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Table S1: Elemental composition estimated by XPS on uncoated and Nb2O5 coated particle 

powders: 

 Li Ni Mn Co Nb O 

Uncoat 17.64 2.99 2.14 1.14 - 36.79 

Nb2O5 1.95 - - - 17.98 40.82 
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Figure S1: (A) Schematic of the ALD chamber with a rotary-bed attachment for conformal ALD coating at 

the particle scale on powders. (B) Schematic of the ALD process of Nb₂O₅ coating on an individual single-

crystal NMC532 particle in the ALD chamber. 
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Figure S2: STEM-EDS elemental point scan showing Nb and O distributions near the (sub)surface of 

Nb2O5 coated NMC particle.  
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Figure S3: XPS C 1s core scan from Nb2O5-coated SC-NMC powder showing adventitious carbon.  
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Figure S4: XPS core scans of Ni 2p, Mn 2p and Co 2p in (A-C) uncoated and (D-F) Nb2O5-coated SC-NMC 

powders.  
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Figure S5: XPS Li 1s, Ni 3p, Mn 3p, Co 3p and Nb 4s core scans from uncoated and Nb2O5-coated NMC 

powders showing no evidence of LiNbOx formation in Nb2O5-coated NMC powder. 
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Figure S6: (A-D) Comparison of the positions of various peaks in XRD scans from uncoated and Nb2O5-

coated NMC cathodes. (E-F) Comparison of the XPS 3d and O 1s spectra of Nb2O5-coated NMC powder 

with and without sputtering. 
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Figure S7: Cross-sectional view of a densified cell (LTO|SE|NMC pellet) with zoomed-in views of the 

anode (bottom) and cathode (top). 
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Table S2: Details of theoretical capacities considered in the study, actual capacities loaded in the 

electrodes and corresponding weights of composite powders used in composite electrodes: 

Voltage range 

vs. LTO  

(vs. Li) 

Theoretical  

accessible capacity 

(mAh·g-1) 

Actual capacities (mAh·cm-2) 

of anode and cathode to 

maintain N/P= 1.1 

Weight (g) of 

composite powders 

anode cathode 

1.45-2.75 V 

(3.0-4.3 V) 

SC-NMC =165  

LTO = 155  

Anode= 3.30  

Cathode= 3.00  

0.0137 0.0081 

1.45-2.95 V  

(3.0-4.5 V) 

SC-NMC =185  

LTO = 155  

Anode= 3.70  

Cathode= 3.36  

0.0149 0.0081 

1.45-3.15 V  

(3.0-4.7 V) 

SC-NMC =205  

LTO = 155  

Anode= 4.10  

Cathode= 3.73  

0.0163 0.0081 

 

The theoretical capacity of NMC cathode considered in the present study were adopted from Zhang 

et al. (2020) 1 .  
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Figure S8: Voltage profiles and corresponding dQ/dV plots at different cutoff voltages during the first 

formation cycle for (A,C) uncoated and (B,D) Nb2O5-coated SC-NMC composite cathodes (LTO|SE|NMC), 

respectively. 
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Table S3: Coulombic efficiency of uncoated and Nb2O5-coated SC-NMC cathode samples 

(LTO|SE|NMC) cycled to different cutoff voltages during the formation cycles: 

 Formation 

cycle 

Coulombic efficiency at different voltage 

limit (as %) 

  4.3 V 4.5 V 4.7 V 

Uncoat 1st  83.1  83.0  79.7  

2nd 98.2  97.6  97.1  

3rd 99.0  98.4  98.1  

Nb2O5 1st 92.3  91.0  88.7  

2nd 98.9  99.5  97.9  

3rd 99.5  99.5  99.1  
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Figure S9: Voltage profiles at different C-rates (C/10, C/5, C/2, 1C, 2C) for (A-C) uncoated and (D-F) 

Nb2O5 coated SC-NMC composite cathodes (LTO|SE|NMC) cycled at different cutoff voltages. 
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Figure S10: Cyclic voltammogram of a Li|Li6PS5Cl|SS blocking electrode at a 0.1 mV·s-1 scan rate between 

0 and 4.7 V (vs Li/Li+) showing instability and degradation of Li6PS5Cl solid electrolyte. 
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Figure S11: Rate capability trends of uncoated, ALD Nb2O5-coated, and solution-processed LiNbO3 coated 

SC-NMC composite cathodes (LTO|SE|NMC) at (A) 4.3 V and (B) 4.7 V cutoff voltages. 
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Figure S12: dQ/dV vs V plots obtained from the voltage profiles during rate capability tests of (A-C) 

uncoated and (D-F) Nb2O5-coated SC-NMC composite cathodes (LTO|SE|NMC) cycled at different cutoff 

voltages. 
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Figure S13: (A) Intermittent EIS measurement at specific voltage points during the charging cycle (at C/10 

rate) of uncoated and Nb2O5-coated cathodes (Li|SE|NMC). Zoomed-in view of Nyquist plots obtained at 

different voltage points during the charging cycle are presented for (B) uncoated and (D) Nb2O5-coated 

cathodes, with insets providing a zoomed-out view of the Nyquist plots. (C) Comparison of total interfacial 

impedance at different voltage points during charging. 
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Figure S14: Equivalent circuit used for fitting the Nyquist impedance plots. 

