Defluorinative Multicomponent Cascade Reaction of Trifluoromethylarenes via Photoexcited Palladium Catalysis

Zhibin Li¹, Lei Bao², Kaihang Wei², Beibei Zhan², Ping Lu¹, and Xiaheng Zhang*²

¹Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, P. R. China ²School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, P. R. China.

*Corresponding author. E-mail: xiahengz@ucas.ac.cn

Table of Contents

1.	General information	2
2.	Synthesis and characterization of starting materials	2
3.	General procedure for three components coupling	10
4.	General procedure for hydrogenation of 1,4-addition product	11
5.	Reaction optimization	11
6.	Synthetic applications	16
7.	Preliminary mechanistic experiments	19
8.	Computation data	26
9.	Experimental data	33
10.	References	107
11.	NMR Spectra	108

1. General Information

Commercial reagents were purchased from Adamas-Beta, Bide Pharmatech, J&K, Energy Chemical. Organic solutions were concentrated under reduced pressure on a Büchi rotary evaporator using a water bath. Chromatographic purification of products was accomplished using forced-flow chromatography on silica gel (Fluka, 230-400 mesh). Thin-layer chromatography (TLC) was performed on Huanghai 0.25 mm silica gel F-254 plates. ¹H NMR spectra were recorded on a Bruker UltraShield Plus Avance III 400 MHz and are internally referenced to residual protic CDCl₃ (7.26 ppm) (Data for ¹H NMR are reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublet of doublets, dt = doublet of triplets), coupling constant (Hz), and integration. ¹³C NMR spectra were recorded on a Bruker UltraShield Plus Avance III 400 MHz (101 MHz) and data are reported in terms of chemical shift relative to CDCl₃ (77.16 ppm). ¹⁹F NMR spectra were recorded on a Bruker UltraShield Plus Avance III 400 MHz (376 MHz). ³¹P NMR spectra were recorded on a Bruker UltraShield Plus Avance III 400 MHz (162 MHz). High Resolution Mass Spectra were obtained on Thermo Fisher Exactive Plus Orbitrap Mass Spectrum (ESI), Orbitrap Exploris GC Mass Spectrum (EI) or Waters Synapt-G2-Si Mass Spectrum (APCI). Ultraviolet-Visible absorption spectra was acquired using Agilent Cary 60. Steady-state emission spectra and Quantum yield were acquired using a Hitachi F-4700.

2. Synthesis and characterization of starting materials

Scheme S1. (Het)Aromatic Fluoroalkyl-Contained Structures.

The corresponding (het)aromatic fluoroalkyl-contained compounds S8-S10 were synthesized according to the literature.¹ To an 40 mL vial equipped with a stir bar was added 1-bromo-3,5-bis(trifluoromethyl)benzene (2.9 g, 10 mmol, 1.0 equiv.),

N-heterocycle (1.8 g, 15 mmol, 1.5 equiv.), Cu₂O (42.9 mg, 0.3 mmol, 0.03 equiv.), *N*,*N*-bis(furan-2-ylmethyl)oxamide (BFMO) (74.5 mg, 0.3 mmol, 0.03 equiv.), K₃PO₄ (4.23 g, 20 mmol, 2.0 equiv.) and 10 mL DMSO followed by bubbling with N₂ for 10 min at room temperature. After sealing the vial with parafilm, the reaction was carried out in 120°C with vigorous stirring for 24 h. The reaction mixture was cooled to ambient temperature and diluted with 50 mL water followed by the extraction with ethyl acetate (15 mL × 3). The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated. The residue was purified by flash chromatography on silica gel to afford the products.

1-(3,5-bis(trifluoromethyl)phenyl)-1*H*-indole (S8)

Purified by flash chromatography (PE:EA = 20:1) on silica gel to afford the title compound (2.5 g, 75% yield) as a white solid.

¹**H** NMR (400 MHz, CDCl₃) δ 7.98 (s, 2H), 7.84 (s, 1H), 7.71 (d, J = 7.8 Hz, 1H), 7.53 (d, J = 8.2 Hz, 1H), 7.35 (d, J = 3.4 Hz, 1H), 7.30 (t, J = 7.6 Hz, 1H), 7.23 (t, J = 7.4 Hz, 1H), 6.77 (d, J = 3.4 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 141.45, 135.55, 133.51 (q, J = 33.9 Hz), 129.95, 127.24, 124.06 – 123.98 (m), 123.64, 123.07 (q, J = 274.7 Hz), 121.86, 121.65, 120.28 – 119.48 (m), 109.90, 106.05.

¹⁹F NMR (**376** MHz, CDCl₃) δ -62.96.

HRMS (ESI-TOF) m/z calcd. for $C_{16}H_{10}F_6N$ ([M+H]⁺): 330.0712, found: 330.0708.

9-(3,5-bis(trifluoromethyl)phenyl)-9H-carbazole (S9)

Purified by flash chromatography (PE:EA = 20:1) on silica gel to afford the title compound (2.1 g, 56% yield) as a white solid.

¹**H** NMR (400 MHz, CDCl₃) δ 8.17 (dt, J = 7.7, 1.0 Hz, 2H), 8.10 (s, 2H), 7.98 (s, 1H), 7.50 – 7.46 (m, 2H), 7.41 – 7.35 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 140.20, 139.81, 133.79 (q, J = 34.0 Hz), 127.15, 126.74, 124.14, 123.06 (q, J = 274.7 Hz), 121.35, 120.95 – 120.86 (m), 109.22.

¹⁹F NMR (**376** MHz, CDCl₃) δ -62.88.

HRMS (ESI-TOF) m/z calcd. for $C_{20}H_{12}F_6N$ ([M+H]⁺): 380.0868, found: 380.0865.

1-(3,5-bis(trifluoromethyl)phenyl)-1H-pyrazole (S10)

Purified by flash chromatography (PE:EA: $Et_3N = 6:1:0.03$) on silica gel to afford the title compound (1.8 g, 80% yield) as a yellow solid.

¹**H** NMR (400 MHz, CDCl₃) δ 8.18 (d, J = 1.6 Hz, 2H), 8.03 (d, J = 2.6 Hz, 1H), 7.86 – 7.70 (m, 2H), 6.56 (t, J = 2.2 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 142.64, 141.26, 133.24 (q, J = 33.9 Hz), 126.95, 123.07 (q, J = 273.7 Hz), 119.68 (p, J = 3.8 Hz), 118.90 – 118.82 (m), 109.36.

¹⁹F NMR (376 MHz, CDCl₃) δ -63.09.

HRMS (ESI-TOF) m/z calcd. for $C_{11}H_7F_6N_2$ ([M+H]⁺): 281.0508, found: 281.0499.

The corresponding (het)aromatic fluoroalkyl-contained compounds **31-34**, **98** were synthesized according to the literature.² To an 40 mL vial equipped with a stir bar was added (het)aromatic bromine (10 mmol, 1.0 equiv.), phenol (15 mmol, 1.5 equiv.), CuI (19.0 mg, 0.1 mmol, 0.01 equiv.), N,N'-bis([1,1'-biphenyl]-2-yl)ethanediamide (BPPO) (39.2 mg, 0.1 mmol, 0.01 equiv.), K₃PO₄ (4.23 g, 20 mmol, 2.0 equiv.) and 10 mL DMF followed by bubbling with N₂ for 10 min at room temperature. After sealing the vial with parafilm, the reaction was carried out in 110°C with vigorous stirring for 24 h. The reaction mixture was cooled to ambient temperature and diluted with 50 mL water followed by the extraction with ethyl acetate (15 mL × 3). The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated. The residue was purified by flash chromatography on silica gel to afford the products.

2-phenoxy-5-(trifluoromethyl)pyridine (S31)

Purified by flash chromatography (PE:EA:Et₃N = 6:1:0.03) on silica gel to afford the title compound (1.9 g, 80% yield) as a pale yellow oil.

¹**H** NMR (400 MHz, CDCl₃) δ 8.43 (s, 1H), 7.83 (dd, J = 8.8, 2.6 Hz, 1H), 7.42 – 7.37 (m, 2H), 7.22 (td, J = 7.5, 1.6 Hz, 1H), 7.15 – 7.12 (m, 2H), 6.95 (d, J = 8.7 Hz, 1H).

¹³**C NMR (101 MHz, CDCl₃)** δ 165.93, 153.31, 145.51 (q, *J* = 4.4 Hz), 136.68 (q, *J* = 3.2 Hz), 129.84, 125.51, 123.84 (q, *J* = 272.7 Hz), 121.55, 121.54 (q, *J* = 33.2 Hz), 111.37.

¹⁹F NMR (**376** MHz, CDCl₃) δ -61.66.

HRMS (**ESI-TOF**) m/z calcd. for C₁₂H₉F₃NO ([M+H]⁺): 240.0631, found: 240.0625.

2-(4-fluoro-3-methylphenoxy)-5-(trifluoromethyl)pyridine (S32)

Purified by flash chromatography (PE:EA: $Et_3N = 6:1:0.03$) on silica gel to afford the title compound (2.4 g, 88% yield) as a yellow solid.

¹**H** NMR (400 MHz, CDCl₃) δ 8.44 (s, 1H), 7.90 (dd, J = 8.7, 2.6 Hz, 1H), 7.07 – 6.97 (m, 3H), 6.95 – 6.91 (m, 1H), 2.30 (d, J = 2.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 166.05, 158.77 (d, J = 242.6 Hz), 148.65 (d, J = 3.0 Hz), 145.61 (q, J = 4.4 Hz), 136.84 (q, J = 3.3 Hz), 126.64 (d, J = 19.2 Hz), 124.39 (d, J = 5.4 Hz), 123.83 (q, J = 272.7 Hz), 121.69 (q, J = 33.4 Hz), 120.25 (d, J = 8.4 Hz), 116.09 (d, J = 24.5 Hz), 111.41, 14.89 (d, J = 3.4 Hz).

¹⁹F NMR (376 MHz, CDCl₃) δ -61.68, -121.35 - -121.40 (m).

HRMS (ESI-TOF) m/z calcd. for $C_{13}H_{10}F_4NO$ ([M+H]⁺): 272.0693, found: 272.0690.

2-(4-cyclohexylphenoxy)-5-(trifluoromethyl)pyridine (S33)

Purified by flash chromatography (PE:EA: $Et_3N = 6:1:0.03$) on silica gel to afford the title compound (2.7 g, 85% yield) as a pale yellow solid.

¹**H** NMR (400 MHz, CDCl₃) δ 8.46 – 8.45 (m, 1H), 7.86 (dd, J = 8.7, 2.5 Hz, 1H), 7.25 (d, J = 8.5 Hz, 2H), 7.07 – 7.05 (m, 2H), 6.97 (d, J = 8.7 Hz, 1H), 2.53 (tt, J = 8.5, 3.8 Hz, 1H), 1.92 – 1.84 (m, 4H), 1.78 – 1.73 (m, 1H), 1.47 – 1.34 (m, 4H), 1.30 – 1.23 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 166.19, 151.18, 145.67 (q, J = 4.3 Hz), 145.38, 136.70 (q, J = 3.2 Hz), 128.24, 123.88 (q, J = 272.7 Hz), 121.45 (q, J = 33.2 Hz), 121.18, 111.33, 44.13, 34.66, 27.01, 26.26.

¹⁹**F** NMR (**376** MHz, CDCl₃) δ -61.64.

HRMS (ESI-TOF) m/z calcd. for $C_{18}H_{19}F_3NO$ ([M+H]⁺): 322.1413, found: 322.1409.

2-(naphthalen-2-yloxy)-5-(trifluoromethyl)pyridine (S34)

Purified by flash chromatography (PE:EA: $Et_3N = 6:1:0.03$) on silica gel to afford the title compound (2.1 g, 72% yield) as a pale yellow solid.

¹**H** NMR (400 MHz, CDCl₃) δ 8.47 (s, 1H), 7.94–7.87 (m, 3H), 7.82 (d, *J* = 7.3 Hz, 1H), 7.62 (d, *J* = 2.5 Hz, 1H), 7.54 – 7.47 (m, 2H), 7.31 (dd, *J* = 8.9, 2.5 Hz, 1H), 7.07 (d, *J* = 8.7 Hz, 1H).

¹³**C NMR (101 MHz, CDCl₃)** δ 166.09, 150.93, 145.69 (q, *J* = 4.3 Hz), 136.86 (q, *J* = 3.2 Hz), 134.27, 131.47, 129.98, 128.01, 127.70, 126.80, 125.79, 123.85 (q, *J* = 272.7 Hz), 121.76 (q, *J* = 33.2 Hz), 121.39, 118.25, 111.51.

¹⁹**F** NMR (**376** MHz, CDCl₃) δ -61.61.

HRMS (**ESI-TOF**) m/z calcd. for $C_{16}H_{11}F_3NO$ ([M+H]⁺): 290.0787, found: 290.0782.

(13*S*)-2-(3,5-bis(trifluoromethyl)phenoxy)-13-methyl-6,7,8,9,11,12,13,14,15,16-de cahydro-17*H*-cyclopenta[a]phenanthren-17-one (S98)

Purified by flash chromatography (PE:EA = 10:1) on silica gel to afford the title compound (3.6 g, 80% yield) as a pale yellow solid.

¹**H** NMR (400 MHz, CDCl₃) δ 7.54 (s, 1H), 7.37 (s, 2H), 7.33 (d, J = 8.5 Hz, 1H), 6.84 (dd, J = 8.5, 2.7 Hz, 1H), 6.80 (d, J = 2.5 Hz, 1H), 2.94 – 2.90 (m, 2H), 2.53 (dd, J = 18.8, 8.7 Hz, 1H), 2.46 – 2.41 (m, 1H), 2.33 (td, J = 10.8, 4.2 Hz, 1H), 2.21 – 1.97 (m, 4H), 1.70 – 1.46 (m, 6H), 0.95 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 159.21, 152.92, 139.25, 137.04, 133.19 (q, J = 33.7 Hz), 127.41, 123.14 (q, J = 272.7 Hz), 120.15, 117.81 (d, J = 3.7 Hz), 117.35, 116.47 – 115.21 (m), 50.60, 48.11, 44.29, 38.19, 35.99, 31.71, 29.61, 26.46, 25.95, 21.74, 14.00.

¹⁹**F** NMR (**376** MHz, CDCl₃) δ -62.96.

HRMS (ESI-TOF) m/z calcd. for $C_{26}H_{24}F_6NaO_2$ ([M+Na]⁺): 505.1578, found: 505.1573.

The corresponding (het)aromatic fluoroalkyl-contained compounds **114** were synthesized as the following procedure: to an 40 mL vial equipped with a stir bar was added 3-iodopyridine (2.1 g, 10 mmol, 1.0 equiv.), Cu powder (1.3 g, 20 mmol, 2.0 equiv.), 2,2'-bipyridine (124.9 mg, 0.8 mmol, 0.08 equiv.) and 10 mL DMSO followed by bubbling with N₂ for 10 min at room temperature. Perfluoro-1-iodohexane (6.9 g, 15 mmol, 1.5 equiv.) was syringed into the reaction vessel before sealing with parafilm. The reaction was carried out in 100°C for 54 h. The reaction mixture was cooled to ambient temperature and diluted with 50 mL water followed by the extraction with ethyl acetate (15 mL × 3). The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated. The residue was purified by flash chromatography on silica gel to afford the products.

3-(perfluorohexyl)pyridine (S114)

Purified by flash chromatography (PE:EA: $Et_3N = 6:1:0.03$) on silica gel to afford the title compound (3.0 g, 75% yield) as a pale yellow solid.

