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Glycine receptors in cultured chick sympathetic neurons are
excitatory and trigger neurotransmitter release
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1. Total RNA isolated from embryonic chick paravertebral sympathetic ganglia was used in a
reverse transcription-polymerase chain reaction (RT-PCR) assay with a pair of degenerate
oligonucleotide primers deduced from conserved regions of mammalian glycine receptor
a-subunits. Three classes of cDNA were identified which encode portions of the chicken
homologues of the mammalian glycine receptor al, a2 and a3 subunits.

2. The presence of functional glycine receptors was investigated in the whole-cell configuration
of the patch-clamp technique in neurons dissociated from the ganglia and kept in culture for
7-8 days. In cells voltage clamped to -70 mV, glycine consistently induced inward currents
in a concentration-dependent manner and elicited half-maximal peak current amplitudes at
43/uM.

3. The steady-state current-voltage relation for glycine-induced currents was linear between
+80 and -60 mV, but showed outward rectification at more hyperpolarized potentials.
Reversal potentials of these currents shifted with changes in intracellular chloride
concentrations and matched the calculated Nernst potentials for chloride.

4. /6-Alanine and taurine were significantly less potent than glycine in triggering inward
currents, with half-maximal responses at 79 and 86 /M, respectively. At maximally active
concentrations, /1-alanine-evoked currents were identical in amplitude to those induced by
glycine. Taurine-evoked currents, in contrast, never reached the same amplitude as glycine-
induced currents.

5. The classical glycine receptor antagonist strychnine reversibly reduced glycine-induced
currents, with half-maximal inhibition occurring at 62 nm. Two more recently characterized
glycine receptor antagonists, isonipecotic acid (half-maximal inhibition at 2 mM) and
7-trifluoromethyl-4-hydroxyquinoline-3-carboxylic acid (half-maximal inhibition at 67 /uM),
also blocked glycine-evoked currents in a reversible manner. The chloride channel blocker
picrotoxin reduced glycine-evoked currents, with half-maximal effects at 348 SM. Inhibition
by the glycine receptor channel blocker cyanotriphenylborate was half-maximal at 4/SM.

6. Apart from evoking inward currents, glycine occasionally triggered short (< 100 ms) spike-
like currents which were abolished by hexamethonium and thus reflected synaptic release of
endogenous acetylcholine. In addition, glycine caused Ca2+-dependent and tetrodotoxin-
sensitive tritium overflow from neurons previously labelled with [3H]noradrenaline. This
stimulatory action of glycine was reduced in the presence of strychnine and after treatment
with the chloride uptake inhibitor furosemide (frusemide).

7. In 65% of neurons loaded with the Ca2P indicator fura-2 acetoxymethyl ester, glycine
increased the ratio of the fluorescence signal obtained with excitation wavelengths of 340 and
380 nm, respectively, which indicates a rise in intracellular Ca2+ concentration.

8. The results show that sympathetic neurons contain transcripts for different glycine receptor
a-subunits and carry functional heteromeric glycine receptors which depolarize the majority
of neurons to trigger transmitter release.
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Glycine and y-aminobutyric acid (GABA) represent the
predominating inhibitory neurotransmitters in the central
nervous system, with glycine being of major importance in
the spinal cord, whereas GABA prevails in the brain
(Aprison, 1990). In general, these two amino acids exert
their inhibitory actions by binding to ligand-gated chloride
channels with ensuing anion influx and hyperpolarization
of postsynaptic neurons. More recently, however, glycine
and GABA have also been reported to cause neuronal
depolarization (Reichling, Kyrozis, Wang & MacDermott,
1994; Owens, Boyce, Davis & Kriegstein, 1996), particularly
in developing central neurons (Cherubini, Gaiarsa & Ben-
Ari, 1991; Wang, Reichling, Kyrozis & MacDermott, 1994).
This effect is most commonly related to high intraneuronal
chloride concentrations (Reichling et al. 1994; Owens et al.
1996). In the peripheral nervous system, roles for glycine or
GABA as neurotransmitters are less well defined.

Receptors for glycine are characterized by nanomolar
affinities for strychnine (Young & Snyder, 1973) and are
widely distributed in the central nervous system (for review
see Betz, 1991). There, these receptors are composed of
two types of integral, membrane-spanning subunits with
molecular weights of 48 kDa (a) and 58 kDa (/3). The
a-subunits contain the ligand binding sites of glycine
receptors. Currently, at least four different mammalian
a-subunits (al to a4) have been characterized by molecular
cloning (Matzenbach et al. 1994), and alternative splicing of
a-subunits may result in further heterogeneity (for review
see Kuhse, Betz & Kirsch, 1995). Glycine receptor a-subunit
transcripts are differentially expressed in various areas of
the central nervous system, whereas the /3-subunit mRNA is
abundant throughout the brain and spinal cord (Betz, 1991).
Upon heterologous expression, a- and /3-subunits form
hetero-oligomers with a stoichiometry of 3a: 2/3 (Kuhse,
Laube, Magalei & Betz, 1993), but a-subunits can also form
homomeric receptors (Schmieden, Grenningloh, Schofield &
Betz, 1989). Despite detailed knowledge about glycine
receptors in heterolourous expression systems, the composition
of native glycine receptors in the central nervous system
still remains unknown.

Very little is known about glycine receptors in the
peripheral nervous system. There is only one recent report
which demonstrated glycine-induced currents in cultured
neurons of embryonic chick ciliary ganglia (Zhang & Berg,
1995). To unravel whether glycine receptors are restricted to
these neurons or whether they are more widespread in the
peripheral nervous system, we searched for glycine receptors
in sympathetic ganglia of the same species. Embryonic chick
sympathetic neurons in vitro constitute a frequently used
model system to investigate neuronal differentiation (e.g.
Ernsberger & Rohrer, 1996) as well as the function of neuro-
transmitter receptors (Boehm & Huck, 1997). Our results
show that these neurons contain transcripts for at least
three different a-subunits as well as functional strychnine-
sensitive glycine receptors. Furthermore, these receptors are
revealed to be excitatory rather than inhibitory.