 

Table S4: Fitted impedance components: 

 Uncoat Nb2O5 

Voltage 

limit 

Rs 

(Ω) 

R1 

(Ω) 

R2 

(Ω) 

RInterfacial (Ω) 

(R1+R2) 

Rs 

(Ω) 

R1 

(Ω) 

R2 

(Ω) 

RInterfacial (Ω) 

(R1+R2) 

4.3 V 49.2 133.4 366.2 499.6 46.9 32.9 54.7 87.5 

4.5 V 47.1 289.1 356.5 654.6 60.0 28.6 56.9 85.3 

4.7 V 51.3 547.3 805.0 1352.4 43.3 84.6 74.5 159.1 
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Figure S15: (A) Voltage trends during GITT experiments of uncoated and Nb2O5-coated cathodes 
(Li|SE|NMC). (B) Internal resistance during discharge half cycles estimated from the voltage profiles 

obtained during the GITT experiments. The GITT experiments were performed with Li|SE|NMC cells by 

applying a current pulse equivalent to C/10 rate for 10 min followed by a 30 min open circuit rest.  
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Figure S16: (A) Coulombic efficiency of Nb2O5-coated SC-NMC cathodes (LTO|SE|NMC) at 1C rate cycled 

with a 4.7 V limit using CC and CCCV charge/discharge protocols. (Inset) Coulombic efficiency during the 

first 10 cycles. 
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Figure S17: Ex-situ XRD scans of recorded at the cathode sides of the pressed LTO|SE|NMC cells before 

cycling and after the rate capability tests performed with 4.3 V and 4.7 V limits for (A) uncoated and (B) 

Nb2O5-coated SC-NMC samples.  
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Figure S18: Intensity line profiles on TEM images obtained from (A,B) uncoated and (C,D) Nb2O5-coated 

samples (LTO|SE|NMC) cycled for 500 cycles at 1C and 4.7 V showing interplanar spacing along different 

crystallographic directions.  
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Figure S19: XPS core scans corresponding to (A) Nb 3d peak (B) O 1s peak from Nb2O5-coated SC-NMC 

powders before cycling and after cycling. 
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Figure S20: FIB-SEM cross-section images of Nb2O5-coated SC-NMC electrodes (A) before cycling and 

(B) after 500 cycles (LTO|SE|NMC) tested at 1C rate with a 4.7 V limit.  
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Table S5: Comparison of electrochemical performance of layered cathode materials having different coatings 

in solid electrolyte and liquid electrolyte systems.  

Coating  

material 

Coating 

Thick-

ness 

Coating 

method 

Cathode material Electro-

lyte 

 

Anode Upper 

Volt-

age 

limit 

(V vs 

Li/Li+) 

1st cycle 

CE 

(Voltage 

limit, 

current 

density) 

Capacity 

retention as 

% (voltage 

limit, C-

rate, after 

cycles) 

Ref 

Al2O3 0.4-1.4 

nm 

ALD LiNi0.5Mn1.5O4 Li6PS5Cl Li-In 4.4V 

(5.0V) 

86.5% 

(5.0V, 

70.1%  

(5.0V, 

0.2C, 100 

cycles) 

2 

ZrO2 4-5 nm ALD LiNi0.85Co0.1Mn0.5O2 Li6PS5Cl LTO 2.75V 

(4.3V) 

∼91% 

(4.3V, 

0.1C) 

78%  

(4.3V, 

0.5C, 200 

cycles) 

3 

HfO2 2-3nm ALD LiNi0.85Co0.1Mn0.5O2 Li6PS5Cl Li 4.3V ∼88% 

(4.3V, 

0.1C) 

82%  

(4.3V, 

0.5C, 60 

cycles) 

4 

LiNbO3 2-5 nm Solution LiNi0.82Co0.12Mn0.6O2 Li6PS5Cl Li-In 3.7V 

(4.32) 

3.9V 

(4.52

V) 

71.8% 

(4.32V, 

8.5 

mA/g) 

82.1%  

(4.52V, 34 

mA/g, 30 

cycles) 

5 

LiNbO3 10-20nm Solution LiNi0.5Mn1.5O4 Li6PS5Cl

/ Li3YCl6 

Li-In 4.25V 

(4.85

V)  

91.2% 

(4.85V, 

7.5 

mA/g) 

~50%  

(4.85V, 

20mA/g, 50 

cycles) 

6 

LiNbOx 4 nm ALD LiNi0.8Co0.1Mn0.1O2 Li10GeP2

S12  

LTO 2.8V 

(4.35

V) 

80.6% 

(4.35V, 

0.1C) 

76.3%  

(4.35V, 

0.3C, 400 

cycles) 

7 

Li3BO3 1-11 nm Solution LiCoO2 Li6PS5Cl Li-In 3.68V 

(4.3V) 

3.88V 

(4.5V) 

91% 

(4.3V) 