¹**H NMR (400 MHz, CDCl**₃) δ 8.81 – 8.76 (m, 2H), 7.85 – 7.81 (m, 1H), 7.41 – 7.36 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 153.21 (t, J = 1.9 Hz), 148.13 (td, J = 7.0, 3.6 Hz), 134.66 (t, J = 6.5 Hz), 125.45 (t, J = 24.5 Hz), 123.58 – 121.64 (m), 123.33, 118.40 (dt, J = 74.4, 32.7 Hz), 115.69 (dt, J = 43.5, 32.7 Hz), 114.09 – 112.59 (m), 111.70 – 110.14 (m), 109.16 – 107.44 (m).

¹⁹**F** NMR (376 MHz, CDCl₃) δ -81.49 (t, J = 10.2 Hz), -112.04 (t, J = 14.8 Hz), -121.73 - -121.88 (m), -122.22 - -122.33 (m), -123.16 - -123.29 (m), -126.57 - -126.74 (m).

HRMS (**ESI-TOF**) m/z calcd. for C₁₁H₅F₁₃N ([M+H]⁺): 398.0209, found: 398.0203.

The corresponding (het)aromatic fluoroalkyl-contained compounds **12**, **99**, **100** were synthesized according to the literature.⁴ To an 40 mL vial equipped with a stir bar was added 1-bromo-3,5-bis(trifluoromethyl)benzene (2.9 g, 10 mmol, 1.0 equiv.), alcohol (20 mmol, 2.0 equiv.), CuI (95.2 mg, 0.5 mmol, 0.05 equiv.), N,N'-bis(2-phenylethyl)ethanediamide (148.2 mg, 0.5 mmol, 0.05 equiv.), 'BuONa (1.2 g, 12 mmol, 1.2 equiv.) and 10 mL DMF followed by bubbling with N₂ for 10 min at room temperature. After sealing the vial with parafilm, the reaction was carried out in 100°C with vigorous stirring for 24 h. The reaction mixture was cooled to ambient temperature and diluted with 50 mL water followed by the extraction with ethyl acetate (15 mL × 3). The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated. The residue was purified by flash chromatography on silica gel to afford the products.

4-(3,5-bis(trifluoromethyl)phenoxy)-1,2,2,6,6-pentamethylpiperidine (S12)

Purified by flash chromatography (PE:EA:Et₃N = 4:1:0.03) on silica gel to afford the title compound (2.5 g, 65% yield) as a pale yellow solid.

¹**H** NMR (400 MHz, CDCl₃) δ 7.42 (s, 1H), 7.28 (s, 2H), 4.60 (tt, *J* = 11.2, 4.0 Hz, 1H), 2.28 (s, 3H), 1.98 (dd, *J* = 12.3, 3.9 Hz, 2H), 1.61 (t, *J* = 11.7 Hz, 2H), 1.21 (s, 6H), 1.14 (s, 6H).

¹³**C NMR (101 MHz, CDCl**₃) δ 158.53, 133.00 (q, *J* = 33.2 Hz), 123.36 (q, *J* = 272.6 Hz), 115.82 (d, *J* = 4.2 Hz), 114.99 – 112.89 (m), 71.38, 55.41, 45.95, 33.10, 28.21, 21.21.

¹⁹F NMR (**376** MHz, CDCl₃) δ -63.13.

HRMS (ESI-TOF) m/z calcd. for $C_{18}H_{24}F_6NO$ ([M+H]⁺): 384.1757, found: 384.1751.

(3aS,5S,5aS,8aR,8bS)-5-((3,5-bis(trifluoromethyl)phenoxy)methyl)-2,2,7,7-tetram ethyltetrahydro-5*H*-bis([1,3]dioxolo)[4,5-*b*:4',5'-*d*]pyran (S99)

Purified by flash chromatography (PE:EA = 6:1) on silica gel to afford the title compound (2.9 g, 61% yield) as a pale yellow solid.

¹**H** NMR (400 MHz, CDCl₃) δ 7.46 (s, 1H), 7.38 (s, 2H), 5.58 (d, J = 5.0 Hz, 1H), 4.68 (dd, J = 7.9, 2.5 Hz, 1H), 4.38 – 4.34 (m, 2H), 4.26 – 4.19 (m, 3H), 1.54 (s, 3H), 1.49 (s, 3H), 1.37 (s, 3H), 1.36 (s, 3H).

¹³**C NMR (101 MHz, CDCl₃)** δ 159.37, 132.89 (q, *J* = 33.4 Hz), 123.31 (q, *J* = 272.7 Hz), 115.33 (q, *J* = 4.0 Hz), 114.69 – 114.62 (m), 109.85, 109.03, 96.50, 71.03, 70.80, 70.64, 67.73, 66.31, 26.16, 26.11, 25.02, 24.55.

¹⁹**F** NMR (**376** MHz, CDCl₃) δ -63.04.

HRMS (**ESI-TOF**) m/z calcd. for C₂₀H₂₃F₆O₆ ([M+H]⁺): 473.1393, found: 473.1387.

1-benzhydryl-3-(3,5-bis(trifluoromethyl)phenoxy)azetidine (S100)

Purified by flash chromatography (PE:EA: $Et_3N = 4:1:0.03$) on silica gel to afford the title compound (3.1 g, 69% yield) as a pale yellow solid.

¹**H NMR (400 MHz, CDCl**₃) δ 7.44 – 7.42 (m, 5H), 7.28 (t, *J* = 7.5 Hz, 4H), 7.22 – 7.18 (m, 2H), 7.15 (s, 2H), 4.85 (p, *J* = 5.6 Hz, 1H), 4.43 (s, 1H), 3.75 – 3.71 (m, 2H), 3.16 – 3.13 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 157.91, 141.80, 133.14 (q, J = 33.5 Hz), 128.75, 127.54, 127.53, 123.19 (q, J = 272.8 Hz), 115.10 (q, J = 4.0 Hz), 114.84 (p, J = 3.9 Hz), 78.46, 67.12, 60.14.

¹⁹F NMR (**376** MHz, CDCl₃) δ -63.06.

HRMS (**ESI-TOF**) m/z calcd. for $C_{24}H_{20}F_6NO$ ([M+H]⁺): 452.1444, found: 452.1440.

3. General Procedure for Three Components Coupling

Procedure A: To an 8 mL vial equipped with a stir bar was added Pd(PPh₃)₄ (5.2 mg, 4.6 µmol, 0.015 equiv.), XantPhos (14.0 mg, 0.024 mmol, 0.08 equiv.), bis(2-methoxyphenyl)phenylphosphine (7.8 mg, 0.024 mmol, 0.08 equiv.), substituted trifluoromethylbenzene (0.90 mmol, 3.0 equiv.), amine or 1,3-dicarbonyl compound (if solid or high boiling point liquid, 0.30 mmol, 1.0 equiv.), LiOH (7.2 mg, 0.30 mmol, 1.0 equiv.) and THF (3.0 mL). The solution was degassed by bubbling with nitrogen for 8 minutes and 1,3-butadiene (2.0 mol/L in THF, 300 µL, 0.60 mmol, 2.0 equiv.) was syringed into the reaction vessel before sealing with parafilm. The reaction was carried out in a steel chamber under the irradiation at room temperature via blue LEDs (40 W, $\lambda_{max} = 440$ nm) for 12 h. The reaction mixture was removed from the light, cooled to ambient temperature, quenched by exposure to air. After the removal of solvent, the residue was purified by flash chromatography on silica gel to afford the desired product.

Procedure B: To an 8 mL vial equipped with a stir bar was added Pd(PPh₃)₄ (5.2 mg, 4.6 µmol, 0.015 equiv.), XantPhos (14.0 mg, 0.024 mmol, 0.08 equiv.), Mg(OTf)₂ (10.6 mg, 0.06 mmol, 0.2 equiv.), substituted (het)trifluoromethylbenzene (0.90 mmol, 3.0 equiv.), amine (if solid or high boiling point liquid, 0.30 mmol, 1.0 equiv.), LiOH (7.2 mg, 0.30 mmol, 1.0 equiv.) and THF (3.0 mL). The solution was degassed by bubbling with nitrogen for 8 minutes and 1,3-butadiene (2.0 mol/L in THF, 300 µL, 0.60 mmol, 2.0 equiv.) was syringed into the reaction vessel before sealing with parafilm. The reaction was carried out in a steel chamber under the irradiation at room temperature via blue LEDs (40 W, $\lambda_{max} = 440$ nm) for 24 h. The reaction mixture was removed from the light, cooled to ambient temperature, quenched by exposure to air. After the removal of solvent, the residue was purified by flash chromatography on silica gel to afford the desired product.

4. General Procedure for Hydrogenation of 1,4-Addition Product

Procedure C: To an 8 mL vial equipped with a stir bar was added $Pd(OH)_2/C$ (20 wt%), alkene (0.1 mmol, 1.0 equiv.), THF (1.0 mL) and 1,1,1,3,3,3-hexafluoro-2-propanol (1.0 mL). The reaction was carried out at room temperature with continuously bubbling of H₂ (balloon) for 1 h. The reaction mixture was quenched by exposure to air. After the removal of solvent, the residue was purified by flash chromatography on silica gel to afford the desired product.

Procedure D: To an 8 mL vial equipped with a stir bar was added $Pd(OH)_2/C$ (20) wt%). alkene (0.1)mmol. 1.0 equiv.), THF (1.0)mL) and 1,1,1,3,3,3-hexafluoro-2-propanol (1.0 mL). The reaction was carried out at 55° C with continuously bubbling of H_2 (balloon) for 1 h. The reaction mixture was cooled to ambient temperature, quenched by exposure to air. After the removal of solvent, the residue was purified by flash chromatography on silica gel to afford the desired product.

Procedure E: To an 8 mL vial equipped with a stir bar was added $Pd(OH)_2/C$ (20) wt%), alkene (0.1)mmol. 1.0 equiv.), $(2-CH_3)THF$ (1.0)mL) and 1,1,1,3,3,3-hexafluoro-2-propanol (1.0 mL). The reaction was carried out at 70° C with continuously bubbling of H₂ (balloon) for 1 h. The reaction mixture was cooled to ambient temperature, quenched by exposure to air. After the removal of solvent, the residue was purified by flash chromatography on silica gel to afford the desired product.

/ Pd(PPh₃)₄ (1.5 mol%) XantPhos (8 mol%) 0.30 mmol [(o-OMe)Ph]2PPh (8 mol%) LiOH (1.0 equiv.) THF (0.1 M), 440 nm (40 W), N₂, RT, 12 h 0.45 mmol 0.15 mmol Entry Variation of standard condition Yield 1 None 85% (E/Z = 1:2) 2 5 mol% Pd(PPh₃)₄ 18% 3 4 mol% XantPhos 35% 2.0 equivalent of ArCF₃ 4 61% no Pd(PPh₃)₄ 5 ND. no XantPhos 28% 6 no [(o-OMe)Ph]2PPh 7 72% 8 no LiOH 2% 9 no irradiation ND. 10 0.3 mmol scale 91% (*E/Z* = 1:2)

5. Reaction Optimization

Table S1. Optimization of Standard Condition.

F ₃ C Ph 3	1 PhNNH 2	Pd(PPh ₃) ₄ (1.5 mol%) XantPhos (8 mol%) [(2-OMe)Ph] ₂ PPh (8 mol%) base (1.0 equiv.) THF (0.1 M), 440 nm (40 W), N ₂ , RT, 12 h	F ₃ C F ₂ C Ph	^N N
	Entry	Base	Yield	
	1	Me ₄ NOH•5H ₂ O	7% (75%)	
	2	NaOH	<5% (69%)	
	3	КОН	<5% (45%)	
	4	CsOH•H ₂ O	16% (72%)	
	5	K ₂ CO ₃	29% (35%)	
	6	K ₃ PO ₄	10% (<5%)	
	7	^t BuOK	13% (33%)	
	8	^t BuCO ₂ K	19% (23%)	
	9	DABCO	10%(<5%)	
	10	Li ₂ CO ₃	ND. (ND.)	
	11	DBU	61% (69%)	
	12	TMG	72% (58%)	

Reaction conditions: **1** (0.30 mmol), **2** (0.15 mmol), **3** (0.45 mmol), Pd(PPh₃)₄ (1.5 mol%), XantPhos (8 mol%), $[(o-OMe)Ph]_2PPh$ (8 mol%), base (0.15 mmol), THF (0.1 M), $\lambda_{max} = 440$ nm Kessil (40 W), N₂, RT, 6 h. GC yield with 1,3,5-trimethylbenzene as internal standard. When 1.0 equiv. of LiOTf was added, the yield was shown in parenthesis.

Table S2. Optimization of Different Bases.

 Table S3. Optimization of Different Palladium Catalysts.

Table S4. Optimization of Different Solvents.

Table S5. Optimization of Different Wavelengths.

0.45 mmol	0.30 mmol PhNNH 0.15 mmol	Pd(PPh ₃) ₄ (1.5 mol%) XantPhos (8 mol%) LiOH (1.0 equiv.) additive (20 mol%) THF (0.1 M), 440 nm (40 W), N ₂ , RT, 12 h	F ₂ N	NPh
	Entry	additive	Yield	
	1	None	28%	
	2	In(OTf) ₃	17%	
	3	Bi(OTf) ₃	13%	
	4	Sc(OTf) ₃	23%	
	5	Mg(OTf) ₂	50%	
	6	Zn(OTf) ₂	28%	

Table S6. Optimization of Different Additives.

Procedure A: (Het)ArCF₃ (0.9 mmol), 1,3-butadiene (0.6 mmol), 1-phenylpiperazine (0.3 mmol), Pd(PPh₃)₄ (1.5 mol%), XantPhos (8 mol%), (*o*-OMe)Ph₂PPh (8 mol%), LiOH (0.3 mmol), THF (0.1 M), $\lambda_{max} = 440$ nm Kessil (40 W), N₂, RT, 12 h. Procedure B: (Het)ArCF₃ (0.9 mmol), 1,3-butadiene (0.6 mmol), 1-phenylpiperazine (0.3 mmol), Pd(PPh₃)₄ (1.5 mol%), XantPhos (8 mol%), Mg(OTf)₂ (20 mol%), LiOH (0.3 mmol), THF (0.1 M), $\lambda_{max} = 440$ nm Kessil (40 W), N₂, RT, 12 h.

Table S7. $Mg(OTf)_2$ as Additive to Improve Yields for Some Sorts of (Het)ArCF₃ Substrates.

Figure S1. Photochemical Reaction Device.

Figure S2. Three Types of THF.

I. Superdry, stabilizer free, with molecular sieves, J&K; **II**. Superdry, stabilized with 250 ppm BHT, without molecular sieves, J&K; **III**. Regular, AR, *Sinopharm*. (from left to right). THF **II** is the most effective solvent and is preferentially used in most situations.

device 1 : 25°C (before irradiation), 34°C (after irradiation); device 2 : 25°C (before irradiation), 25°C (after irradiation); device 3 : 25°C (before irradiation), 25°C (after irradiation).

Figure S3. Three Types of Photocatalytic Devices.

Two different types of photocatalytic devices (devices 2 and 3) in our lab were applied besides the standard reaction setup (device 1). The results indicated that

altering both the temperature and the device used for the reaction had a negligible impact on reproducibility.

Scheme S2. Nucleophiles Limitation.

Some nucleophiles other than amines and 1,3-dicarbonyl compounds were applied under standard condition. In the case of thiol, thiophenol, carboxylic acid, indole and phenol, only trace amount of desire product was detected by GCMS. Benzenesulfonamide, benzyl alcohol and benzamide did not give any target products.