METHODS
Reverse transcription-polymerase chain reaction (RT-PCR)
amplification
Total RNA was isolated from paravertebral sympathetic ganglia,
dissected from 14-day-old chick embryos killed by decapitation,
using RNAzol B (AGS, Heidelberg, Germany), treated with RQ1
RNAse-free DNAse (Promega, Mannheim, Germany), and first-
strand cDNA was synthesized using random nonamer primers
(Stratagene, Heidelberg, Germany) and moloney murine leukaemia
virus reverse transcriptase (Promega). Partial cDNAs encoding
chicken glycine receptor a-subunits were amplified using two
degenerate oligonucleotide primers: DGA1, 5'-TACGTCGAC
GCXAT(ATC)GA(TC)AT(ATC)TGGATG-3' (where X = G,
A, T and C), which is based on the DNA sequences that encode a
region spanning the start of the third membrane-spanning domain
[YVKA I D I WM] and DGA2, 5'-GTAGAATTCCCA(GA)
TA(GA)AAXAT(GA)TT(GA)AA-3', which is based on the
DNA sequences that encode part of the fourth membrane-spanning
domain [FN(I/M)FYW(V/I)(T/I)Y] of mammalian glycine
receptor a-subunits (Matzenbach et al. 1994). Amplification was for
40 cycles of 94 °C for 1 min, 50 °C for 1 min and 72 °C for 1 min.
Products were cloned into pBluescript SK- (Stratagene), taking
advantage of restriction endonuclease recognition sites (in bold)
incorporated into the PCR primers, and sequenced.

Cell culture
Chick embryos (14 days old) were killed by decapitation, and
lumbosacral paravertebral sympathetic ganglia were dissected as
previously described in more detail (Boehm et al. 1991; von Holst et
al. 1995). Cells were resuspended in either Dulbecco's modified
Eagle's medium (Gibco BRL) or Ham's F-14 Medium (Gibco BRL)
containing 25000 IU F' penicillin and 25 mg F' streptomycin
(Gibco BRL), 10 /tg F' nerve growth factor (prepared according to
Suda et al. 1978, or purchased from Gibco BRL), 5% (v/v) fetal calf
serum and 10% (v/v) horse serum and were plated on polystyrol
discs (diameter 5 mm) coated with rat tail collagen (Biomedical
Technologies, Stoughton, MA, USA) for superfusion experiments,
on glass coverslips coated with polyornithine (Sigma) and laminin
(Gibco BRL) for fura-2 imaging, and on 35 mm culture dishes coated
again with polyornithine and laminin for electrophysiological
experiments. Cultures were kept at 37 °C in a humidified 5% CO2
atmosphere, and two thirds of the medium were exchanged every
3 days.

Electrophysiological experiments
Experiments were performed at room temperature (20-24 °C) on
the somata of neurons after 7-8 days in vitro, using the whole-cell
mode of the patch-clamp technique (Hamill, Marty, Neher,
Sakmann & Sigworth, 1981) as described previously (Boehm & Betz,
1997). The internal (pipette) solution contained (mM): CsCl, 140;
CaCl2, 1 59; EGTA, 10; Hepes, 10; adjusted to pH 7*3 with NaOH.
In order to change intracellular chloride concentrations, 120 mM
CsCl was replaced by iso-osmotic concentrations of sodium
isethionate. The bathing (extracellular) solution contained (mM):
NaCl, 140; KCl, 6-0; CaCl2, 2-0; MgCl2, 2-0; glucose, 20; Hepes,
10; adjusted to pH 7*4 with NaOH.

Glycine and all other drugs were applied via a DAD- 12 drug
application device (Adams and List, WVestbury, NY, USA). This
superfusion system delivers buffers from twelve reservoirs under
pressure (200-400 mm H2O) via a capillary with an inner diameter
of about 100 ,um and permits a complete exchange of solutions
surrounding the cells under investigation within less than 100 mis.
Currents were induced every 20 s by the application of glycine and
were quantified by measuring peak current amplitudes. Glycine-
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induced currents in the presence of various antagonists were
compared with control currents recorded before and after the
application of antagonists. Unless stated otherwise, antagonists
were always applied before glycine.

[3H]Noradrenaline uptake and superfusion experiments
The methods for superfusion experiments with cultured chick
sympathetic neurons have previously been described in detail
(Boehm, Huck, Drobny & Singer, 1991). After 7-8 days in vitro, the
cultures were incubated in 0 03 ZM [3H]noradrenaline in culture
medium containing 1 mm ascorbic acid for 60 min at a temperature
of 36 'C. Thereafter, culture discs were transferred to small
chambers and superfused with a buffer containing (mM): NaCl, 120;
KCl, 6-0; CaCl2, 2-0; MgCl2, 2'0; glucose, 20; Hepes, 10; fumaric
acid, 0 5; sodium pyruvate, 5 0; ascorbic acid, 0 57; adjusted to
pH 7-4 with NaOH. Superfusion was performed at a temperature of
250C and at a rate of 1I0 ml min-. After a 60 min washout period,
4 min fractions of superfusate were collected. Glycine was included
in the superfusion medium from 72 to 76 min, and electrical stimuli
(24 monophasic rectangular pulses (0 5 ms) at 0'1 Hz, 50 V cm-',
50 mA) were applied from 92 to 96 min of superfusion. Modulatory
agents (tetrodotoxin, CdCl2, strychnine and furosemide) were
present in the buffer from 50 min of superfusion (i.e. 10 min before
the beginning of sample collection) and were kept at constant
concentrations until the end of experiments. Then, the residual
radioactivity was extracted from the cultures by immersion of the
discs in 2% (v/v) perchloric acid, followed by sonication. Radio-
activity in extracts and collected fractions was determined by
liquid scintillation counting.