88.7%  

(4.5V, 

0.2C, 

25cycles) 

8 

Li3BO3–

Li2CO3 

21-30 

nm 

Solution LiCoO2 Li6PS5Cl Li-In 3.68V 

(4.3V) 

3.88V 

(4.5V) 

93% 

(4.3V) 

93.8%  

(4.5V, 

0.2C, 

25cycles) 

8 

LiTaOx 2-6 nm Solution LiNi0.82Co0.12Mn0.6O2 Li6PS5Cl Li-In 3.7V 

(4.32) 

3.9V 

(4.52

V) 

76.1% 

(4.32V, 

8.5 

mA/g) 

83%  

(4.52V, 30 

cycles) 

5 

Li3PO4 1-10 nm ALD LiNi0.8Co0.1Mn0.1O2 Li10GeP2

S12  

In 3.88V 

(4.5V) 

75.1% 

(4.5V, 

0.1C) 

78%  

(4.4V, 

0.2C, 100 

cycles) 

9 

Li2ZrO3 

 

<10 nm Solution LiNi0.82Co0.12Mn0.6O2 Li6PS5Cl LTO 2.85V 

(4.4V) 

86% 

(4.4V, 

0.2C) 

~70%  

(4.4V, 

0.1C, 60 

cycles) 

10 

LiWO3  2-4 nm Solution LiNi0.6Co0.2Mn0.2O2 75Li2S– 

22P2S5–

3Li2SO4 

Li-In 3.88V 

(4.5V) 

64.4% 

(4.5V, 

0.05C) 

83% (4.5V, 

0.1C, 30 

cycles) 

11 

LixAlyZnzO

δ 

~4 nm ALD LiNiO2 Li6PS5Cl Li-In 4.3V 85.4% 

(4.3V, 

0.2C) 

83.1% 

(4.3V, 

12 
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0.2C, 200 

cycles) 

LiAl(PO3)4  4nm ALD LiNi0.88Co0.09Mn0.03O

2 

Li6PS5Cl Li-In 4.3V 84.1%, 

4.3V, C/5 

98.3%, 440 

cycles 20.1 

mg/cm2 

13 

CoO/Li2CO

3 

4nm Heat 

treatment 

LiCoO2 Li6PS5Cl Li-In 4.6V 83%, 

4.3V, C/2 

83%, 150 

cycles, C/2 

14 

Gd2O3 7 nm Solution LiNi0.6Co0.05Mn0.35O2 Liquid Li 4.5V ~83% 

(4.5V, 

0.1C) 

88.1% 

(4.5V, 1C, 

400 cycles) 

15 

Sm2O3 13 nm Solution LiNi0.6Co0.05Mn0.35O2 Liquid Li 4.5 ~82% 

(4.5V, 

0.1C) 

97.0 % 

(4.5V, 1C, 

300 cycles) 

16 

Al2O3 1-4 nm ALD LiNi0.6Co0.2Mn0.2O2 Liquid Li 4.7V ~85%(4.

7V, 

0.5C) 

89.5% 

(4.7V, 

0.5C, 45 

cycles) 

17 

ZrO2 Not 

available 

Ball mill Li1.2Ni0.13Co0.13Mn0.54

O2 

Liquid Li 4.8V 82.5 

(4.8V, 

0.1C) 

89.0% 

(4.8V, 1C, 

100 cycles) 

18 

Li3PO4 20 nm Solution LiCoO2 Liquid Li 4.5V 87.3% 

(4.5V, 

0.1C) 

90% (4.5V, 

0.5C, 100 

cycles) 

19 

AlZnO 3nm solution LiCoO2 Liquid Li 4.6V ~82% 

(4.6V, 37 

mA/g 

65.7% 

(4.6V, 185 

mA/g, 500 

cycles 

20 

Li0.5Mn0.5O  solution Li1.2Mn0.6Ni0.2O2 Liquid Li 4.8V 80.3% 

(4.8V, 

C/10) 

80.7% after 

200 cycles 

at 1 C 

21 
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Table S6: List of abbreviations used in the study 

SSB: Solid-state battery SEI: Solid electrolyte interface 

LIB: Li-ion battery ASR: Area-specific resistance 

EV: Electric vehicle XPS: X-ray photoelectron spectroscopy 

SE: Solid electrolyte FIB: Focused ion beam 

LE: Liquid electrolyte TEM: Transmission electron microscopy 

CAM: Cathode active material STEM: Scanning transmission electron microscopy 

NMC: Nickel manganese cobalt oxide EDS: Electron dispersive X-ray spectroscopy 

SC: Single crystal HAADF: High-angle annular dark-field 

LPSC: Li6PS5Cl XRD: X-ray diffraction 

ALD: Atomic layer deposition EIS: Electrochemical impedance spectroscopy 

TM: Transition metal GITT: Galvanostatic intermittent titration technique 

PTFE: Polytetrafluoroethylene FFT: Fast Fourier transform 

LTO: Lithium titanate CC: Constant current 

CEI: Cathode electrolyte interface  CV: Constant voltage 

ICE: Initial Coulombic efficiency CCCV: Constant current constant voltage 
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