6. Synthetic Applications

Gram-scale Synthesis

To an 100 mL round-bottom flask equipped with a stir bar was added Pd(PPh₃)₄ (52 mg, 0.045 mmol, 0.015 equiv.), XantPhos (140 mg, 0.24 mmol, 0.08 equiv.), bis(2-methoxyphenyl)phenylphosphine 0.24 mmol, (78 mg, 0.08 equiv.), 1-phenylpiperazine (487 mg, 3.0 mmol, 1.0 equiv.), LiOH (72 mg, 3.0 mmol, 1.0 equiv.) and THF (30 mL). The solution was degassed by bubbling with nitrogen for 10 minutes. Then 1-methoxy-3,5-bis(trifluoromethyl)benzene (2.2 g, 9.0 mmol, 3.0 equiv.) and 1,3-butadiene (2.0 mol/L in THF, 3 mL, 6.0 mmol, 2.0 equiv.) was syringed into the reaction vessel before sealing with parafilm. The reaction was carried out in a steel chamber under the irradiation at room temperature via blue LEDs (40 W \times 2, λ_{max} = 440 nm) for 12 h.. The reaction mixture was removed from the light, cooled to ambient temperature, quenched by exposure to air. After the removal of solvent, the residue was purified by flash chromatography on silica gel to afford the desired product.

To an 100 mL round-bottom flask equipped with a stir bar was added Pd(PPh₃)₄ (69 mg, 0.06 mmol, 0.015 equiv.), XantPhos (185 mg, 0.32 mmol, 0.08 equiv.), Mg(OTf)₂ (141 mg, 0.8 mmol, 0.2 equiv.), 1-phenylpiperazine (649 mg, 4.0 mmol, 1.0 equiv.), LiOH (96 mg, 4.0 mmol, 1.0 equiv.) and THF (40 mL). The solution was degassed by bubbling with nitrogen for 10 minutes. Then 2-methoxy-3-(trifluoromethyl)pyridine (2.1 g, 12.0 mmol, 3.0 equiv.) and 1,3-butadiene (2.0 mol/L in THF, 4 mL, 8.0 mmol, 2.0 equiv.) was syringed into the reaction vessel before sealing with parafilm. The reaction was carried out in a steel chamber under the irradiation at room temperature via blue LEDs (40 W \times 2, λ_{max} = 440 nm) for 24 h. The reaction mixture was removed from the light, cooled to ambient temperature, quenched by exposure to air. After the removal of solvent, the residue was purified by flash chromatography on silica gel to afford the desired product.

Scheme S3. Gram-scale Synthesis.

Figure S4. Gram-scale Setup.

Piperazine as Nucleophile (Procedure F)

To an 8 mL vial equipped with a stir bar was added $Pd(PPh_3)_4$ (5.2 mg, 4.6 µmol, 0.03 **XantPhos** mmol. 0.16 equiv.), (14.0)mg, 0.024 equiv.), bis(2-methoxyphenyl)phenylphosphine (7.8 mg, 0.024 mmol, 0.16 equiv.), 3,5-bis(trifluoromethyl)-1,1'-biphenyl (261 mg, 0.90 mmol, 6.0 equiv.), piperazine dihydrochloride (24.4 mg, 0.15 mmol, 1.0 equiv.), LiOH (14.4 mg, 0.60 mmol, 4.0 equiv.) and THF (3.0 mL). The solution was degassed by bubbling with nitrogen for 8 minutes and 1,3-butadiene (2.0 mol/L in THF, 300 µL, 0.60 mmol, 4.0 equiv.) was syringed into the reaction vessel before sealing with parafilm. The reaction was carried out in a steel chamber under the irradiation at room temperature via blue LEDs (40 W, $\lambda_{max} = 440$ nm) for 12 h. The reaction mixture was removed from the light, cooled to ambient temperature, quenched by exposure to air. After the removal of solvent, the residue was purified by flash chromatography on silica gel to afford the desired product.

2,2-Dimethyl-1,3-dioxane-4,6-dione as Nucleophile (Procedure G)

To an 8 mL vial equipped with a stir bar was added $Pd(PPh_3)_4$ (5.2 mg, 4.6 µmol, 0.03 **XantPhos** equiv.). (14.0)mg, 0.024 mmol. 0.16 equiv.), 0.024 bis(2-methoxyphenyl)phenylphosphine (7.8 mmol, 0.16 equiv.), mg, 3,5-bis(trifluoromethyl)-1,1'-biphenyl (261 0.90 mmol. mg, 6.0 equiv.), 2,2-dimethyl-1,3-dioxane-4,6-dione (21.6 mg, 0.15 mmol, 1.0 equiv.), LiOH (7.2 mg, 0.30 mmol, 2.0 equiv.) and THF (3.0 mL). The solution was degassed by bubbling with nitrogen for 8 minutes and 1,3-butadiene (2.0 mol/L in THF, 300 µL, 0.60 mmol, 4.0 equiv.) was syringed into the reaction vessel before sealing with parafilm. The reaction was carried out in a steel chamber under the irradiation at room temperature via blue LEDs (40 W, $\lambda_{max} = 440$ nm) for 12 h. The reaction mixture was removed from the light, cooled to ambient temperature, quenched by exposure to air. After the removal of solvent, the residue was purified by flash chromatography on silica gel to afford the desired product.

Different aromatic trifluoromethyls connected by diamine (Procedure H)

Substrate 119 or 122 was prepared via procedure A. To an 8 mL vial equipped with a stir bar was added 119 or 122 (131 mg, 0.3 mmol, 1.0 equiv.), TFA (1 mL) and DCM (1 mL). The reaction was stirring under room temperature for 6 h followed by quenching with saturated Na₂CO₃ (aq.). Then the aqueous layer was extracted with three portions of DCM. The combined organic layers were washed with brine, dried over Na₂SO₄, filtered, and concentrated. The residue was used on the next step without further purification. To another 8 mL vial contained the residue that mention previously and equipped with a stir bar was added $Pd(PPh_3)_4$ (5.2 mg, 4.6 µmol, 0.015 **XantPhos** equiv.), (14.0)mg, 0.024 mmol. 0.08 equiv.), bis(2-methoxyphenyl)phenylphosphine (7.8 mg, 0.024 mmol, 0.08 equiv.), 3,5-bis(trifluoromethyl)-1,1'-biphenyl (261 mg, 0.90 mmol, 3.0 equiv.), LiOH (7.2 mg, 0.30 mmol, 1.0 equiv.) and THF (3.0 mL). The solution was degassed by bubbling with nitrogen for 8 minutes and 1,3-butadiene (2.0 mol/L in THF, 300 µL, 0.60 mmol, 2.0 equiv.) was syringed into the reaction vessel before sealing with parafilm. The reaction was carried out in a steel chamber under the irradiation at room temperature via blue LEDs (40 W, $\lambda_{max} = 440$ nm) for 12 h. The reaction mixture was removed from the light, cooled to ambient temperature, quenched by exposure to air. After the removal of solvent, the residue was purified by flash chromatography on silica gel to afford the desired product.

Scheme S4. Different Aromatic Trifluoromethyls Connected by 2,7-Diazaspiro[4.4]nonane Motif.

Scheme S5. Different Aromatic Trifluoromethyls Connected by Piperazine Motif.

Treated with Oxidant (Procedure I)

Substrate **91a** was prepared via procedure A. To an 8 mL vial equipped with a stir bar was added **91a** (51.1 mg, 0.1 mmol, 1.0 equiv.), *m*CPBA (25.9 mg, 0.15 mmol, 1.5 equiv.) and DCM (2 mL). The reaction was stirring at 0° C for 0.5 h and moved to room temperature for another 3 h followed by quenching with saturated Na₂CO₃ (aq.). Then the aqueous layer was extracted with three portions of DCM. The combined organic layers were washed with brine, dried over Na₂SO₄, filtered, and concentrated. The residue was purified by flash chromatography on silica gel to afford the desired product.

Scheme S6. Oxidative Transformation.

7. Preliminary Mechanistic Experiments

Radical Trapping Experiment

To an 8 mL vial equipped with a stir bar was added $Pd(PPh_3)_4$ (5.2 mg, 4.6 μ mol, 0.015 equiv.), **XantPhos** (14.0)0.024 mmol, 0.08 mg, equiv.), bis(2-methoxyphenyl)phenylphosphine (7.8 mg, 0.024 mmol, 0.08 equiv.), 1-phenylpiperazine (50.1 mg, 0.30 mmol, 1.0 equiv.), LiOH (7.2 mg, 0.30 mmol, 1.0 equiv.), TEMPO (93.4 mg, 0.6 mmol, 2.0 equiv.) or BHT (132.2 mg, 0.6 mmol, 2.0 equiv.) and THF (3.0 mL). The solution was degassed by bubbling with nitrogen for 8 minutes. Then 1-methoxy-3,5-bis(trifluoromethyl)benzene (219.7 mg, 0.90 mmol, 3.0 equiv.) and 1,3-butadiene (2.0 mol/L in THF, 300 μ L, 0.60 mmol, 2.0 equiv.) was syringed into the reaction vessel before sealing with parafilm. The reaction was carried out in a steel chamber under the irradiation at room temperature via blue LEDs (40 W, $\lambda_{max} = 440$ nm) for 12 h. The reaction mixture was removed from the light, cooled to ambient temperature, quenched by exposure to air. After the removal of solvent, the residue was dissolved in 1 mL CDCl₃ followed by the addition of MeNO₂ (0.37 mmol) as internal standard, then the solution was analyzed by ¹ H NMR and GCMS.

Scheme S7. TEMPO-radical Intermediate Detected by GCMS.

Radical Clock Experiment (Procedure J)

To an 8 mL vial equipped with a stir bar was added $Pd(PPh_3)_4$ (5.2 mg, 4.6 μ mol, equiv.), mmol, 0.015 XantPhos (14.0)mg, 0.024 0.08 equiv.), bis(2-methoxyphenyl)phenylphosphine (7.8 mg, 0.024 mmol, 0.08 equiv.), 1-phenylpiperazine (50.1 mg, 0.30 mmol, 1.0 equiv.), LiOH (7.2 mg, 0.30 mmol, 1.0 equiv.) and THF (3.0 mL). The solution was degassed by bubbling with nitrogen for 8 minutes. Then 1-methoxy-3,5-bis(trifluoromethyl)benzene (219.7 mg, 0.90 mmol, 3.0 equiv.) and (1-cyclopropylvinyl)benzene (86.4 mg, 0.60 mmol, 2.0 equiv.) was syringed into the reaction vessel before sealing with parafilm. The reaction was carried out in a steel chamber under the irradiation at room temperature via blue LEDs (40 W, $\lambda_{max} = 440$ nm) for 12 h. The reaction mixture was removed from the light, cooled to ambient temperature, quenched by exposure to air. After the removal of solvent, the residue was purified by flash chromatography on silica gel to afford the desired product.

Tracking Experiment

To an 8 mL vial equipped with a stir bar was added Pd(PPh₃)₄ (2.6 mg, 2.3 µmol, 0.015 equiv.), XantPhos (7.0)mg, 0.012 mmol, 0.08 equiv.), bis(2-methoxyphenyl)phenylphosphine (3.9 mg, 0.012 mmol, 0.08 equiv.), 1-phenylpiperazine (25.1 mg, 0.15 mmol, 1.0 equiv.), LiOH (3.6 mg, 0.15 mmol, 1.0 equiv.) and THF (1.5 mL). The solution was degassed by bubbling with nitrogen for 8 minutes. Then 1,3-bis(trifluoromethyl)benzene (94 mg, 0.45 mmol, 3.0 equiv.) and 1,3-butadiene (2.0 mol/L in THF, 150 µL, 0.30 mmol, 2.0 equiv.) was syringed into the reaction vessel before sealing with parafilm. The reaction was carried out in a steel chamber under the irradiation via blue LEDs (40 W, $\lambda_{max} = 440$ nm) for six parallel setups. The temperature in these setups was approx. 40°C. The reaction mixture was removed from the light in sequence, cooled to ambient temperature, quenched by exposure to air. After the removal of solvent, the residue was analyzed by ¹H NMR with MeNO₂ as internal standard.

To an 8 mL vial equipped with a stir bar was added Pd(PPh₃)₄ (5.2 mg, 4.6 µmol, 0.015 equiv.), XantPhos (14.0 mg, 0.024 mmol, 0.08 equiv.), Mg(OTf)₂ (10.6 mg, 0.06 mmol, 0.2 equiv.), 1-phenylpiperazine (50.1 mg, 0.30 mmol, 1.0 equiv.), LiOH (7.2 mg, 0.30 mmol, 1.0 equiv.) and THF (3.0 mL). The solution was degassed by bubbling with nitrogen for 8 minutes. Then 2-methoxy-3-(trifluoromethyl)pyridine (160 mg, 0.90 mmol, 3.0 equiv.), mesitylene (internal standard, 14 µL, 0.1 mmol) and 1,3-butadiene (2.0 mol/L in THF, 300 µL, 0.60 mmol, 2.0 equiv.) was syringed into the reaction vessel before sealing with parafilm. The reaction was carried out in a steel chamber under the irradiation at room temperature via blue LEDs (40 W, λ_{max} = 440 nm). Samples (100µL) were taken out from the vial via microsyringe without stopping irradiation followed by the GC analysis.

Table S8. Tracking Experiment of *E/Z* Ratio.

Competitive Experiment

To an 8 mL vial equipped with a stir bar was added Pd(PPh₃)₄ (5.2 mg, 4.6 µmol, 0.015 equiv.), **XantPhos** (14.0)mg, 0.024 mmol, 0.08 equiv.), bis(2-methoxyphenyl)phenylphosphine (7.8 mg, 0.024 mmol, 0.08 equiv.) or Mg(OTf)₂ (10.6 mg, 0.06 mmol, 0.2 equiv.), 1-phenylpiperazine (50.1 mg, 0.30 mmol, 1.0 equiv.), LiOH (7.2 mg, 0.30 mmol, 1.0 equiv.) and THF (3.0 mL). The solution was degassed by bubbling with nitrogen for 8 minutes. Then 1-methoxy-3,5-bis(trifluoromethyl)benzene (183 mg, 0.75 mmol, 2.5 equiv.), 3,5-bis(trifluoromethyl)benzonitrile (179 mg, 0.75 mmol, 2.5 equiv.) and 1,3-butadiene (2.0 mol/L in THF, 300 µL, 0.60 mmol, 2.0 equiv.) was syringed into the reaction vessel before sealing with parafilm. The reaction was carried out in a steel chamber under the irradiation at room temperature via blue LEDs (40 W, λ_{max} = 440 nm). The reaction mixture was removed from the light, cooled to ambient temperature, quenched by exposure to air. After the removal of solvent, the residue was purified by flash chromatography on silica gel to afford the desired product.

Scheme S8. Competitive Experiment via Procedure A and B.

UV-vis absorption spectra

Figure S5. UV-vis Absorption Spectra of Reaction Mixture. The Concentration of Each Component is 1/8 of the Reaction Conditions of Table 1, Entry 1.

Figure S6. UV-vis Absorption Spectra of Reaction Mixture. The Concentration of Each Component is Equal with the Reaction Conditions of Table 1, entry 1.

Luminescence Quenching spectra

Figure S7. Emission Quenching of Pd(PPh₃)₄ by ArCF₃.

Figure S8. Stern-Volmer Luminescence Quenching of Pd(PPh₃)₄ by ArCF₃.

Figure S9. Emission Quenching of Pd(PPh₃)₄-XantPhos-[(2-OMe)Ph]₂PPh by ArCF₃.

FigureS10.Stern-VolmerLuminescenceQuenchingof $Pd(PPh_3)_4$ -XantPhos-[(2-OMe)Ph]_2PPh by ArCF3.