Spontaneous tritium outflow per 4 min fraction represents the
amount of radioactivity in a 4 min superfusate fraction given as a
percentage of the radioactivity in the cells at the beginning of the
respective collection period. Stimulation-evoked overflow was
calculated as the difference between total outflow during and after
stimulation and the estimated basal outflow, which was assumed to
decline linearly from the sample preceding stimulation to that
8-12 min after commencement of stimulation. Glycine-evoked
overflow was expressed as a percentage of the fractional basal
outflow preceding the application of the amino acid. Effects of
modulatory agents on glycine- and electrically induced overflow
were calculated as a percentage of the respective overflow in their
absence (% of control).

Fura-2 imaging
Neuronal cell cultures on glass coverslips were incubated in culture
medium containing 2% (w/v) bovine serum albumin (instead of
serum) and 5juM fura-2 acetoxymethyl ester (fura-2 AM) for
30 min at 360C in 5% C02. Thereafter, coverslips were transferred
to a coverslip chamber (Adams and List), which was placed on an
inverted microscope (Nikon Diaphot 300), and the cultures were
washed with and incubated in the same buffer as used for
superfusion experiments (see above). Drugs were applied via a
gravity-driven six-barrel needle device capped by a glass capillary
with a tip diameter of about 200 ,um. This tip was placed in close
proximity (< 300 /um) to the cells under investigation in order to
permit a complete exchange of the solutions surrounding these cells
within about 1 s.

Changes in intracellular Ca2+ concentration were determined in
single neurons by the two-wavelength method described by
Grynkiewicz, Poenie & Tsien (1985) with excitation at 340 and
380 nm, and emission at 500 nm, where increases in the ratio of
the fluorescence signal obtained with excitation at 340 and 380 nm
(F340/F380), respectively, reflect rises in the Ca2P concentration.
Excitation was performed with light from a 100 W xenon lamp

(Nikon), which was directed via appropriate excitation filters, a
dichromatic mirror and a Nikon Fluor x 100/1'3 oil-immersion
objective to the sample. Images of fluorescence signals were
registered via an intensified CCD camera (Photonic Sciences, East
Sussex, UK). Positioning of the excitation filters in a filterwheel
with a stepping motor and registration of images once in 5 s was
controlled by the QuantiCell 700 software (version 1.7; Applied
Imaging, Sunderland, UK). The ratio F340/F380 was registered on-
line and was subsequently averaged (off-line) over the entire area of
single neuronal somata.

Statistics
All data are given as arithmetic means + S.E.M. and n is the number
of cell culture discs in superfusion experiments and the number of
single cells in electrophysiological and fura-2 imaging experiments.
Concentration-response curves were fitted to experimentally
obtained data points by using the ALLFIT program (DeLean,
Munson & Rodbard, 1978). This program determines qualities of
fitted results and significances of differences between single
concentration-response curves by simultaneous fitting with shared
parameters and subsequent calculation of the F statistic on the
resulting 'extra sum of squares' (DeLean et al. 1978). Significance of
differences between single data points was evaluated by Student's
unpaired t test.

Materials
(-)-[3H]Noradrenaline (59 7 Ci mmol-F) was obtained from NEN
(Dreieich, Germany); glycine, /8-alanine, taurine, strychnine,
furosemide (frusemide) from Sigma; 7-trifluoromethyl-4-hydroxy-
quinoline-3-carboxylic acid (7TFQA) and isonipecotic acid from
Aldrich; tetrodotoxin (TTX) from Latoxan (Rosans, France);
cyanotriphenylborate (CTB) from Johnson Matthey Alfa Products
(Karlsruhe, Germany); and fura-2 AM from Molecular Probes.

RESULTS
Amplification of chicken glycine receptor subunit
partial cDNAs
To investigate whether glycine receptor subunit genes are
expressed in embryonic sympathetic ganglia we performed a
PCR-based survey, using a pair of degenerate oligo-
nucleotide primers that are predicted to amplify cDNA
sequences encoding the large presumed intracellular loop of
glycine receptor a-subunits. Using these primers in the
PCR, a cDNA product of -400 bp could be readily amplified
from 14-day-old chick embryo paravertebral sympathetic
ganglia first-strand cDNA (Fig. 1A). This product did not
derive from contaminating genomic DNA, since when
reverse transcriptase was omitted from the cDNA synthesis
reaction, no product was observed (Fig. 1A). Cloning of the
sympathetic ganglion PCR product and subsequent DNA
sequencing resulted in the identification of multiple clones
for three different cDNAs that encode parts of polypeptides
(named chick al, z2 and a3; Fig. 1B) which show high
sequence similarity (94, 91 and 85% identity, respectively)
to the corresponding portions of the rat glycine receptor a.l,
a2 and az3 subunits (Fig. 1 C).

Glycine-induced currents in chick sympathetic
neurons
To investigate whether the presence of a-subunit transcripts
was accompanied by the expression of functional glycine
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receptors, whole-cell patch-clamp recordings were performed
on chick sympathetic neurons after 7-8 days in vitro. The
intracellular solution routinely contained 143 mm chloride,
whereas extracellular chloride amounted to 154 mM. Under
these ionic conditions, at a holding potential of -70 mV, the
application of glycine at concentrations from 10 gCm to 1 mM
elicited inward currents of increasing amplitudes: in an
initial set of nine neurons, peak amplitudes of glycine-
evoked inward currents were half-maximal at 46&4 + 12 3 /uM

A 1 2 3

Holst, H. Rohrer and H. Betz J Physiol. 504.3

and reached a maximum of 469 + 44 pA. The Hill coefficient
for glycine derived from this concentration-response curve
was 1P8 + 0 7 (not shown).

