic subjects. Indeed, no significant changes in $\dot{V}_{O_2,max}$, despite the increase in \dot{V}_E and \dot{V}_{A} induced by breathing He–O₂ gas mixtures, were observed. In contrast, in hypoxia the induced increase in $V_{\rm E}$ and \dot{V}_{A} was accompanied by significantly higher $V_{O_{2},max}$ values. This appears compatible with the hypothesis of a significant role of ventilation in limiting $V_{O_2,max}$ in hypoxia. It remains unclear whether the lack of significant $\dot{V}_{O_2,max}$ changes during He-O₂ breathing in normoxia was an effect of a non-linear response of the O₂ transfer system, as proposed (di Prampero & Ferretti, 1990). Although the present data suggest that this may not be the case, greater changes in the ventilatory resistance to O_2 flow ought to be achieved to obtain a clear answer to this question.

- BLOMQVIST, C. G. & SALTIN, B. (1983). Cardiovascular adaptations to physical training. *Annual Review of Physiology* **45**, 169–189.
- BOWERS, R. W. & Fox, E. L. (1967). Metabolic and thermal responses of man in various He-O₂ and air environments. *Journal of Applied Physiology* 23, 561–565.
- BRICE, A. G. & WELCH, H. G. (1983). Metabolic and cardiorespiratory responses to He-O_2 breathing during exercise. Journal of Applied Physiology **54**, 387–392.
- CLAUSEN, J. P. (1977). Effect of physical training on cardiovascular adjustments to exercise in man. *Physiological Reviews* 57, 779–815.
- DI PRAMPERO, P. E. (1985). Metabolic and circulatory limitations to $\dot{V}_{0_2,\max}$ at the whole animal level. Journal of Experimental Biology **115**, 319–331.
- DI PRAMPERO, P. E. & FERRETTI, G. (1990). Factors limiting maximal oxygen consumption in humans. *Respiration Physiology* 80, 113–128.
- EKBLOM, B. (1986). Factors determining maximal aerobic power. Acta Physiologica Scandinavica, suppl. 556, 15–19.

- ERICKSON, B. K., SEAMAN, J., KUBO, K., HIRAGA, A., KAI, M., YAMAYA, Y. & WAGNER, P. D. (1994). Mechanism of reduction in alveolar-arterial P_{O_2} difference by helium breathing in the exercising horse. Journal of Applied Physiology **76**, 2794–2801.
- ERICKSON, B. K., SEAMAN, J., KUBO, K., HIRAGA, A., KAI, M., YAMAYA, Y. & WAGNER, P. D. (1995). Hypoxic helium breathing does not reduce alveolar-arterial $P_{\rm O_2}$ difference in the horse. *Respiration Physiology* **100**, 253–260.
- FERRETTI, G. & DI PRAMPERO, P. E. (1995). Factors limiting maximal O_2 consumption: effects of acute changes in ventilation. *Respiration Physiology* **99**, 259–271.
- HOWLEY, E. T., BASSETT, D. R. JR & WELCH, H. G. (1995). Criteria for maximal oxygen uptake: review and commentary. *Medicine and Science in Sports and Exercise* 27, 1292–1301.
- KATCH, V. L., SADY, S. S. & FREEDSON, P. (1982). Biological variability in maximum aerobic power. Medicine and Science in Sports and Exercise 14, 21–25.
- MURPHY, T. M., CLARK, W. H., BUCKINGHAM, I. P. B. & YOUNG, W. A. (1969). Respiratory gas exchange in exercise during helium-oxygen breathing. *Journal of Applied Physiology* **26**, 303–307.
- OLAFSSON, S. & HYATT, R. E. (1969). Ventilatory mechanics and expiratory flow limitation during exercise in normal subjects. *Journal of Clinical Investigation* 48, 564–573.
- PAPAMOSCHOU, D. (1995). Theoretical validation of the respiratory benefits of helium-oxygen mixtures. *Respiration Physiology* **99**, 183-190.
- PIIPER, J., DEJOURS, P., HAAB, P. & RAHN, H. (1971). Concepts and basic quantities in gas exchange physiology. *Respiration Physiology* 13, 292–304.
- ROBERTSON, W. G. & MCRAE, G. L. (1966). Study of man during a 56 day exposure to an O₂-He atmosphere at 258 mmHg total pressure; VI, Respiratory function. *Aerospace Medicine* **37**, 578–582.
- SPITLER, D. L., HORVATH, S. M., KOBAYASHI, K. & WAGNER, J. A. (1980). Work performance breathing normoxic nitrogen or helium gas mixtures. *European Journal of Applied Physiology* **43**, 157–166.
- TURNER, D. L., HOPPELER, H., NOTI, C., GURTNER, H. P., GERBER, H., SCHENA, F., KAYSER, B. & FERRETTI, G. (1993). Limitations to $\dot{V}_{O_2,max}$ in humans after blood retransfusion. *Respiration Physiology* **92**, 329–341.
- WAGNER, P. D. (1992). Gas exchange and peripheral diffusion limitation. *Medicine and Science in Sports and Exercise* 24, 54-58.
- WAGNER, P. D. (1993). Algebraic analysis of the determinants of $\dot{V}_{O_2,max}$. Respiration Physiology **93**, 221–237.
- WILSON, G. D. & WELCH, H. G. (1980). Effects of varying concentration of N_2/O_2 and He/O_2 on exercise tolerance in man. *Medicine and Science in Sports and Exercise* **12**, 380–384.
- YOUNES, M. & KIVINEN, G. (1984). Respiratory mechanics and breathing patterns during and following maximal exercise. *Journal* of Applied Physiology 57, 1773–1782.

Acknowledgements

The set-up for gas mixture inspiration and the re-equilibration of the spirometer for helium-oxygen breathing were done by Christian Moia. We thank Paolo Cerretelli and Arsenio Veicsteinas for their useful comments in the preparation of the manuscript. Fabio Esposito was a visiting fellow from the University of Brescia, Italy. This study was supported by a grant from the Swiss Federal Sport Commission.

Author's permanent address

F. Esposito: Sezione di Fisiologia Umana, Dipartimento di Scienze Biomediche e Biotecnologie, University of Brescia, via Valsabbina 19, I-25125 Brescia, Italy.

Author's email address

G. Ferretti: ferretti@cmu.unige.ch

Received 21 October 1996; accepted 12 May 1997.