³¹P NMR Spectra

To a NMR tube were added Pd(PPh₃)₄ (5.2 mg, 4.6 μ mol, 1.0 equiv), Xantphos (14 mg, 24 μ mol, 5.3 equiv), [(2-OMe)Ph]₂PPh (7.8 mg, 24 μ mol, 5.3 equiv), PPh₃ (4.8 mg, 18.4 μ mol, 4.0 equiv) and CDCl₃ (0.5 mL). Then the reaction mixture was shaked for 5 min at room temperature and analyzed by ³¹P NMR.

Figure S11. ³¹P NMR Spectra of Pd(PPh₃)₄, Pd(PPh₃)₄ + XantPhos and Pd(PPh₃)₄ + [(2-OMe)Ph]₂PPh + XantPhos.

Figure S12. ³¹P NMR Spectra of $Pd(PPh_3)_4$, $Pd(PPh_3)_4 + [(2-OMe)Ph]_2PPh$ and $Pd(PPh_3)_4 + [(2-OMe)Ph]_2PPh + XantPhos.$

8. Computation data

Energies and Cartesian coordinates at 298.15 K and 1 atm for all structures (Energies are given in Hartree and coordinates in angstroms).

E-IM

B3LYP-D3/6-31G* (for C H O F P) & LanL2DZ (for Pd) SCF energy in vacuum:

-3352.049272

B3LYP-D3/6-311G** (for C H O F P) & LanL2DZ (for Pd) SCF energy in THF: -3353.5713775

B3LYP-D3/6-311G** (for C H O F P) & LanL2DZ (for Pd) free energy in THF:

-3352.862043

С	0.89894300	-4.93269800	-1.10846700
С	2.26791200	-4.84348700	-1.37667000
С	2.98455400	-3.68532500	-1.06692600
С	2.26716900	-2.63510500	-0.48897300
С	0.89398800	-2.66903600	-0.24808800
С	0.21051700	-3.85615200	-0.55377200
С	3.91131100	-1.07247800	-1.00956800
С	4.71559300	-2.02344700	-1.63670300
С	5.70382800	-1.53999300	-2.49966700
Н	6.35387300	-2.23374300	-3.02075900
С	5.88005700	-0.16690000	-2.69090800
С	5.06460300	0.75690000	-2.03722000
С	4.04237300	0.30512900	-1.19142800
Н	0.36365300	-5.84613700	-1.34690500
Н	2.77475100	-5.68868400	-1.82822200
Н	-0.85619200	-3.92878500	-0.37917000
Н	6.66497700	0.18590200	-3.35207700
Н	5.21878700	1.81847300	-2.18687300
0	2.91868800	-1.47093500	-0.14153800
С	4.49166400	-3.49273700	-1.26520900

С	5.19715300	-3.75445400	0.09366900
Н	4.82028600	-3.08186100	0.87035300
Н	5.02299600	-4.78632400	0.41611100
Н	6.27615000	-3.59557800	-0.00497300
С	5.05997300	-4.44790700	-2.32193600
Н	4.58710900	-4.29899700	-3.29779700
Н	6.13831300	-4.30342900	-2.43180800
Н	4.91373000	-5.48855600	-2.01962300
Р	0.05319900	-1.15281000	0.35466500
Р	2.88156300	1.37655000	-0.26984900
С	0.19431400	-1.20631600	2.17478400
С	1.15566500	-1.99409600	2.81717300
С	-0.62810100	-0.36351100	2.94011100
С	1.28805900	-1.94334700	4.20548800
Н	1.79963500	-2.64686000	2.23860000
С	-0.50571100	-0.32880800	4.32683100
Н	-1.37709800	0.25156000	2.44990500
С	0.45697800	-1.11802800	4.96251000
Н	2.03930500	-2.55572000	4.69467500
Н	-1.15973000	0.31132000	4.91186800
Н	0.55644800	-1.08851400	6.04333400
С	-1.68390400	-1.56546000	-0.04128900
С	-2.57355800	-2.15428800	0.86830300
С	-2.07740600	-1.38675900	-1.37729300
С	-3.83335800	-2.57704300	0.43708900
Н	-2.27858200	-2.29460800	1.90296400
С	-3.32150200	-1.83931700	-1.80936400
Н	-1.39659300	-0.91528100	-2.08137700
С	-4.19811800	-2.44369500	-0.90391800
Н	-4.52903200	-3.01853300	1.14350200
Н	-3.61228000	-1.71161900	-2.84755800
Н	-5.17229900	-2.78407400	-1.23556600
С	3.32801700	1.11908300	1.48453300
С	4.58011600	0.60852500	1.85308400

С	2.39957500	1.45438700	2.47977900
С	4.89247900	0.43302900	3.20075700
Н	5.30719000	0.34703100	1.09142100
С	2.71928600	1.28834400	3.82532700
Н	1.42076100	1.83103600	2.19926900
С	3.96445000	0.77223200	4.18721400
Н	5.86297400	0.03365500	3.47970700
Н	1.98907700	1.54083300	4.58632800
Н	4.21068500	0.63251400	5.23549100
С	3.46742300	3.06047000	-0.67229500
С	4.03694200	3.89290900	0.29833200
С	3.31769100	3.53447300	-1.98675600
С	4.45226800	5.18228700	-0.04346400
Н	4.16161600	3.53767800	1.31529800
С	3.74565100	4.81563700	-2.32566800
Н	2.87175200	2.89591800	-2.74548600
С	4.31089600	5.64406300	-1.35141100
Н	4.89198000	5.82217100	0.71559600
Н	3.63396300	5.16999600	-3.34592600
Н	4.63788500	6.64549500	-1.61374200
Pd	0.54718300	1.09515900	-0.39436800
С	-1.09910800	2.77996200	-0.83089500
Н	-1.60310700	2.71276200	-1.78950000
С	0.26911500	3.20435100	-0.78225600
Н	0.64679200	3.66869400	0.12758300
Н	0.72585800	3.58071700	-1.69065200
С	-3.10616900	1.71471600	0.40328500
С	-4.06485500	2.12996600	-0.71396100
Н	-3.53314500	2.06164700	1.35137900
Н	-3.10802100	0.61866300	0.45306700
С	-5.50462100	1.80189800	-0.40370900
F	-3.93623200	3.47981900	-0.93793300
F	-3.67328800	1.50192400	-1.88131400
С	-6.34079000	2.75963900	0.17930500

С	-5.97302200	0.51061500	-0.62787400
С	-7.64407100	2.41673200	0.53555700
Н	-5.97557800	3.76791600	0.34036200
С	-7.27338100	0.16944600	-0.25465100
Н	-5.32884900	-0.22288800	-1.09248400
С	-8.11346300	1.11893500	0.32752500
Н	-8.29763800	3.16249100	0.97641200
С	-7.72626800	-1.25172400	-0.44540600
Н	-9.12450500	0.84723900	0.60857700
F	-7.37867500	-1.72432400	-1.66718300
F	-7.14047500	-2.07761600	0.46121700
F	-9.05528500	-1.39218300	-0.31336100
С	-1.70587700	2.25099000	0.29223200
Н	-1.19535500	2.39631600	1.24402600

Z-IM

B3LYP-D3/6-31G* (for C H O F P) & LanL2DZ (for Pd) SCF energy in vacuum:

-3352.054655

B3LYP-D3/6-311G** (for C H O F P) & LanL2DZ (for Pd) SCF energy in THF: -3353.5811755

B3LYP-D3/6-311G** (for C H O F P) & LanL2DZ (for Pd) free energy in THF: -3352.865688

С	-3.55262700	2.09763400	2.45017900
С	-2.87955700	1.43876100	3.48337100
С	-1.60240000	0.90713800	3.28921700
С	-1.04008900	1.09111800	2.02599600
С	-1.71352200	1.65971300	0.94470700
С	-2.99075800	2.18915800	1.17895000
С	0.70533400	-0.41979500	2.42419800
С	0.19718200	-0.77676300	3.67054100
С	0.71118400	-1.95153800	4.23123700
Н	0.34913000	-2.29306400	5.19435500
С	1.70441400	-2.68967700	3.57944300
С	2.22220000	-2.27158100	2.35204200

С	1.71123100	-1.11724200	1.74961900	
Н	-4.53964900	2.51042600	2.63188300	
Н	-3.36460700	1.34033100	4.44808300	
Н	-3.54518800	2.64782300	0.36837500	
Н	2.09063700	-3.59117600	4.04394800	
Н	3.01134700	-2.83559400	1.86824200	
0	0.25116000	0.70248500	1.77685700	
С	-0.77074200	0.19387900	4.36320200	
С	0.08738000	1.26108300	5.09444600	
Н	0.73262300	1.79480400	4.38889500	
Н	-0.55991600	1.99314900	5.58900200	
Н	0.72138700	0.78580500	5.85035800	
С	-1.66760400	-0.53069300	5.37790200	
Н	-2.28508400	-1.28814100	4.88761700	
Н	-1.06428300	-1.01362800	6.15146200	
Н	-2.32295400	0.17708000	5.89239100	
Р	-0.92837400	1.61672400	-0.71164100	
Р	2.21417600	-0.41991600	0.13742500	
С	-0.03448200	3.20021900	-0.86940800	
С	0.14819100	4.05849900	0.21905100	
С	0.47395600	3.56022000	-2.12817400	
С	0.81743200	5.27123900	0.04708500	
Н	-0.23543200	3.78533200	1.19585600	
С	1.12265000	4.77977800	-2.30025600	
Н	0.34093900	2.89436200	-2.97675300	
С	1.29482900	5.63851000	-1.21050300	
Н	0.95819600	5.93123700	0.89749400	
Н	1.49488300	5.06110300	-3.28103800	
Н	1.80314200	6.58876700	-1.34362600	
С	-2.39278000	1.81534400	-1.79557600	
С	-2.77896400	3.04134700	-2.35011900	
С	-3.17707700	0.67603400	-2.02785400	
С	-3.93035400	3.11904700	-3.13848100	
Н	-2.18878300	3.93270600	-2.16907000	

С	-4.32797100	0.75893900	-2.80569200
Н	-2.88599100	-0.27377400	-1.59601600
С	-4.70519200	1.98196800	-3.36794300
Н	-4.22176000	4.07247300	-3.56881900
Н	-4.92739200	-0.13052100	-2.97485300
Н	-5.59929200	2.04761500	-3.98042200
С	2.83971100	1.25765800	0.50828500
С	3.15916000	1.67328900	1.80619800
С	3.08966100	2.11479400	-0.57206900
С	3.71551500	2.93465000	2.01857600
Н	2.98463400	1.01219400	2.64826400
С	3.66694300	3.36426600	-0.35914300
Н	2.83782600	1.79974200	-1.58054900
С	3.97486400	3.77865500	0.93758100
Н	3.95712900	3.25220900	3.02858000
Н	3.85737200	4.01931100	-1.20189400
Н	4.41570600	4.75676100	1.10477600
С	3.76278200	-1.31798600	-0.30235800
С	5.00400600	-0.66411600	-0.24191700
С	3.72962800	-2.66774400	-0.69278700
С	6.17801000	-1.34324300	-0.57093800
Н	5.06238500	0.37207400	0.06547200
С	4.90686000	-3.34336800	-1.01100000
Н	2.78929600	-3.19761300	-0.73413200
С	6.13508700	-2.68233900	-0.95651300
Н	7.12824300	-0.82034700	-0.51901200
Н	4.86146200	-4.38882800	-1.30177800
Н	7.05053300	-3.20824400	-1.20988100
Pd	0.48774100	-0.18540700	-1.51601200
С	-4.07960800	-2.49446600	-0.82517100
С	-3.73496900	-2.91758000	-2.10711700
С	-2.40328800	-3.19889400	-2.41335000
С	-1.40650600	-3.03302000	-1.44632500
С	-1.74497500	-2.58465400	-0.16705500

С	-3.08078600	-2.33080000	0.13835000
Н	-5.11572400	-2.29801600	-0.56957100
Н	-4.50458900	-3.05752300	-2.85923400
Н	-2.15115800	-3.58518800	-3.39634000
Н	-0.98162200	-2.47334900	0.59130900
С	-0.00648800	-3.52567300	-1.73782200
С	-3.48658900	-1.90843400	1.52258000
F	-2.42560200	-1.83032400	2.35899900
F	-4.08685000	-0.69946800	1.50375700
F	-4.36502500	-2.77443300	2.06464000
F	0.76708600	-3.35037100	-0.60815500
F	-0.09228400	-4.88615900	-1.92916500
С	0.90351000	-0.49643700	-3.64345600
Н	1.60502000	0.26141700	-3.98638600
С	-0.46072900	-0.18627100	-3.59024000
Н	-0.82771500	0.75364400	-3.98589300
Н	-1.20960200	-0.95500500	-3.42968600
С	1.41016500	-1.62120500	-2.93712700
Н	2.48792400	-1.66787800	-2.82222100
С	0.72528100	-2.98067400	-2.96878400
Н	1.49398200	-3.72839200	-3.18919700
Н	0.01396800	-3.01306400	-3.79922800

9. Experimental Data

3-(1,1-difluoro-5-(4-phenylpiperazin-1-yl)pentyl)-5-(trifluoromethyl)aniline (5a)

The title product was prepared via procedure A & D, purified by flash chromatography (PE:EA:Et₃N = 2:1:0.03) on silica gel to afford the title compound (91.0 mg, 71% yield; 33.5 mg, 78% yield) as a colorless oil.

¹**H** NMR (400 MHz, CDCl₃) δ 7.17 (dd, J = 9.2, 6.4 Hz, 2H), 6.97 (s, 1H), 6.91 – 6.70 (m, 5H), 3.90 (s, 2H), 3.11 (t, J = 8.0 Hz, 4H), 2.49 (t, J = 8.0 Hz, 4H), 2.29 (t, J = 8.0 Hz, 2H), 2.04 (tdd, J = 16.1, 9.3, 6.7 Hz, 2H), 1.63 – 1.30 (m, 4H).

¹³**C NMR (101 MHz, CDCl₃)** δ 151.43, 147.21, 139.63 (t, *J* = 27.2 Hz), 132.13 (q, *J* = 32.3 Hz), 129.21, 123.91 (q, J = 273.7 Hz), 122.50 (t, *J* = 242.9 Hz), 119.79, 116.14, 114.38 (t, *J* = 6.1 Hz), 112.43, 111.58, 58.29, 53.35 49.20, 38.86 (t, *J* = 27.2 Hz), 26.50, 20.58 (t, *J* = 4.1 Hz).

¹⁹F NMR (**376** MHz, CDCl₃) δ -62.93, -96.04 (t, J = 15.0 Hz).

HRMS (**ESI-TOF**) m/z calcd. for C₂₂H₂₇F₅N₃ ([M+H]⁺): 428.2120, found: 428.2111.

3-(1,1-difluoro-5-(4-phenylpiperazin-1-yl)pentyl)-5-(trifluoromethyl)benzonitrile (6a)

The title product was prepared via procedure B & D, purified by flash chromatography (PE:EA:Et₃N = 3:1:0.03) on silica gel to afford the title compound (83.9 mg, 64% yield; 23.7 mg, 54% yield) as a colorless oil.

¹**H NMR (400 MHz, CDCl₃)** δ 7.91 (s, 1H), 7.88 (d, J = 1.8 Hz, 2H), 7.21 – 7.16 (m, 2H), 6.86 – 6.84 (m, 2H), 6.78 (t, J = 8.0, 1H), 3.13 – 3.11 (m, 4H), 2.53 – 2.50 (m, 4H), 2.32 (dd, J = 8.2, 6.5 Hz, 2H), 2.17 – 2.04 (m, 2H), 1.56 – 1.39 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 151.16, 140.49 (t, J = 28.7 Hz), 132.77 (q, J = 34.2 Hz), 132.15 (t, J = 6.1 Hz), 130.31, 129.23, 126.35, 122.63 (q, J = 273.7 Hz), 121.38 (t, J = 245.4 Hz), 119.89, 116.75, 116.19, 114.28, 58.11, 53.37, 49.21, 38.75 (t, J = 26.6 Hz), 26.34, 20.37 (t, J = 4.0 Hz).