Steady-state current-voltage (I-V) curves were obtained by
measuring peak currents induced by 300,uM glycine at
membrane potentials between -100 and +80 mV (Fig. 2).
With 143 mm intracellular chloride (mainly CsCl), the I-V
curve was linear between -60 and +80 mV, but showed
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Figure 1. Isolation of chicken glycine receptor a-subunit partial cDNAs from embryonic chick
sympathetic ganglia
A, agarose gel electrophoretic analysis of PCR products amplified using the degenerate primers DGAI and
DGA2. Lane 1, no DNA control; lane 2, a control in which reverse transcriptase was omitted from the first-
strand cDNA synthesis reaction; lane 3, chick embryonic day 14 sympathetic ganglion first-strand cDNA;
lane 4, molecular weight marker (1 kb ladder, Gibco BRL). B, alignment of the deduced partial sequences of
the chicken glycine receptor at, a2 and a3 subunits generated with the aid of the PILEUP programme.
Bars below the sequences represent parts of the third and fourth membrane-spanning segments; positions
at which all three of the sequences are identical are boxed. C, similarity of avian and rat glycine receptor
a-subunit sequences. To determine percentage identities, the partial amino-acid sequences of the chicken
glycine receptor subunits were aligned with the corresponding portions of the rat glycine receptor al, a2
and a3 subunits (see Matzenbach et al. 1994, and references cited therein) using the programme GAP of the
Wisconsin Software Package (Genetics Computer Group, Wisconsin, USA).
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outward rectification at more hyperpolarized potentials
(Fig. 2B). Similar outward rectification has previously been
reported for glycine-evoked currents in central neurons
(e.g. Akaike & Kaneda, 1989). The reversal potential was
-4-8 + 4-6 mV (n = 4), which was close to the calculated
Nernst equilibrium potential for chloride (-P18 mV). Replace-
ment of 120 mm CsCl by sodium isethionate (i.e. 23 mM
intracellular Cl-) shifted the reversal potential to -48-3 +
2-7 mV (n = 4), which again matched the calculated
equilibrium potential for chloride (-47-9 mV).

Pharmacology of glycine receptors in chick
sympathetic neurons
Peak amplitudes and activation kinetics of glycine-induced
currents were concentration dependent with maximal
amplitudes and shortest time-to-peak intervals at 1 mM
glycine (Fig. 3A); currents induced by glycine reached half-
maximal peak amplitudes at 43-4 + 4 0 ,UM (Fig. 3D). Apart
from glycine itself, the most potent agonists at native
glycine receptors in central neurons are the amino acids
,/-alanine and taurine (Betz, 1991; Tokutomi, Kaneda &
Akaike, 1989). In chick sympathetic neurons clamped at a
membrane potential of -70 mV, these two amino acids also
elicited inward currents with kinetics similar to those of
glycine-evoked currents (Fig. 3B and C). However,
,B-alanine and taurine were significantly less potent than
glycine (P < 001), with half-maximal effects at 79-1 + 13-0
and 86-1 + 16-1 /SM, respectively (Fig. 3D). ,1-Alanine, at
1 mm, induced currents of similar amplitude as glycine and
thus behaved as a full agonist (Fig. 3C). By contrast, current
amplitudes evoked by 1 mm taurine were always smaller
than those induced by the same concentration of glycine
(Fig. 3B). Hence, taurine is only a partial agonist at glycine
receptors of chick sympathetic neurons.

Glycine receptors in central neurons are characterized by
their high affinity for strychnine, which acts as an
antagonist at nanomolar concentrations (Young & Snyder,
1973). In chick sympathetic neurons, strychnine potently
reduced glycine-evoked currents, but only when applied

A

0-2 nA

0-2 s

300 FM glycine

before glycine, due to the slow on-rate of this alkaloid
(Fig. 4A and B). In this case, strychnine reduced the currents
elicited by 100 /SM glycine with half-maximal inhibition at
62 + 11 nM. If strychnine was, however, co-applied together
with 100 JtM glycine, half-maximal inhibition was seen at
only 753 + 168 nm (Fig. 4B). The inhibitory effect of
strychnine was entirely reversible within 40 s of washout
(not shown). Apart from reducing peak amplitudes of
glycine-evoked currents, strychnine also slowed activation
kinetics in a concentration-dependent manner (Fig. 4A).

A number of glycine antagonists, apart from strychnine,
have previously been tested at heterologously expressed
glycine receptors. The amphiphilic anion CTB causes an
open channel block of al homomeric and heteromeric glycine
receptors expressed in HEK-293 cells with half-maximal
inhibition between 2 and 8 /SM (Rundstrom, Schmieden,
Betz, Bormann & Langosch, 1994). In the present study,
CTB reduced currents elicited by 100 /,M glycine and
yielded half-maximal inhibition at 3-8 + 4 0 /uM (Fig. 4B).
The inhibition by CTB was entirely reversible, but it took
between 1 and 2 min to achieve complete recovery (not
shown), as previously described for heterologously expressed
glycine receptors (Rundstr6m et al. 1994).

Picrotoxinin, the active isomer of picrotoxin, blocks currents
through a-homomeric glycine receptors in HEK-293 cells
with half-maximal inhibition at 5-9 ,CM. Heteromeric
glycine receptors, however, are less sensitive to an inhibition
by picrotoxinin, the effects being half-maximal near 1 mm
(Pribilla, Takagi, Langosch, Bormann & Betz, 1992). In chick
sympathetic neurons, picrotoxin reduced glycine-induced
currents at high micromolar concentrations, and half-
maximal inhibition occurred at 347 9 + 22-8 /SM (Fig. 4B).
After inhibition by picrotoxin, glycine-evoked current
amplitudes returned to control values within 20 s of washout.

Recently, isonipecotic acid (Schmieden & Betz, 1995) and
7TFQA (Schmieden, Jezequel & Betz, 1996) were found to
be competitive antagonists at al homomeric glycine
receptors expressed in Xenopus laevis oocytes. There, these

B

v
-100 -50

(nA)
-1-1

50
- -0 5

100
(mV)

--1

Figure 2. Current-voltage relation of glycine-induced currents in cultured chick sympathetic
neurons
A, currents were induced by 300#M glycine in a neuron clamped at the potentials indicated. The
recordings were obtained with 143 mM intracellular and 154 mm extracellular CF. B, I-V plot for peak
amplitudes of currents shown in A. Note that the currents show outward rectification at membrane
potentials negative to -60 mV.
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carboxylic acids reduced glycine-evoked currents with half-
maximal effects at 230 and 36 /LM, respectively. In cultured
chick sympathetic neurons, isonipecotic acid inhibited
currents induced by 100 tim glycine at low millimolar
concentrations, the effect being half-maximal at 1P8 +
0 3 mm. 7TFQA reduced these currents with half-maximal
inhibition at 67-4 + 119 /tM (Fig. 4B). The effects of both
antagonists were reversed entirely after 20 s of washout.

Characterization of glycine-induced spike-like
currents
In a few recordings (7 out of 66 cells), the application of 0-1
to 1 mim glycine to sympathetic neurons clamped at -70 mV
elicited not only inward currents, but also spike-like
currents, which were superimposed onto the inward currents
(see Figs 3A and 5). The occurrence of these spike-like
currents (as wTell as of glycine-induced inward currents)
could be prevented by strychnine, but the underlying
me(hanisms were not clear.

Sympathetic neurons in cell culture form functional
cholinergic synapses (e.g. O'Lague, Obata, Claude, Furshpan
& Potter, 1974). WAe therefore speculated that glycine-
induced spike-like currents reflected synaptic release of
endogenous acteylcholine. To test for this hypothesis, glycine

A Glycine

10 /sM

30 /Mm

1 00 /M

300 ,Mm

1 mM

B

0*5 nA[

2 s

was applied in the absence and presence of the nicotinic
blocking agent hexamethonium (100 /LM). Unlike d-tubo-
curarine (e.g. Zhang & Berg, 1995), hexamethonium did not
alter the amplitudes of glycine-evoked currents, and peak
amplitudes (disregarding spike-like currents) in the presence
of hexamethonium were 92-4 + 5-3 % of control (n = 7).
However, the spike-like currents superimposed on the inward
currents caused by glycine were completely abolished in the
presence of hexamethonium (Fig. 5), but reappeared after
20 s of washout of the nicotinic antagonist (not shown).

Glycine-induced [3H]noradrenaline release from chick
sympathetic neurons
From the results presented above we concluded that glycine
could depolarize chick sympathetic neurons in cell culture to
an extent sufficient to trigger transmitter release. Since
synaptic events triggered by glycine were rare, the secreta-
gogue action of glycine was investigated in more detail by
determination of the outflow of radioactivity from cultures
loaded with tritiated noradrenaline. This procedure measures
transmitter release independently of the formation of
functional synapses and determines the activity of a large
number of neurons at the same time (for review see Boehm
& Huck, 1997).

C

100 /im

taurine 1 s 100 uIm
/1-alanine

1 mm

taurine

1 mm ~ 1 mm~- 1gIycrne > ,-alanine

D

E

CZ .E

50

10-5 10-4 10-3
Agonist (M)

Figure 3. Agonist pharmacology of glycine receptors in cultured chick sympathetic neurons
A, currents induced by the indicated concentrations of glycine in a neuron clamped at -70 mV. At high
glycine concentrations, neurons occasionally displayed spike-like events,_ as shown here for 300 pm and
1 mim. B, currents were induced by the indicated concentrations of glycine and taurine in another neuron
clamped at -70 mV. C, currents were induced b-y the indicated concentrations of glycine and ,-alanine in
yet another neuron also clamped at -70 mV. The calibration (0 5 nA and 1 s) applies to B and C. D shows
concentration-response curves for the peak amplitudes of currents induced bY glycine (0), ,-alanine (A)
ancd taurine (U); 71 = 6-13. The amplitudes were expressed as a percentage of the current induced by 1 mm
glycine. Half-maximal concentrations were 43-4 + 40 ,um for glycine, 79t1 + 13 0 uM for f-alanine
(P < 0 01 vs. glycine) and 86 1 + 16 1 uM for taurine (P < 0 01 vs. glycine). The deduced Hill coefficients
were 17 + 0 2 for glycine, 1 4 + 0 3 for ,-alanine and 1 5 + 0 4 for taurine.
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A

Figure 4. Antagonist pharmacology of glycine
receptors in cultured chick sympathetic neurons

A depicts the reduction of currents induced by 100 uM
glycine in the presence of the indicated concentrations of
strychnine in a neuron clamped at -70 mV. Note that
strychnine delays the activation of glycine-evoked currents.
B shows concentration-response curves for the reduction of
peak amplitudes of currents induced by 100 /uM glycine by
either co-applied (O>) or pre-applied (as shown in A; *)
strychnine, and by the pre-application of CTB (0), 7TFQA
(V), picrotoxin (A) and isonipecotic acid (U). Results are

shown as a percentage of control currents recorded in the
absence of antagonists; n = 4-8. Inhibition was half-
maximal at 62 + 11 nM (pre-applied strychnine),
753 + 168 nm (co-applied strychnine), 3-8 + 4 0 /SM (CTB),
67-4 + 11P9 /M (7TFQA), 347 9 + 22-8 ,m (picrotoxin) and
1 8 + 0 3 mm (isonipecotic acid), respectively.