¹⁹**F NMR (376 MHz, CDCl**₃) δ -63.08, -96.60 (td, *J* = 16.6, 3.2 Hz).

HRMS (**ESI-TOF**) m/z calcd. for C₂₃H₂₅F₅N₃ ([M+H]⁺): 438.1963, found: 438.1953.

1-(5-(3,5-bis(trifluoromethyl)phenyl)-5,5-difluoropentyl)-4-phenylpiperazine (7a)

The title product was prepared via procedure A & D, purified by flash chromatography (PE:EA:Et₃N = 6:1:0.03) on silica gel to afford the title compound (85.0 mg, 59% yield; 38.4 mg, 80% yield) as a white solid.

¹**H** NMR (400 MHz, CDCl₃) δ 8.00 (s, 1H), 7.96 (s, 2H), 7.31 – 7.28 (m, 2H), 6.96 (d, J = 8.2 Hz, 2H), 6.89 (t, J = 7.3 Hz, 1H), 3.22 (t, J = 5.0 Hz, 4H), 2.61 (t, J = 5.0 Hz, 4H), 2.42 (t, J = 7.2 Hz, 2H), 2.23 (tt, J = 16.2, 7.7 Hz, 2H), 1.67 – 1.51 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 151.41, 140.12 (t, *J* = 28.3 Hz), 132.33 (q, *J* = 33.9 Hz), 129.22, 125.63, 123.90, 123.05 (q, *J* = 273.7 Hz), 121.73 (t, *J* = 243.9 Hz), 119.85, 116.18, 58.18, 53.39, 49.24, 38.86 (t, *J* = 26.6 Hz), 26.43, 20.40.

¹⁹F NMR (**376** MHz, CDCl₃) δ -62.92, -96.44 (t, J = 16.5 Hz).

HRMS (**ESI-TOF**) m/z calcd. for C₂₃H₂₅F₈N₂ ([M+H]⁺): 481.1885, found: 481.1869.

1-(3-(1,1-difluoro-5-(4-phenylpiperazin-1-yl)pentyl)-5-(trifluoromethyl)phenyl)-1 *H*-indole (8a)

The title product was prepared via procedure B & D, purified by flash chromatography (PE:EA:Et₃N = 6:1:0.03) on silica gel to afford the title compound (85.4 mg, 54 % yield; 34.4 mg, 65% yield) as a pale yellow solid.

¹**H** NMR (400 MHz, CDCl₃) δ 7.76 (s, 1H), 7.74 (s, 1H), 7.63 – 7.61 (m, 2H), 7.45 (dd, J = 8.0, 1.2 Hz, 1H), 7.26 (d, J = 3.4 Hz, 1H), 7.21 – 7.11 (m, 4H), 6.84 – 6.81 (m, 2H), 6.76 (tt, J = 7.3, 1.2 Hz, 1H), 6.66 (dd, J = 3.4, 0.9 Hz, 1H), 3.09 (dd, J = 6.1, 4.0 Hz, 4H), 2.49 (t, J = 5.0 Hz, 4H), 2.31 (t, J = 7.0 Hz, 2H), 2.20 – 2.08 (m, 2H), 1.54 – 1.44 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 151.38, 140.89, 140.58 (t, J = 28.0 Hz), 135.57, 132.86 (q, J = 33.3 Hz), 129.80, 129.21, 127.42, 126.00 (q, J = 273.3 Hz), 124.47 (t, J = 239.2 Hz), 123.96 (t, J = 6.1 Hz), 123.34, 122.05, 121.71, 121.35, 119.84, 119.61 – 119.57 (m), 116.16, 110.01, 105.45, 58.22, 53.37, 49.20, 38.93 (t, J = 26.9 Hz), 26.46, 20.54 (d, J = 4.0 Hz).

¹⁹**F** NMR (**376** MHz, CDCl₃) δ -62.66 (d, J = 3.7 Hz), -95.95 (td, J = 16.5, 3.9 Hz).

HRMS (**ESI-TOF**) m/z calcd. for C₃₀H₃₁F₅N₃ ([M+H]⁺): 528.2433, found: 528.2421.

9-(3-(1,1-difluoro-5-(4-phenylpiperazin-1-yl)pentyl)-5-(trifluoromethyl)phenyl)-9 *H*-carbazole (9a)

The title product was prepared via procedure B & D, purified by flash chromatography (PE:EA:Et₃N = 6:1:0.03) on silica gel to afford the title compound (107.4 mg, 62% yield; 38.1 mg, 66% yield) as a white solid.

¹**H** NMR (400 MHz, CDCl₃) δ 8.04 (d, J = 7.6 Hz, 1H), 7.83 (d, J = 14.9 Hz, 0H), 7.73 (s, 0H), 7.36 – 7.20 (m, 3H), 7.17 – 7.12 (m, 1H), 6.81 – 6.73 (m, 2H), 3.06 (t, J = 5.1 Hz, 2H), 2.46 (t, J = 5.1 Hz, 2H), 2.30 (t, J = 6.6 Hz, 1H), 2.21 – 2.09 (m, 1H), 1.50 – 1.48 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 151.37, 140.88 (t, J = 28.0 Hz), 140.30, 139.11, 133.14 (q, J = 33.4 Hz), 129.21, 127.04, 126.56, 125.06, 123.94, 121.40 (q, J = 273.7 Hz), 122.03 (t, J = 244.4 Hz), 121.02, 120.76, 120.72, 119.82, 116.14, 109.32, 58.24, 53.38, 49.19, 38.92 (t, J = 26.8 Hz), 26.47, 20.60 (t, J = 4.0 Hz).

¹⁹F NMR (376 MHz, CDCl₃) δ -62.55, -95.79 (t).

HRMS (**ESI-TOF**) m/z calcd. for C₃₄H₃₃F₅N₃ ([M+H]⁺): 578.2589, found: 578.2576.

1-(5-(3-(1*H*-pyrazol-1-yl)-5-(trifluoromethyl)phenyl)-5,5-difluoropentyl)-4-pheny lpiperazine (10a)

The title product was prepared via procedure B & D, purified by flash chromatography (PE:EA:Et₃N = 3:1:0.03) on silica gel to afford the title compound (80.3 mg, 56% yield; 37.4 mg, 78% yield) as a pale yellow solid.

¹**H** NMR (400 MHz, CDCl₃) δ 7.95 (dd, J = 3.8, 1.7 Hz, 2H), 7.91 (d, J = 2.5 Hz, 1H), 7.68 (d, J = 1.7 Hz, 1H), 7.54 (s, 1H), 7.17 (t, J = 8.0 Hz, 2H), 6.83 (d, J = 7.6 Hz, 2H), 6.78 – 6.75 (m, 1H), 6.44 (dd, J = 2.6, 1.8 Hz, 1H), 3.10 (t, J = 5.2 Hz, 4H),
2.49 (t, *J* = 5.2 Hz, 4H), 2.30 (t, *J* = 6.8 Hz, 2H), 2.14 (tt, *J* = 16.4, 8.4 Hz, 2H), 1.55 – 1.40 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 151.40, 142.26, 140.91, 140.37 (t, J = 28.0 Hz), 132.61 (q, J = 33.3 Hz), 129.20, 126.98, 123.39 (q, J = 273.7 Hz), 122.07 (t, J = 244.4 Hz), 119.80, 119.56 – 119.53 (m), 118.82 (t, J = 6.3 Hz), 117.02, 116.15, 108.94, 58.19, 53.35, 49.18, 38.86 (t, J = 26.8 Hz), 26.42, 20.49 (t, J = 4.0 Hz).

¹⁹**F NMR (376 MHz, CDCl**₃) δ -62.77 (d, J = 3.1 Hz), -96.10 (td, J = 16.6, 3.8 Hz).

HRMS (**ESI-TOF**) m/z calcd. for C₂₅H₂₈F₅N₄ ([M+H]⁺): 479.2229, found: 479.2218.

1-(5,5-difluoro-5-(3-(pyridin-3-yl)-5-(trifluoromethyl)phenyl)pentyl)-4-phenylpip erazine (11a)

The title product was prepared via procedure A & D, purified by flash chromatography (PE:EA:Et₃N = 3:1:0.03) on silica gel to afford the title compound (101.3 mg, 69% yield; 37.1 mg, 76% yield) as a pale yellow solid.

¹**H** NMR (400 MHz, CDCl₃) δ 8.87 (d, J = 2.4 Hz, 1H), 8.67 (dd, J = 4.8, 1.6 Hz, 1H), 7.91 – 7.86 (m, 3H), 7.77 (s, 1H), 7.41 (dd, J = 7.9, 4.8 Hz, 1H), 7.25 (dd, J = 8.5, 7.1 Hz, 2H), 6.91 (d, J = 8.1 Hz, 2H), 6.85 (t, J = 7.3 Hz, 1H), 3.17 (t, J = 5.2 Hz, 4H), 2.57 (t, J = 5.0 Hz, 4H), 2.39 (t, J = 7.1 Hz, 2H), 2.23 (tt, J = 16.0, 7.4 Hz, 2H), 1.64 – 1.50 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 151.38, 149.80, 148.35, 139.70 (t, J = 27.7 Hz), 139.52, 134.69, 132.16 (q, J = 32.9 Hz), 129.19, 127.19 (t, J = 6.3 Hz), 125.36, 123.90, 123.67 (q, J = 273.7 Hz), 122.27 (t, J = 244.4 Hz), 121.68, 119.80, 116.13, 58.19, 53.35, 49.19, 38.96 (t, J = 27.0 Hz), 26.45, 20.52 (t, J = 3.9 Hz).

¹⁹F NMR (**376** MHz, CDCl₃) δ -62.62, -95.96 (t, J = 16.5 Hz).

HRMS (**ESI-TOF**) m/z calcd. for C₂₇H₂₉F₅N₃ ([M+H]⁺): 490.2276, found: 490.2280.

1-(5,5-difluoro-5-(3-((1,2,2,6,6-pentamethylpiperidin-4-yl)oxy)-5-(trifluoromethyl)phenyl)pentyl)-4-phenylpiperazine (12a)

The title product was prepared via procedure A & D, purified by flash chromatography (PE:EA:Et₃N = 6:1:0.03) on silica gel to afford the title compound (155.2 mg, 89% yield; 57.1 mg, 98% yield) as a colorless oil.

¹**H NMR (400 MHz, CDCl**₃) δ 7.22 – 7.13 (m, 3H), 7.08 (s, 2H), 6.84 (d, *J* = 8.2 Hz, 2H), 6.77 (t, *J* = 7.3 Hz, 1H), 4.51 (tt, *J* = 11.2, 3.9 Hz, 1H), 3.10 (t, *J* = 4.9 Hz, 4H), 2.49 (t, *J* = 5.0 Hz, 4H), 2.29 (t, *J* = 7.3 Hz, 2H), 2.20 (s, 3H), 2.07 (tt, *J* = 15.9, 8.2 Hz, 2H), 1.91 (dd, *J* = 11.8, 3.3 Hz, 2H), 1.64 – 1.37 (m, 6H), 1.12 (s, 6H), 1.06 (s, 6H).

¹³**C NMR (101 MHz, CDCl₃)** δ 158.19, 151.41, 140.07 (t, J = 27.4 Hz), 132.41 (q, J = 32.7 Hz), 129.22, 123.71 (q, J = 272.6 Hz), 121.05 (t, J = 244.4 Hz), 119.84, 116.17, 116.08 (t, J = 7.1 Hz), 113.99, 113.39, 70.92, 58.30, 55.43, 53.37, 49.21, 45.99, 38.86 (t, J = 27.1 Hz), 33.04, 29.83, 28.19, 26.48, 21.21, 20.60 (t, J = 4.0 Hz).

¹⁹**F NMR (376 MHz, CDCl**₃) δ -62.81, -95.88 (t, *J* = 16.3 Hz).

HRMS (ESI-TOF) m/z calcd. for $C_{32}H_{45}F_5N_3O$ ([M+H]⁺): 582.3477, found: 582.3461.

1-(5,5-difluoro-5-(4'-fluoro-6-(trifluoromethyl)-[1,1'-biphenyl]-2-yl)pentyl)-4-phe nylpiperazine (13a)

The title product was prepared via procedure A & D, purified by flash chromatography (PE:EA:Et₃N = 6:1:0.03) on silica gel to afford the title compound (129.1 mg, 85% yield; 39.6 mg, 78% yield) as a colorless oil.

¹**H NMR (400 MHz, CDCl**₃) δ 7.76 (t, *J* = 7.9 Hz, 2H), 7.47 (t, *J* = 8.0 Hz, 1H), 7.20 – 7.12 (m, 4H), 6.98 (t, *J* = 8.5 Hz, 2H), 6.84 (d, *J* = 8.1 Hz, 2H), 6.77 (t, *J* = 7.3 Hz, 1H), 3.10 (t, *J* = 4.9 Hz, 4H), 2.45 (t, *J* = 5.0 Hz, 4H), 2.18 (t, *J* = 7.6 Hz, 2H), 1.66 (tt, *J* = 16.8, 7.9 Hz, 2H), 1.32 (p, *J* = 7.4 Hz, 2H), 1.19 (p, *J* = 7.8 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 162.69 (d, J = 247.7 Hz), 151.38, 138.30, 137.65 (t, J = 24.7 Hz), 132.41 (d, J = 8.1 Hz), 131.16 (q, J = 28.9 Hz), 130.98, 129.65 (t, J = 9.7 Hz), 129.22, 128.00, 127.57 – 127.51 (m), 123.66 (q, J = 275.7 Hz), 122.81 (t, J = 245.4 Hz), 119.83, 116.14, 114.00 (d, J = 21.5 Hz), 58.17, 53.34, 49.19, 38.12 (t, J = 26.4 Hz), 26.37, 20.62 (t, J = 4.1 Hz).

¹⁹**F** NMR (376 MHz, CDCl₃) δ -57.05, -87.29 (t, J = 17.0 Hz), -101.17 - -125.45 (m).

HRMS (ESI-TOF) m/z calcd. for C₂₈H₂₉F₆N₂ ([M+H]⁺): 507.2229, found: 507.2220.

1-(5,5-difluoro-5-(3-(trifluoromethyl)phenyl)pentyl)-4-phenylpiperazine (14a)

The title product was prepared via procedure A & D, purified by flash chromatography (PE:EA:Et₃N = 6:1:0.03) on silica gel to afford the title compound (94.0 mg, 76% yield; 33.5 mg, 81% yield) as a pink oil.

¹**H NMR (400 MHz, CDCl**₃) δ 7.66 (s, 1H), 7.60 (dd, J = 11.8, 7.9 Hz, 2H), 7.47 (t, J = 7.8 Hz, 1H), 7.18 (dd, J = 8.5, 7.1 Hz, 2H), 6.84 (d, J = 8.2 Hz, 2H), 6.77 (t, J = 7.3 Hz, 1H), 3.11 (t, J = 5.2 Hz, 4H), 2.49 (t, J = 5.2 Hz, 4H), 2.29 (t, J = 5.2 Hz, 2H), 2.10 (tt, J = 16.8, 7.6 Hz, 2H), 1.53 – 1.37 (m, 4H).