After labelling with [3H]noradrenaline, chick sympathetic
neurons steadily released radioactivity into the superfusion
buffer when excess tritium had been removed during a

60 min washout period (see Fig. 6A for the time course of
tritium outflow). Exposure of the neurons to 30 uM to 1 mM
glycine for 4 min caused a concentration-dependent increase
in [3H] outflow, which was half-maximal at around 100 /M
and reached a maximum at about 300 /M (Fig. 6B).
Subsequent stimulation of the neurons by 0 5 ms electrical
pulses (50 V cm-', 50 mA), delivered at 0 1 Hz for 4 min,
also caused [3H] overflow. When Ca2+ was omitted from the
superfusion buffer, neither glycine nor electrical stimulation
caused any alteration in [3H] outflow (Fig. 6A).
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Blockade of voltage-gated Nae channels by 1 ,C4M TTX, and
of voltage-dependent Ca2+ channels by 100 /M Cd2+, both
abolished overflow whether induced by 300 AM glycine or by
electrical field stimulation (Fig. 6C and D). Strychnine
(0 3 /M) reduced tritium overflow caused by 300 #M glycine,
but left electrically induced overflow unchanged (Fig. 6C
and D). These results indicated that glycine triggered trans-
mitter release via strychnine-sensitive receptors and through
mechanisms similar to those underlying electrically evoked
noradrenaline release (see Boehm et al. 1991). Depolarization
of neurons by activation of ligand-gated chloride channels is
most commonly related to high intracellular chloride
concentrations ([Cl-]1; Staley, Smith, Schaack, Wilcox &

100 /LM hexamethonium
Il1 mM glycine

0-1 nA l
0-5 s

Figure 5. Hexamethonium abolishes glycine-induced spike-like currents in cultured chick
sympathetic neurons

An inward current in a neuron clamped at -70 mV was induced by 1 mm glycine and carried three short
spike-like currents (marked by arrows in the left trace). When glycine was applied in the continuous
presence of 100 FM hexamethonium, inward currents still occurred, but spike-like currents were completely
abolished (right trace). This effect of hexamethonium was entirely reversible.
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Jentsch, 1996). Accumulation of high [Cl-]i in neurons relies
on a chloride uptake system, which can be blocked by
furosemide (e.g. Ballanyi & Grafe, 1985; Owens et al. 1996).
Inclusion of 2 mm furosemide in the superfusion buffer
reduced glycine-evoked overflow by 75%, but increased
electrically induced overflow (Fig. 6C and D). This result is
consistent with high [Cl-]i being essential for the stimulatory
action of glycine.

Glycine-induced changes in intracellular Ca2O in chick
sympathetic neurons
The above results indicated that glycine was, in principle,
able to depolarize sympathetic neurons. However, it remained
unknown, whether all or just some of the neurons responded
to glycine by depolarization. To resolve this issue, neurons
were loaded with fura-2 AM and changes in the ratio of the
fluorescence signal evoked at excitation wavelengths of 340
and 380 nm (F340/F380), respectively, were determined in
single neurons. This ratio directly reflects the concentration
of free Ca2+ (Grynkiewicz et al. 1985). Of the twenty-three
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neurons investigated, fifteen displayed significant (P < 0 05)
increases in the ratio F340/F380 in the presence of 300 LlM
glycine (Fig. 7). This effect of glycine was always antagonized
by 0 3 /LM strychnine (Fig. 7). For a comparison, the neurons
were also exposed to 100 /SM nicotine (Fig. 7), which raised
the ratio F340/F350 in all of the neurons tested. Hence, all
neurons were depolarized by the opening of ligand-gated
cation channels, but only 65% were depolarized by the
activation of glycine receptors.

DISCUSSION
a- and f-subunits of the inhibitory glycine receptor are
widely distributed throughout the central nervous system
(Betz, 1991), and glycine-evoked currents have been
demonstrated, for instance, in neurons from spinal cord
(Bormann, Hamill & Sakmann, 1987), hippocampus
(Shirasaki, Klee, Nayake & Akaike, 1991) and hypothalamus
(Akaike & Kaneda, 1989). In the present study, we show
that neurons of sympathetic ganglia of chick embryos
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Figure 6. Glycine-induced [3H] overflow from cultured chick sympathetic neurons previously
labelled with [3H]noradrenaline and comparison with the overflow triggered by electrical field
stimulation
A, cultures were superfused after labelling with [3H]noradrenaline, and subsequent to a 60 min washout
period, 4 min fractions of superfusate were collected. From 72 to 76 min, the superfusion medium
contained 300 /SM glycine, from 92 to 96 min electrical pulses were applied at a frequency of 0 1 Hz.
Results were obtained in either the presence (0) or the absence (0) of 2 mm Ca2+ and are shown as a
percentage of total radioactivity (TA) in the cultures; n = 5-6. B shows the concentration-response
relation for the secretory effect of glycine, determined as shown in A. The [3H] overflow induced by glycine
was calculated as a percentage of basal tritium outflow; n = 6-9. For the results in C and D, the
superfusion medium contained either no additives (control), 1 /SM TTX, 100 /4M Cd21 0-3 4UM strychnine, or
2 mM furosemide, and the experiments were performed as shown in A. Results are depicted as a percentage
of the overflow triggered by 300 ,uM glycine (C) and electrical field stimulation (D), respectively, in the
absence of these drugs (control). Significant differences from control are indicated by * P < 0 05,
**P<0j01 and***P<0.001; n=6-9.
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Glycine receptors in peripheral neurons

contain transcripts for three different a-subunits of glycine
receptors and present evidence that these neurons carry
heteromeric glycine receptors, which are in most instances
excitatory. Previously, glycine-induced currents have been
described in chick ciliary neurons (Zhang & Berg, 1995), but
information on the composition of glycine receptors in the
peripheral nervous system and on pharmacological
characteristics of these receptors has been lacking.

Chick sympathetic neurons contain transcripts for
three glycine receptor a-subunits
We performed PCR with a set of degenerate oligonucleotide
primers as an assay for glycine receptor subunit gene
expression in chick sympathetic neurons. The primers used
were designed to specifically amplify cDNA sequences
encoding the large presumed intracellular loop of glycine
receptor a-subunits. Since this portion of glycine receptor
polypeptides shows the most sequence variation between
the known mammalian a-subunits (Matzenbach et al. 1994),
amplification, cloning and sequencing of PCR products
allowed us to unequivocally identify cDNAs for the chicken
homologues of the glycine receptor al, a2 and a3 subunits
(Fig. 1). Our data clearly demonstrate that at least three
glycine receptor a-subunit genes are transcribed in the
sympathetic ganglia. In addition, we recently also detected
transcripts of the avian a4 subunit gene (R. J. Harvey,
unpublished observations), a glycine receptor locus of
unknown function (Matzenbach et al. 1994). To elucidate
possible physiological roles of glycine receptors in chick
sympathetic neurons, we performed whole-cell patch-clamp,
radiotracer release, and fura-2 imaging experiments.

Chick sympathetic neurons carry functional
heteromeric glycine receptors
Glycine reproducibly induced rapidly activating inward
currents in chick sympathetic neurons at negative membrane
potentials. Reversal potentials of glycine-evoked currents
depended on the intracellular Cl- concentrations and were
close to the Nernst equilibrium potential calculated for Cl-.
This is consistent with glycine acting at ligand-gated anion
channels. Comparison of the present pharmacological data
with results previously obtained with either native glycine
receptors in central neurons or with heterologously
expressed glycine receptor subunits indicate that sympathetic
neurons carry functional glycine receptors.

At native receptors in central neurons, glycine-evoked
currents were half-maximal at 74/SM (in hippocampal
neurons; Shirasaki et al. 1991) to 104 /M (in olfactory bulb
neurons; Trombley & Shepherd, 1994). Receptors produced
by the expression of a- and fl-subunits in either Xenopus
oocytes or HEK-293 cells show affinities for glycine between
40 and 400 uM (Schmieden et al. 1989; Bormann,
Rundstrbm, Betz & Langosch, 1993; Kuhse et al. 1993). In
the present study, glycine-evoked currents occurred in the
same range of concentration and were half-maximal at about
454uM.

The rank order of agonist potency (glycine > fl-alanine >
taurine) observed here has also been reported for native
glycine receptors (e.g. Tokutomi et al. 1989) and for
homomeric al or a2 glycine receptors in Xenopus oocytes
(Schmieden, Kuhse & Betz, 1992).

Glycine receptors in central neurons are characterized by
nanomolar affinities for strychnine (e.g. Young & Snyder,
1973), which also blocks currrents through native
(e.g. Tokutomi et al. 1989; Shirasaki et al. 1991) as well as
heterologously expressed (e.g. Schmieden et al. 1989)
receptors in the same range of concentration. In our
experiments, glycine-induced currents were blocked by
strychnine, with inhibition being half-maximal at 62 nM.

Recently, isonipecotic acid (Schmieden & Betz, 1995) and
7TFQA (Schmieden et al. 1996) have both been introduced
as competitive antagonists of al homomeric glycine
receptors. There, these compounds caused half-maximal
inhibition at 0-23 mm and 36 /M, respectively. Although
higher concentrations (half-maximal inhibition at 1-8 mM
and 67 uM, respectively) were required in the present study,
both antagonists fully blocked glycine-evoked currents.

Taken together, the above results clearly show that chick
sympathetic neurons are equipped with bona fide glycine
receptors. These receptors display pharmacological
characteristics comparable to those of glycine receptors in
heterologous expression systems and in central neurons and
most closely resemble the glycine receptors previously
described for chick ciliary neurons (Zhang & Berg, 1995).
Glycine receptors may contain different a-subunits and one
type of fl-subunit at a stoichiometry of 3a: 2fl, but a-homo-
oligomers are sufficient to form functional receptors (Kuhse

2-0

Figure 7. Changes in the ratio of the fluorescence signal evoked
by excitation at 340 and 380 nm wavelength in chick
sympathetic neurons loaded with fura-2 AM
In neurons loaded with fura-2 AM, fluorescence was excited once every
5 s by exposure to 340 and 380 nm light. Images of fluorescence signals
were registered under 100-fold magnification with an intensified CCD
camera and the ratio of the two fluorescence signals (F340/F380) was
averaged over the entire region of each soma of 5 neighbouring neurons
within the microscopic field. Glycine (300 ,uM), strychnine (0 3 /UM) and
nicotine (100 /M) were applied as indicated by the bars.
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et al. 1993). The following results indicate that glycine
receptors in sympathetic neurons are likely to be
a-/-hetero-oligomers.

The receptors investigated here had Hill coefficients for
glycine of 1 7-1 8, which are identical to the Hill coefficients
for glycine at receptors in central neurons (e.g. Tokutomi et
al. 1989; Trombley & Shepherd, 1994) and at heteromeric
receptors generated by the co-expression of a- and fl-subunits
in Xenopus oocytes or HEK-293 cells (Bormann et al. 1993;
Kuhse et al. 1993). By contrast, homomeric al or a2 receptors
have Hill coefficients for glycine of > 2-4 (Schmieden et al.
1992; Kuhse et al. 1993; Bormann et al. 1993).