¹³**C** NMR (101 MHz, CDCl₃) δ 151.43, 138.57 (t, J = 27.5 Hz), 131.16 (q, J = 32.8 Hz), 129.24, 129.22, 128.56 (t, J = 6.0 Hz), 126.69 – 126.65 (m), 122.89 (q, J = 273.7 Hz), 122.42 (t, J = 243.4 Hz), 122.22 – 122.12 (m), 119.83, 116.17, 58.26, 53.37, 49.22, 38.94 (t, J = 27.2 Hz), 26.48, 20.56.

¹⁹F NMR (**376** MHz, CDCl₃) δ -62.70, -95.96 (t, J = 16.3 Hz).

HRMS (**ESI-TOF**) m/z calcd. for C₂₂H₂₆F₅N₂ ([M+H]⁺): 413.2011, found: 413.1999.

1-(5,5-difluoro-5-(2-(trifluoromethyl)phenyl)pentyl)-4-phenylpiperazine (15a)

The title product was prepared via procedure A & D, purified by flash chromatography (PE:EA:Et₃N = 6:1:0.03) on silica gel to afford the title compound (111.3 mg, 95% yield; 36.8 mg, 89% yield) as a pink oil.

¹**H NMR (400 MHz, CDCl₃)** δ 7.70 (d, J = 7.9 Hz, 1H), 7.59 – 7.49 (m, 1H), 7.44 (t, J = 7.5 Hz, 1H), 7.18 (dd, J = 8.5, 7.1 Hz, 2H), 6.84 (d, J = 8.2 Hz, 2H), 6.77 (t, J = 7.3 Hz, 1H), 3.11 (t, J = 5.2 Hz, 4H), 2.50 (t, J = 5.2 Hz, 4H), 2.30 (t, J = 7.2 Hz, 2H), 2.12 (td, J = 17.2, 7.2 Hz, 2H), 1.52 – 1.48 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 151.44, 136.29 (t, J = 27.8 Hz), 131.87, 129.93, 129.21, 128.20 (t, J = 9.2 Hz), 127.66 (q, J = 6.4 Hz), 127.26 (qt, J = 32.3, 2.4 Hz), 123.74 (q, J = 274.7 Hz), 122.54 (t, J = 246.4 Hz), 119.80, 116.16, 58.32, 53.36, 49.21, 42.18 – 36.68 (m), 26.48, 20.44 (t, J = 3.7 Hz).

¹⁹F NMR (376 MHz, CDCl₃) δ -57.65 (td, J = 15.9, 2.7 Hz), -93.20 – -93.43 (m).

HRMS (**ESI-TOF**) m/z calcd. for C₂₂H₂₆F₅N₂ ([M+H]⁺): 413.2011, found: 413.1996.

1-(5,5-difluoro-5-(4-(trifluoromethyl)phenyl)pentyl)-4-phenylpiperazine (16a)

The title product was prepared via procedure A & D, purified by flash chromatography (PE:EA:Et₃N = 6:1:0.03) on silica gel to afford the title compound (70.5 mg, 57% yield; 38.5 mg, 93% yield) as a colorless oil.

¹**H** NMR (400 MHz, CDCl₃) δ 7.60 (d, J = 8.1 Hz, 2H), 7.51 (d, J = 8.1 Hz, 2H), 7.17 (t, J = 7.7 Hz, 2H), 6.84 (d, J = 8.1 Hz, 2H), 6.76 (t, J = 7.3 Hz, 1H), 3.10 (t, 4H), 2.48 (t, 4H), 2.28 (t, 2H), 2.18 – 1.98 (m, 2H), 1.55 – 1.31 (m, 4H).

¹³**C NMR (101 MHz, CDCl₃)** δ 151.44, 141.15 (t, J = 27.1 Hz), 132.02 (q, J = 32.4 Hz), 129.23, 128.81, 125.90 – 125.31 (m), 123.88 (q, J = 273.7 Hz), 122.47 (t, J = 242.9 Hz), 119.84, 116.17, 58.28, 53.38, 49.25, 38.95 (t, J = 27.1 Hz), 26.52, 20.58 (t, J = 4.1 Hz).

¹⁹F NMR (**376** MHz, CDCl₃) δ -62.83, -96.27 (t, J = 16.3 Hz).

HRMS (**ESI-TOF**) m/z calcd. for C₂₂H₂₆F₅N₂ ([M+H]⁺): 413.2011, found: 413.1996.

1-(5,5-difluoro-5-(4'-(trifluoromethyl)-[1,1'-biphenyl]-4-yl)pentyl)-4-phenylpiper azine (17a)

The title product was prepared via procedure A & D, purified by flash chromatography (PE:EA:Et₃N = 6:1:0.03) on silica gel to afford the title compound (90.8 mg, 62% yield; 39.0 mg, 80% yield) as a white solid.

¹**H** NMR (400 MHz, CDCl₃) δ 7.63 – 7.56 (m, 6H), 7.49 (d, J = 8.3 Hz, 2H), 7.17 (dd, J = 8.8, 7.2 Hz, 2H), 6.83 (d, J = 8.2 Hz, 2H), 6.76 (t, J = 7.3 Hz, 1H), 3.09 (t, J = 4.8 Hz, 4H), 2.49 (t, J = 5.2 Hz, 4H), 2.30 (t, J = 7.2 Hz, 2H), 2.12 (tt, J = 15.9, 7.7 Hz, 2H), 1.53 – 1.39 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 151.44, 143.86, 141.20, 137.37 (t, J = 27.1 Hz), 129.96 (q, J = 32.5 Hz), 129.22, 127.62, 127.44, 126.02 – 125.78 (m), 124.33 (q, J = 272.7 Hz), 123.04 (t, J = 244.4 Hz), 119.82, 116.14, 58.27, 53.36, 49.23, 38.97 (t, J = 27.5 Hz), 26.54, 20.71 (t, J = 4.1 Hz).

¹⁹F NMR (**376** MHz, CDCl₃) δ -62.44, -95.24 (t, J = 16.2 Hz).

HRMS (**ESI-TOF**) m/z calcd. for C₂₈H₃₀F₅N₂ ([M+H]⁺): 489.2324, found: 489.2316.

4-(1,1-difluoro-5-(4-phenylpiperazin-1-yl)pentyl)benzonitrile (18a)

The title product was prepared via procedure B & D, purified by flash chromatography (PE:EA:Et₃N = 3:1:0.03) on silica gel to afford the title compound (66.5 mg, 60% yield; 29.5 mg, 80% yield) as a pink solid.

¹**H** NMR (400 MHz, CDCl₃) δ 7.65 (d, J = 8.1 Hz, 2H), 7.51 (d, J = 8.5 Hz, 2H), 7.21 – 7.16 (m, 2H), 6.86 – 6.83 (m, 2H), 6.77 (tt, J = 7.3, 1.1 Hz, 1H), 3.11 (t, J = 5.2 Hz, 4H), 2.50 (t, J = 5.2 Hz, 4H), 2.29 (t, J = 7.2 Hz 2H), 2.07 (tt, J = 16.8, 7.6 Hz 2H), 1.53 – 1.35 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 151.36, 142.01 (t, J = 27.3 Hz), 132.48, 129.22, 126.02, 122.17 (t, J = 243.4 Hz), 119.86, 118.16, 116.16, 113.94 (t, J = 1.9 Hz), 58.21, 53.34, 49.20, 38.80 (t, J = 26.9 Hz), 26.43, 20.50 (t, J = 4.1 Hz).

¹⁹F NMR (376 MHz, CDCl₃) δ -96.87 (t, J = 16.4 Hz).

HRMS (**ESI-TOF**) m/z calcd. for C₂₂H₂₆F₂N₃ ([M+H]⁺): 370.2089, found: 370.2080.

methyl 4-(1,1-difluoro-5-(4-phenylpiperazin-1-yl)pentyl)benzoate (19a)

The title product was prepared via procedure B & D, purified by flash chromatography (PE:EA:Et₃N = 5:1:0.03) on silica gel to afford the title compound (47.1 mg, 39% yield; 33.8 mg, 84% yield) as a white solid.

¹**H** NMR (400 MHz, CDCl₃) δ 8.01 (d, J = 8.2 Hz, 2H), 7.46 (d, J = 8.2 Hz, 2H), 7.18 (t, J = 8.0 Hz, 2H), 6.84 (d, J = 7.9 Hz, 2H), 6.77 (t, J = 7.4 Hz, 1H), 3.85 (s, 3H), 3.10 (t, J = 5.2 Hz, 4H), 2.48 (t, J = 5.0 Hz, 4H), 2.28 (t, J = 7.2 Hz, 2H), 2.07 (tt, J = 16.0, 8.0 Hz, 2H), 1.51 – 1.35 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 166.46, 151.41, 141.82 (t, J = 26.8 Hz), 131.51, 129.83, 129.19, 125.20 (d, J = 6.2 Hz), 122.69 (t, J = 242.8 Hz), 119.78, 116.13, 58.26, 53.34, 52.41, 49.21, 38.91 (t, J = 27.1 Hz), 26.50, 20.59 (t, J = 4.1 Hz).

¹⁹F NMR (376 MHz, CDCl₃) δ -96.25 (t, J = 16.2 Hz).

HRMS (ESI-TOF) m/z calcd. for $C_{23}H_{29}F_2N_2O_2$ ([M+H]⁺): 403.2192, found: 403.2182.

3-(1,1-difluoro-5-(4-phenylpiperazin-1-yl)pentyl)benzonitrile (20a)

The title product was prepared via procedure B & D, purified by flash chromatography (PE:EA:Et₃N = 3:1:0.03) on silica gel to afford the title compound (56.5 mg, 51% yield; 25.6 mg, 70% yield) as a pink solid.

¹**H** NMR (400 MHz, CDCl₃) δ 7.69 (s, 1H), 7.63 (t, *J* = 6.6 Hz, 2H), 7.47 (t, *J* = 7.8 Hz, 1H), 7.18 (t, *J* = 7.9 Hz, 2H), 6.85 (d, *J* = 8.1 Hz, 2H), 6.77 (t, *J* = 7.3 Hz, 1H), 3.11 (t, *J* = 5.0 Hz, 4H), 2.50 (t, *J* = 5.0 Hz, 4H), 2.30 (t, *J* = 7.4 Hz, 2H), 2.08 (tt, *J* = 16.2, 7.9 Hz, 2H), 1.54 – 1.35 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 151.38, 139.04 (t, J = 27.8 Hz), 133.39, 129.61, 129.49 (t, J = 6.0 Hz), 129.21, 128.94 (t, J = 6.4 Hz), 122.00 (t, J = 243.4 Hz), 119.82, 118.18, 116.15, 113.04, 58.18, 53.35, 49.19, 38.81 (t, J = 26.9 Hz), 26.41, 20.51 (t, J = 4.0 Hz).

¹⁹**F NMR (376 MHz, CDCl**₃) δ -96.24 (t, *J* = 16.3 Hz).

HRMS (**ESI-TOF**) m/z calcd. for C₂₂H₂₆F₂N₃ ([M+H]⁺): 370.2089, found: 370.2079.

1-(5,5-difluoro-5-(4-(pyridin-2-yl)phenyl)pentyl)-4-phenylpiperazine (21a)

The title product was prepared via procedure B & D, purified by flash chromatography (PE:EA:Et₃N = 3:1:0.03) on silica gel to afford the title compound (75.8 mg, 60% yield; 40.2 mg, 95% yield) as a white solid.

¹**H** NMR (400 MHz, CDCl₃) δ 8.62 (d, J = 5.5 Hz, 1H), 7.96 (d, J = 8.0 Hz, 2H), 7.69 – 7.61 (m, 2H), 7.49 (d, J = 8.1 Hz, 2H), 7.18 – 7.14 (m, 3H), 6.83 (d, J = 8.1 Hz, 2H), 6.76 (t, J = 7.3 Hz, 1H), 3.09 (t, J = 5.1 Hz, 4H), 2.49 – 2.46 (m, 4H), 2.28 (t, J = 7.4 Hz, 2H), 2.11 (tt, J = 15.9, 7.7 Hz, 2H), 1.52 – 1.36 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 156.60, 151.42, 149.91, 140.79, 137.87 (t, *J* = 26.9 Hz), 136.97, 129.18, 127.05, 125.26 (t, *J* = 6.1 Hz), 122.65, 123.13 (t, *J* = 242.2 Hz), 120.79, 119.73, 116.11, 58.31, 53.33, 49.19, 38.99 (t, *J* = 27.4 Hz), 26.53, 20.74 (t, *J* = 4.1 Hz).

¹⁹**F NMR (376 MHz, CDCl**₃) δ -95.31 (t, *J* = 16.1 Hz).

HRMS (**ESI-TOF**) m/z calcd. for C₂₆H₃₀F₂N₃ ([M+H]⁺): 422.2402, found: 422.2392.

(4'-(1,1-difluoro-5-(4-phenylpiperazin-1-yl)pentyl)-[1,1'-biphenyl]-4-yl)methanol (22a)

The title product was prepared via procedure A & D, purified by flash chromatography (PE:EA:Et₃N = 1:1:0.03) on silica gel to afford the title compound (68.9 mg, 51% yield; 30.5 mg, 68% yield) as a white solid.

¹**H** NMR (400 MHz, CDCl₃) δ 7.53 (d, J = 8.0 Hz, 2H), 7.48 (d, J = 8.2 Hz, 2H), 7.44 (d, J = 8.0 Hz, 2H), 7.34 (d, J = 7.9 Hz, 2H), 7.16 (t, J = 8.0 Hz, 2H), 6.82 (d, J = 8.1 Hz, 2H), 6.77 (t, J = 7.3 Hz, 1H), 4.63 (s, 2H), 3.08 (t, J = 5.0 Hz, 4H), 2.48 (t, J = 5.0 Hz, 4H), 2.33 (s, 1H), 2.27 (t, J = 7.4 Hz, 2H), 2.16 – 2.04 (m, 4H), 1.52 – 1.37 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 151.36, 142.27, 140.82, 139.54, 136.36 (t, *J* = 26.9 Hz), 129.20, 127.58, 127.38, 127.14, 125.58 (t, *J* = 6.1 Hz), 123.14 (t, *J* = 242.4 Hz), 119.86, 116.19, 64.84, 58.33, 53.30, 49.14, 38.97 (t, *J* = 27.6 Hz), 26.45, 20.73 (t, *J* = 4.0 Hz).

¹⁹F NMR (376 MHz, CDCl₃) δ -95.00 (t, J = 16.2 Hz).

HRMS (ESI-TOF) m/z calcd. for $C_{28}H_{33}F_2N_2O$ ([M+H]⁺): 451.2555, found: 451.2545.

1-(5,5-difluoro-5-(6-(trifluoromethyl)pyridin-2-yl)pentyl)-4-phenylpiperazine(23 a)

The title product was prepared via procedure B & D, purified by flash chromatography (PE:EA:Et₃N = 3:1:0.03) on silica gel to afford the title compound (83.1 mg, 67% yield; 39.4 mg, 95% yield) as a white solid.

¹**H** NMR (400 MHz, CDCl₃) δ 7.90 (t, *J* = 7.9 Hz, 1H), 7.76 (d, *J* = 7.9 Hz, 1H), 7.66 (d, *J* = 7.8 Hz, 1H), 7.19 – 7.16 (m, 2H), 6.84 (d, *J* = 8.2 Hz, 2H), 6.76 (t, *J* = 7.3 Hz, 1H), 3.11 (t, 4H), 2.50 (t, 4H), 2.39 – 2.26 (m, 4H), 1.56 – 1.40 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 155.62 (t, *J* = 30.9 Hz), 151.43, 148.04 (q, *J* = 35.3 Hz), 138.84, 129.20, 122.87 (t, *J* = 4.4 Hz), 121.46 – 121.43 (m), 121.30 (t, *J* = 242.4 Hz), 121.23 (q, *J* = 274.7 Hz), 119.76, 116.12, 58.31, 53.33, 49.19, 35.64 (t, *J* = 24.6 Hz), 26.56, 20.21 (t, *J* = 4.2 Hz).