The chloride channel blocker picrotoxinin blocks homomeric
a-receptors at low (< 10 /M) concentrations, but glycine
receptors containing a- and fl-subunits are only affected at
concentrations > 300 /M (Pribilla et al. 1992). In the present
study, half-maximal inhibition by picrotoxin occurred at
348 /uM.
CTB blocks the channels of hetero-oligomeric and of al
homo-oligomeric glycine receptors at low micromolar
concentrations, whereas a2 homo-oligomers are affected at
concentrations well above 20 uM (Rundstrom et al. 1994).
Here, CTB-induced inhibition of glycine-evoked currents
was half-maximal at 4/uM.

All these data are consistent with glycine receptors of chick
sympathetic neurons being predominantly a-f-hetero-
oligomers. Since transcripts for al, a2 and a3 subunits are
present in chick sympathetic neurons (see above), all three
subunits might contribute to the formation of heteromeric
receptors. Unfortunately, pharmacological tools to precisely
differentiate between various hetero-oligomeric glycine
receptors are currently not available. Glycine receptors in
HEK-293 cells produced by the expression of al subunits
display higher affinities for glycine (around 40 #M) than
those generated by x2 subunits (around 90 tM; Rundstr6m
et al. 1994). The glycine receptors of sympathetic neurons
had affinities for this amino acid of about 45/tM and thus
appear more closely related to ocl subunit-containing
receptors. Furthermore, in our experiments, glycine and
B-alanine displayed equal agonistic efficacies while taurine
turned out to be only a partial agonist. Similar results have
been obtained with homomeric al receptors (Schmieden et
al. 1992), whereas at homomeric a2 receptors both #i-alanine
and taurine were only partial agonists (Schmieden et al.
1992). This may again indicate a major role of glycine
receptor al subunits in chick sympathetic neurons. However,
as different a-subunits can co-assemble within a single
glycine receptor channel (Kuhse et al. 1993), oligomers
containing two types of a-subunit may also be present in
sympathetic neurons.

Functional consequences of glycine receptor
activation in chick sympathetic neurons
In central neurons, glycine most commonly exerts inhibitory
actions (Aprison, 1990). Nevertheless, recent reports have

indicated that glycine may also cause neuronal depolarization
(e.g. Reichling et al. 1994), particularly in developing
neurons (Wang et al. 1994). In line with this idea, glycine
has been found to elicit noradrenaline release from rat
hippocampus in vitro (e.g. Schmidt & Taylor, 1990). In our
cultures of chick sympathetic neurons, glycine also caused
depolarization and transmitter release, at least in a subset
(-65%) of neurons. This was evidenced threefold: (i) glycine
occasionally evoked spike-like currents that were abolished
by the nicotinic blocking agent hexamethonium, suggesting
synaptic release of endogenous acetylcholine (see O'Lague et
al. 1974); (ii) glycine triggered Ca2+-dependent and TTX-
sensitive [3H]noradrenaline release, which shows that
glycine may depolarize the neurons to an extent sufficient to
trigger Na+-carried action potentials (see Boehm & Huck,
1997); (iii) glycine raised intracellular Ca2+ concentrations as
evidenced by increases in the ratio F340/F380 of the fura-2
fluorescence signal (Grynkievicz et al. 1985), but only in
65% of the neurons. The observation that intracellular Ca2+
concentrations changed in only a proportion of the cultured
sympathetic neurons indicates that the neuronal population
is heterogeneous; this might relate to differences in either
glycine receptor expression or Cl- equilibrium potentials. It
remains to be shown whether this heterogeneity reflects
neuronal subpopulations that can be distinguished in
sympathetic ganglia (Heller, Ernsberger & Rohrer, 1996).

Considering the stimulatory actions of glycine the question
arises as to what the underlying mechanisms might be.
Depolarization of neurons due to activation of ligand-gated
anion channels is generally believed to depend on high
[Cl-]j (Owens et al. 1996; Staley et al. 1996). Intracellular
accumulation of Cl- in sympathetic neurons depends on a
Na+-K+-Cl- cotransport, which can be blocked by
furosemide (Ballanyi & Grafe, 1985). When the neurons
were stimulated with glycine after exposure to furosemide,
the stimulatory action of the amino acid was lost. Hence,
triggering of transmitter release by glycine apparently
required intraneuronal accumulation of high [ClF]j, which
then permitted Cl- efflux and concomitant depolarization
upon glycine receptor activation.

When considering the physiological role of glycine receptors
in sympathetic ganglia, it should be noted that glycine
reaches submillimolar concentrations in blood and extra-
cellular fluids (e.g. McGale, Pye, Stonier, Hutchinson &
Aber, 1977). In the central nervous system, neurons are
shielded from such high concentrations by glycine uptake
through two types of specific transporters present in
neurons and glia, respectively (e.g. Adams, Sato, Shimada,
Tohyama, Piischel & Betz, 1995; Jursky & Nelson, 1996). A
cellular uptake mechanism for glycine has also been
described for rat sympathetic ganglia (Bowery et al. 1979).
Sequestration of glycine from the extracellular space in
ganglia may prevent the neurons from being continuously
exposed to active glycine concentrations. The preferential
uptake of glycine into neuronal compartments of the
ganglia reported by Bowery, Brown, White & Yamini (1979)
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may indicate that glycine can function as a ganglionic
neuromodulator or even transmitter. In addition, the
depolarizing effect of glycine may havTe a trophic influence
on developing sympathetic neurons, a role of glycine
previously suggested for spinal cord neurons (Wang et al.
1994).
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