¹⁹F NMR (**376** MHz, CDCl₃) δ -67.97, -98.08 (t, J = 17.0 Hz).

HRMS (**ESI-TOF**) m/z calcd. for C₂₁H₂₅F₅N₃ ([M+H]⁺): 414.1963, found: 414.1952.

1-(5,5-difluoro-5-(pyridin-2-yl)pentyl)-4-phenylpiperazine (24a)

The title product was prepared via procedure B & D, purified by flash chromatography (PE:EA:Et₃N = 3:1:0.03) on silica gel to afford the title compound (66.3 mg, 64% yield; 31.2 mg, 90% yield) as a pink solid.

¹**H** NMR (400 MHz, CDCl₃) δ 8.58 (dd, J = 4.8, 1.6 Hz, 1H), 7.71 (td, J = 7.8, 1.8 Hz, 1H), 7.55 (dt, J = 8.0, 1.2 Hz, 1H), 7.27 (dd, J = 7.7, 4.9 Hz, 1H), 7.20 – 7.16 (m,

2H), 6.84 (d, *J* = 7.7 Hz, 2H), 6.77 (t, *J* = 7.3 Hz, 1H), 3.11 (t, *J* = 5.2 Hz, 4H), 2.50 (t, *J* = 5.2 Hz, 4H), 2.35 – 2.22 (m, 4H), 1.55 – 1.38 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 155.05 (t, J = 29.4 Hz), 151.42, 149.49, 137.10, 129.19, 124.68, 121.78 (t, J = 241.7 Hz), 120.01 (t, J = 4.6 Hz), 119.75, 116.12, 58.36, 53.33, 49.18, 36.31 (t, J = 25.3 Hz), 26.58, 20.32 (t, J = 4.2 Hz).

¹⁹F NMR (376 MHz, CDCl₃) δ -99.05 (t, J = 16.9 Hz).

HRMS (ESI-TOF) m/z calcd. for $C_{20}H_{26}F_2N_3$ ([M+H]⁺): 346.2089, found: 346.2080.

(2-(1,1-difluoro-5-(4-phenylpiperazin-1-yl)pentyl)pyridin-3-yl)methanol (25a)

The title product was prepared via procedure B & D, purified by flash chromatography (PE:EA:Et₃N = 1:1:0.03) on silica gel to afford the title compound (85.5 mg, 76% yield; 33.4 mg, 89% yield) as a white solid.

¹**H** NMR (400 MHz, CDCl₃) δ 8.40 (d, J = 4.6 Hz, 1H), 7.97 (d, J = 7.9 Hz, 1H), 7.28 (dd, J = 7.9, 4.7 Hz, 1H), 7.18 (t, J = 7.7 Hz, 2H), 6.84 (d, J = 8.1 Hz, 2H), 6.77 (t, J = 7.3 Hz, 1H), 4.85 (s, 2H), 3.11 (t, J = 5.0 Hz, 4H), 2.85 (s, 1H), 2.52 (t, J = 5.0 Hz, 4H), 2.53 – 2.29 (m, 4H), 1.55 – 1.51 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 151.35, 150.81 (t, J = 30.7 Hz), 146.91, 137.04, 135.94, 129.19, 124.99, 124.02 (t, J = 240.8 Hz), 119.85, 116.17, 60,42, 58.43, 53.31, 49.12, 35.95 (t, J = 24.5 Hz), 26.61, 20.20 (t, J = 4.5 Hz).

¹⁹F NMR (376 MHz, **CDCl**₃) δ -93.70 (t, *J* = 17.6 Hz).

HRMS (ESI-TOF) m/z calcd. for $C_{21}H_{28}F_2N_3O$ ([M+H]⁺): 376.2195, found: 376.2185.

1-(5,5-difluoro-5-(3-fluoropyridin-2-yl)pentyl)-4-phenylpiperazine (26a)

The title product was prepared via procedure B & C, purified by flash chromatography (PE:EA:Et₃N = 5:1:0.03) on silica gel to afford the title compound (76.3 mg, 70% yield; 35.4 mg, 97% yield) as a colorless oil.

¹**H** NMR (400 MHz, CDCl₃) δ 8.37 (d, J = 4.5 Hz, 1H), 7.42 (ddd, J = 10.1, 8.4, 1.3 Hz, 1H), 7.33 (dt, J = 8.4, 4.2 Hz, 1H), 7.20 – 7.16 (m, 2H), 6.85 (d, J = 7.9 Hz, 2H), 6.77 (t, J = 7.3 Hz, 1H), 3.13 – 3.10 (m, 4H), 2.52 – 2.50 (m, 4H), 2.37 – 2.25 (m, 4H), 1.57 – 1.50 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 157.45 (d, J = 265.8 Hz), 151.42, 144.53 (d, J = 5.2 Hz), 142.51 (td, J = 29.7, 10.6 Hz), 129.19, 126.66 (d, J = 4.2 Hz), 125.16 (d, J = 19.5 Hz), 121.21 (td, J = 242.4, 4.2 Hz), 119.74, 116.11, 58.33, 53.34, 49.19, 36.09 (t, J = 24.6 Hz), 26.61, 20.10 (t, J = 4.3 Hz).

¹⁹**F NMR (376 MHz, CDCl₃)** δ -97.64 (qd, J = 17.5, 5.8 Hz), -121.38 (tdd, J = 20.1, 10.5, 3.9 Hz).

HRMS (**ESI-TOF**) m/z calcd. for C₂₀H₂₅F₃N₃ ([M+H]⁺): 364.1995, found: 364.1982.

1-(5,5-difluoro-5-(pyridin-3-yl)pentyl)-4-phenylpiperazine (27a)

The title product was prepared via procedure B & D, purified by flash chromatography (PE:EA:Et₃N = 3:1:0.03) on silica gel to afford the title compound (75.6 mg, 73% yield; 27.0 mg, 78% yield) as a colorless oil.

¹**H** NMR (400 MHz, CDCl₃) δ 8.67 (d, J = 2.3 Hz, 1H), 8.61 (d, J = 4.8 Hz, 1H), 7.71 (d, J = 8.0 Hz, 1H), 7.29 (dd, J = 7.9, 4.9 Hz, 1H), 7.19 (t, J = 7.7 Hz, 2H), 6.85 (d, J = 8.2 Hz, 2H), 6.78 (t, J = 7.3 Hz, 1H), 3.11 (t, J = 5.0 Hz, 4H), 2.50 (t, J = 5.0 Hz, 4H), 2.30 (t, J = 7.4 Hz, 2H), 2.11 (tt, J = 16.1, 7.7 Hz, 2H), 1.54 – 1.38 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 151.37, 151.08, 146.78 (t, J = 6.6 Hz), 133.14 (t, J = 27.3 Hz), 132.91 (t, J = 5.9 Hz), 129.20, 123.30, 122.15 (t, J = 243.4 Hz), 119.80, 116.13, 58.22, 53.34, 49.19, 38.91 (t, J = 26.9 Hz), 26.44, 20.51 (t, J = 4.1 Hz).

¹⁹**F** NMR (376 MHz, CDCl₃) δ -96.00 (t, J = 16.3 Hz).

HRMS (**ESI-TOF**) m/z calcd. for C₂₀H₂₆F₂N₃ ([M+H]⁺): 346.2089, found: 346.2081.

1-(5,5-difluoro-5-(2-methoxypyridin-3-yl)pentyl)-4-phenylpiperazine (28a)

The title product was prepared via procedure B & D, purified by flash chromatography (PE:EA:Et₃N = 3:1:0.03) on silica gel to afford the title compound (91.2 mg, 81% yield; 36.9 mg, 98% yield) as a white solid.

¹**H** NMR (400 MHz, CDCl₃) δ 8.13 (dd, J = 5.1, 1.9 Hz, 1H), 7.69 (dd, J = 7.5, 1.9 Hz, 1H), 7.20 – 7.16 (m, 2H), 6.86 – 6.83 (m, 3H), 6.77 (t, J = 7.3 Hz, 1H), 3.92 (s, 3H), 3.10 (t, 4H), 2.49 (t, J = 5.0 Hz, 4H), 2.33 – 2.21 (m, 4H), 1.51 – 1.44 (m, 2H), 1.37 – 1.29 (m, 2H).

¹³**C** NMR (101 MHz, CDCl₃) δ 160.58 (t, J = 4.4 Hz), 151.41, 148.38 (t, J = 1.7 Hz), 135.90 (t, J = 8.3 Hz), 129.19, 121.91 (t, J = 243.4 Hz), 119.78, 119.50 (t, J = 28.3 Hz), 116.45, 116.13, 58.37, 53.76, 53.34, 49.19, 36.28 (t, J = 26.0 Hz), 26.53, 20.73 (t, J = 4.2 Hz).

¹⁹**F NMR (376 MHz, CDCl**₃) δ -96.14 (t, *J* = 17.0 Hz).

HRMS (ESI-TOF) m/z calcd. for $C_{21}H_{28}F_2N_3O$ ([M+H]⁺): 376.2195, found: 376.2182.

1-(5,5-difluoro-5-(2-fluoropyridin-3-yl)pentyl)-4-phenylpiperazine (29a)

The title product was prepared via procedure B & D, purified by flash chromatography (PE:EA:Et₃N = 3:1:0.03) on silica gel to afford the title compound (58.8 mg, 54% yield; 30.7 mg, 84% yield) as a white solid.

¹**H NMR (400 MHz, CDCl₃)** δ 8.21 (d, J = 4.8 Hz, 1H), 7.91 – 7.86 (m, 1H), 7.21 – 7.16 (m, 3H), 6.85 (d, J = 7.9 Hz, 2H), 6.77 (t, J = 7.3 Hz, 1H), 3.11 (t, J = 5.0 Hz, 4H), 2.50 (t, J = 5.0 Hz, 4H), 2.32 – 2.16 (m, 4H), 1.54 – 1.47 (m, 2H), 1.43 – 1.35 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 159.84 (dt, J = 242.4, 5.1 Hz), 151.39, 149.29 (dt, J = 13.1, 2.0 Hz), 138.29 (td, J = 7.2, 3.4 Hz), 129.19, 121.48 (d, J = 4.6 Hz), 120.68 (td, J = 244.4, 7.1 Hz), 119.78, 120.17 – 119.31 (m), 116.13, 58.17, 53.33, 49.18, 37.19 (td, J = 26.0, 3.3 Hz), 26.37, 20.48 (t, J = 4.1 Hz).

¹⁹F NMR (376 MHz, CDCl₃) δ -66.64 – -66.72 (m), -95.80 – -95.93 (m).

HRMS (**ESI-TOF**) m/z calcd. for C₂₀H₂₅F₃N₃ ([M+H]⁺): 364.1995, found: 364.1982.

3-(1,1-difluoro-5-(4-phenylpiperazin-1-yl)pentyl)pyridin-2-amine (30a)

The title product was prepared via procedure B & D, purified by flash chromatography (PE:EA:Et₃N = 2:1:0.03) on silica gel to afford the title compound (86.4 mg, 80% yield; 27.1 mg, 75% yield) as a white solid.

¹**H** NMR (400 MHz, CDCl₃) δ 8.05 – 8.03 (m, 1H), 7.47 (dd, J = 7.7, 1.8 Hz, 1H), 7.20 – 7.16 (m, 2H), 6.86 – 6.84 (m, 2H), 6.78 (tt, J = 7.3, 1.1 Hz, 1H), 6.63 (dd, J = 7.6, 5.0 Hz, 1H), 4.84 (s, 2H), 3.12 (t, J = 5.2 Hz, 4H), 2.50 (t, J = 5.2 Hz, 4H), 2.30 (t, J = 7.2 Hz, 2H), 2.23 – 2.11 (m, 2H), 1.54 – 1.37 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 155.17, 151.38, 149.78, 135.10 (t, J = 7.5 Hz), 129.20, 123.62 (t, J = 241.6 Hz), 119.81, 116.14, 115.75 (t, J = 26.6 Hz), 113.77, 58.24, 53.34, 49.18, 36.03 (t, J = 26.7 Hz), 26.41, 20.52 (t, J = 4.1 Hz).

¹⁹**F** NMR (**376** MHz, CDCl₃) δ -96.79 (t, J = 16.7 Hz).

HRMS (**ESI-TOF**) m/z calcd. for C₂₀H₂₇F₂N₄ ([M+H]⁺): 361.2198, found: 361.2187.

1-(5,5-difluoro-5-(6-phenoxypyridin-3-yl)pentyl)-4-phenylpiperazine (31a)

The title product was prepared via procedure B & D, purified by flash chromatography (PE:EA:Et₃N = 3:1:0.03) on silica gel to afford the title compound (93.1 mg, 71% yield; 23.2 mg, 53% yield) as a white solid.

¹**H** NMR (400 MHz, CDCl₃) δ 8.22 (d, J = 2.5 Hz, 1H), 7.69 (dd, J = 8.6, 2.5 Hz, 1H), 7.34 (t, J = 7.9 Hz, 2H), 7.21 – 7.14 (m, 3H), 7.07 (d, J = 8.0 Hz, 2H), 6.86 (dd, J = 8.4, 6.4 Hz, 3H), 6.78 (t, J = 7.3 Hz, 1H), 3.12 (t, J = 5.0 Hz, 4H), 2.51 (t, J = 5.0 Hz, 4H), 2.30 (dd, J = 8.4, 6.4 Hz, 2H), 2.14 – 2.02 (m, 2H), 1.54 – 1.37 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 164.74, 153.70, 151.39, 145.12 (t, *J* = 6.9 Hz), 136.73 (t, *J* = 5.5 Hz), 129.91, 129.23, 127.97 (t, *J* = 27.7 Hz), 125.31, 122.33 (t, *J* = 242.4 Hz), 121.52, 119.85, 116.18, 111.08, 58.26, 53.36, 49.21, 38.85 (t, *J* = 27.3 Hz), 26.46, 20.62 (t, *J* = 4.0 Hz).

¹⁹**F** NMR (376 MHz, CDCl₃) δ -94.29 (td, J = 16.1, 4.6 Hz).

HRMS (**ESI-TOF**) m/z calcd. for $C_{26}H_{30}F_2N_3O$ ([M+H]⁺): 438.2351, found: 438.2340.

1-(5,5-difluoro-5-(6-(4-fluoro-3-methylphenoxy)pyridin-3-yl)pentyl)-4-phenylpip erazine (32a)

The title product was prepared via procedure B & D, purified by flash chromatography (PE:EA:Et₃N = 3:1:0.03) on silica gel to afford the title compound (56.3 mg, 40% yield; 37.2 mg, 79% yield) as a pink solid.

¹**H** NMR (400 MHz, CDCl₃) δ 8.20 (d, J = 2.4 Hz, 1H), 7.68 (dd, J = 8.6, 2.5 Hz, 1H), 7.18 (dd, J = 8.7, 7.2 Hz, 2H), 6.94 (t, J = 8.9 Hz, 1H), 6.90 – 6.81 (m, 5H), 6.77 (t, J = 7.3 Hz, 1H), 3.11 (t, J = 5.2 Hz, 4H), 2.50 (t, J = 5.2 Hz, 4H), 2.30 (t, J = 7.2 Hz, 2H), 2.20 (d, J = 2.0 Hz, 3H), 2.08 (tt, J = 16.0, 7.7 Hz, 2H), 1.53 – 1.37 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 164.79, 158.55 (d, J = 242.1 Hz), 151.39, 149.02 (d, J = 2.9 Hz), 145.02 (t, J = 6.8 Hz), 136.74, 129.21, 127.97 (t, J = 27.8 Hz), 126.45 (d, J = 19.2 Hz), 124.31 (d, J = 5.4 Hz), 122.29 (t, J = 242.2 Hz), 120.17 (d, J = 8.4 Hz), 119.83, 116.15, 115.95 (d, J = 24.4 Hz), 110.97, 58.22, 53.34, 49.20, 38.81 (t, J = 27.3 Hz), 26.44, 20.60 (t, J = 4.0 Hz), 14.85 (d, J = 3.3 Hz).

¹⁹**F NMR (376 MHz, CDCl**₃) δ -94.22 (t, J = 16.2 Hz), -121.84 - -121.89 (m).

HRMS (**ESI-TOF**) m/z calcd. for $C_{27}H_{31}F_3N_3O$ ([M+H]⁺): 470.2414, found: 470.2410.

1-(5-(6-(4-cyclohexylphenoxy)pyridin-3-yl)-5,5-difluoropentyl)-4-phenylpiperazi ne (33a)

The title product was prepared via procedure B & C, purified by flash chromatography (PE:EA:Et₃N = 3:1:0.03) on silica gel to afford the title compound (109.1 mg, 70% yield; 47.4 mg, 91% yield) as a pink solid.

¹**H** NMR (400 MHz, CDCl₃) δ 8.22 (d, J = 2.6 Hz, 1H), 7.65 (dd, J = 8.7, 2.5 Hz, 1H), 7.15 (dd, J = 8.0, 4.8 Hz, 4H), 6.97 (d, J = 8.2 Hz, 2H), 6.83 (dd, J = 8.6, 4.1 Hz,

3H), 6.76 (t, *J* = 7.3 Hz, 1H), 3.10 (t, *J* = 4.8 Hz, 4H), 2.50 – 2.40 (m, 5H), 2.28 (t, *J* = 7.3 Hz, 2H), 2.07 (tt, *J* = 16.0, 7.6 Hz, 2H), 1.83 – 1.74 (m, 4H), 1.69 – 1.65 (m, 1H), 1.50 – 1.29 (m, 8H), 1.21 – 1.13 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 164.89, 151.51, 151.37, 145.08 (t, J = 6.8 Hz), 144.95, 136.61 (t, J = 5.5 Hz), 129.18, 128.14, 127.72 (t, J = 27.5 Hz), 122.33 (t, J = 242.2 Hz), 121.09, 119.78, 116.12, 110.94, 58.22, 53.32, 49.17, 44.06, 38.81 (t, J = 27.4 Hz), 34.62, 26.98, 26.43, 26.22, 20.60 (t, J = 4.1 Hz).

¹⁹**F NMR (376 MHz, CDCl₃)** δ -94.18 (td, J = 16.2, 5.1 Hz).

HRMS (ESI-TOF) m/z calcd. for $C_{32}H_{40}F_2N_3O$ ([M+H]⁺): 520.3134, found: 520.3124.

1-(5,5-difluoro-5-(6-(naphthalen-2-yloxy)pyridin-3-yl)pentyl)-4-phenylpiperazine (34a)

The title product was prepared via procedure B & C, purified by flash chromatography (PE:EA:Et₃N = 3:1:0.03) on silica gel to afford the title compound (90.6 mg, 62% yield; 41.6 mg, 85% yield) as a white solid.

¹**H** NMR (400 MHz, CDCl₃) δ 8.22 (d, J = 2.6 Hz, 1H), 7.81 – 7.76 (m, 2H), 7.70 (dd, J = 8.4, 2.8 Hz, 2H), 7.50 (d, J = 2.4 Hz, 1H), 7.42 – 7.35 (m, 2H), 7.22 – 7.17 (m, 3H), 6.91 (d, J = 8.6 Hz, 1H), 6.85 – 6.83 (m, 2H), 6.77 (t, J = 7.3 Hz, 1H), 3.10 (t, J = 5.0 Hz, 4H), 2.48 (t, J = 5.0 Hz, 4H), 2.30 – 2.27 (m, 2H), 2.08 (tt, J = 16.0, 7.8 Hz, 2H), 1.52 – 1.36 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 164.79, 151.37, 151.28, 145.12 (t, J = 6.9 Hz), 136.78 (t, J = 5.5 Hz), 134.26, 131.27, 129.87, 129.20, 128.06 (t, J = 27.7 Hz), 127.94, 127.62, 126.67, 125.57, 122.31 (t, J = 242.2 Hz), 121.46, 119.80, 118.00, 116.13, 111.14, 58.24, 53.34, 49.18, 38.84 (t, J = 27.2 Hz), 26.46, 20.60 (t, J = 4.0 Hz).

¹⁹**F NMR (376 MHz, CDCl**₃) δ -94.25 (t, J = 16.1 Hz).

HRMS (ESI-TOF) m/z calcd. for $C_{30}H_{32}F_2N_3O$ ([M+H]⁺): 488.2508, found: 488.2498.

(4-((5-(1,1-difluoro-5-(4-phenylpiperazin-1-yl)pentyl)pyridin-2-yl)oxy)phenyl)me thanol (35a)

The title product was prepared via procedure B & D, purified by flash chromatography (PE:EA:Et₃N = 1:1:0.03) on silica gel to afford the title compound (58.9 mg, 42% yield; 35.9 mg, 77% yield) as a white solid.

¹**H** NMR (400 MHz, CDCl₃) δ 8.19 (dd, J = 2.4, 1.0 Hz, 1H), 7.68 (dd, J = 8.6, 2.5 Hz, 1H), 7.31 (d, J = 8.4 Hz, 2H), 7.20 – 7.15 (m, 3H), 7.05 – 7.02 (m, 2H), 6.87 – 6.82 (m, 3H), 6.77 (tt, J = 7.2, 1.1 Hz, 1H), 4.59 (s, 2H), 3.10 (t, J = 5.2 Hz, 3H), 2.49 (t, J = 5.2 Hz, 3H), 2.28 (t, J = 6.8 Hz, 2H), 2.13 – 2.01 (m, 2H), 1.53 – 1.36 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 164.70, 153.05, 151.38, 145.05 (t, J = 6.9 Hz), 138.09, 136.75 (t, J = 5.6 Hz), 129.20, 128.52, 128.06 (t, J = 27.7 Hz), 122.29 (t, J = 242.4 Hz), 121.55, 119.85, 116.18, 111.11, 64.71, 58.22, 53.32, 49.18, 38.80 (t, J = 27.3 Hz), 26.39, 20.60 (t, J = 4.1 Hz).

¹⁹F NMR (376 MHz, CDCl₃) δ -94.25 (t, J = 16.2 Hz).

HRMS (ESI-TOF) m/z calcd. for $C_{27}H_{32}F_2N_3O_2$ ([M+H]⁺): 468.2457, found: 468.2447.

(*E*)-5-(1,1-difluoro-5-(4-phenylpiperazin-1-yl)pent-3-en-1-yl)picolinonitrile (36ab)

The title product was prepared via procedure B, purified by flash chromatography (PE:EA:Et₃N = 3:1:0.03) on silica gel to afford the title compound (48.6 mg, 44% yield; 38.8 mg, 35% yield for *E* isomer) as a yellow solid.

¹**H NMR (400 MHz, CDCl₃)** δ 8.72 (s, 1H), 7.83 (dd, J = 8.1, 2.2 Hz, 1H), 7.68 (d, J = 8.1 Hz, 1H), 7.18 (dd, J = 8.7, 6.9 Hz, 2H), 6.84 (d, J = 8.1 Hz, 2H), 6.77 (t, J = 7.3 Hz, 1H), 5.58 (dt, J = 13.6, 6.4 Hz, 1H), 5.46 (dt, J = 15.0, 6.9 Hz, 1H), 3.09 (t, J = 5.1 Hz, 4H), 2.93 – 2.80 (m, 4H), 2.43 (t, J = 5.1 Hz, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 151.21, 148.23 (t, *J* = 6.3 Hz), 135.85 (t, *J* = 27.6 Hz), 135.13, 134.66, 134.25 (t, *J* = 5.9 Hz), 129.17, 128.06, 122.68 (t, *J* = 4.9 Hz), 120.29 (*J* = 246.44 Hz), 119.80, 116.62, 116.08, 60.30, 53.03, 49.04, 42.19 (t, *J* = 27.2 Hz).

¹⁹F NMR (376 MHz, CDCl₃) δ -96.37 (t, J = 15.8 Hz).

HRMS (**ESI-TOF**) m/z calcd. for C₂₁H₂₃F₂N₄ ([M+H]⁺): 369.1885, found: 369.1879.

1-(5,5-difluoro-5-(6-(4-fluoro-3-methylphenoxy)pyridin-3-yl)pentyl)-4-phenylpip erazine (37a)

The title product was prepared via procedure B & C, purified by flash chromatography (PE:EA:Et₃N = 3:1:0.03) on silica gel to afford the title compound (82.3 mg, 60% yield; 30.8 mg, 67% yield) as a white solid.

¹**H** NMR (400 MHz, CDCl₃) δ 8.73 (d, J = 2.0 Hz, 1H), 7.97 (td, J = 8.8, 6.6 Hz, 1H), 7.78 – 7.73 (m, 2H), 7.19 – 7.15 (m, 2H), 6.93 (td, J = 8.3, 2.5 Hz, 1H), 6.87 – 6.81 (m, 3H), 6.77 (t, J = 7.3 Hz, 1H), 3.11 (t, 4H), 2.50 (t, J = 5.0 Hz, 4H), 2.31 (t, J = 7.3 Hz, 2H), 2.14 (tt, J = 15.9, 7.7 Hz, 2H), 1.56 – 1.41 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 163.65 (dd, J = 251.9, 12.1 Hz), 160.88 (dd, J = 253.0, 12.0 Hz), 153.85, 151.36, 146.71 (t, J = 6.4 Hz), 133.60 (t, J = 5.8 Hz), 132.36 (dd, J = 9.8, 4.3 Hz), 131.70 (t, J = 27.5 Hz), 129.20, 123.65 (d, J = 10.1 Hz), 123.00 (dd, J = 11.3, 3.6 Hz), 122.26 (t, J = 243.4 Hz), 119.84, 116.16, 112.21 (dd, J = 21.2, 3.7 Hz), 104.62 (dd, J = 27.0, 25.4 Hz), 58.16, 53.33, 49.17, 38.85 (t, J = 26.9 Hz), 26.39, 20.53 (t, J = 4.0 Hz).

¹⁹**F** NMR (376 MHz, CDCl₃) δ -95.70 (t, J = 16.2 Hz), -108.12 (p, J = 8.3 Hz), -112.40 (q, J = 9.7 Hz).

HRMS (**ESI-TOF**) m/z calcd. for C₂₆H₂₈F₄N₃ ([M+H]⁺): 458.2214, found: 458.2211.

1-(5,5-difluoro-5-(pyridin-4-yl)pentyl)-4-phenylpiperazine (38a)

The title product was prepared via procedure B & D, purified by flash chromatography (PE:EA:Et₃N = 3:1:0.03) on silica gel to afford the title compound (57.0 mg, 55% yield; 28.3 mg, 82% yield) as a white solid.

¹**H** NMR (400 MHz, CDCl₃) δ 8.63 (d, J = 5.1 Hz, 2H), 7.29 (d, J = 5.0 Hz, 2H), 7.20 – 7.16 (m, 2H), 6.85 (d, J = 8.1 Hz, 2H), 6.77 (t, J = 7.3 Hz, 1H), 3.11 (t, J = 4.4

Hz, 4H), 2.49 (t, *J* = 5.1 Hz, 4H), 2.29 (t, *J* = 7.7 Hz, 2H), 2.06 (tt, *J* = 16.2, 7.7 Hz, 2H), 1.53 – 1.36 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 151.38, 150.38, 145.52 (t, J = 28.1 Hz), 129.19, 121.75 (t, J = 242.9 Hz), 119.81, 119.69 (t, J = 5.9 Hz), 116.13, 58.20, 53.35, 49.21, 38.47 (t, J = 26.5 Hz), 26.45, 20.41 (t, J = 4.1 Hz).

¹⁹F NMR (376 MHz, CDCl₃) δ -98.52 (t, J = 16.4 Hz).

HRMS (**ESI-TOF**) m/z calcd. for C₂₀H₂₆F₂N₃ ([M+H]⁺): 346.2089, found: 346.2080.

8-(1,1-difluoro-5-(4-phenylpiperazin-1-yl)pentyl)quinolone (39a)

The title product was prepared via procedure B & D, purified by flash chromatography (PE:EA:Et₃N = 3:1:0.03) on silica gel to afford the title compound (48.6 mg, 41% yield; 20.5 mg, 52% yield) as a pink solid.

¹**H** NMR (400 MHz, CDCl₃) δ 8.92 (dd, J = 4.2, 1.8 Hz, 1H), 8.10 (dd, J = 8.4, 1.9 Hz, 1H), 7.91 (dd, J = 7.3, 1.4 Hz, 1H), 7.81 (dd, J = 8.2, 1.5 Hz, 1H), 7.49 (t, J = 7.7 Hz, 1H), 7.37 (dd, J = 8.3, 4.2 Hz, 1H), 7.19 – 7.15 (m, 2H), 6.82 (d, J = 7.7 Hz, 2H), 6.76 (tt, J = 7.3, 1.1 Hz, 1H), 3.07 (t, J = 5.2 Hz, 4H), 2.75 (tt, J = 16.8, 8.0 Hz, 2H), 2.45 (t, J = 5.2 Hz, 4H), 2.25 (t, J = 7.2 Hz, 2H), 1.50 – 1.43 (m, 2H), 1.40 – 1.32 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 151.41, 150.19, 145.18 (t, J = 3.5 Hz), 136.50, 134.08 (t, J = 24.2 Hz), 130.55, 129.20, 128.85, 127.34 (t, J = 9.7 Hz), 125.74, 123.62 (t, J = 243.0 Hz), 121.39, 119.78, 116.14, 58.38, 53.28, 49.14, 37.95 (t, J = 25.3 Hz), 26.51, 20.99 (t, J = 4.4 Hz).

¹⁹F NMR (**376** MHz, CDCl₃) δ -92.19 (t, J = 17.0 Hz).

HRMS (**ESI-TOF**) m/z calcd. for C₂₄H₂₈F₂N₃ ([M+H]⁺): 396.2246, found: 396.2238.

2-(1,1-difluoro-5-(4-phenylpiperazin-1-yl)pentyl)quinoline (40a)

The title product was prepared via procedure B & D, purified by flash chromatography (PE:EA:Et₃N = 3:1:0.03) on silica gel to afford the title compound (56.9 mg, 48% yield; 30.0 mg, 76% yield) as a pink solid.

¹**H** NMR (400 MHz, CDCl₃) δ 8.17 (d, J = 8.6 Hz, 1H), 8.08 (dd, J = 8.5, 1.3 Hz, 1H), 7.77 (dd, J = 8.1, 1.5 Hz, 1H), 7.69 – 7.63 (m, 2H), 7.51 (ddd, J = 8.2, 6.9, 1.2 Hz, 1H), 7.19 – 7.15 (m, 2H), 6.84 – 6.81 (m, 2H), 6.76 (t, J = 7.3 Hz, 1H), 3.10 – 3.07 (m, 4H), 2.50 – 2.29 (m, 8H), 1.56 – 1.47 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 155.07 (t, J = 29.7 Hz), 151.44, 147.39, 137.47, 130.18, 129.98, 129.19, 128.30, 127.71, 127.67, 122.02 (t, J = 242.1 Hz), 119.75, 117.24 (t, J = 4.0 Hz), 116.13, 58.36, 53.32, 49.18, 36.25 (t, J = 25.0 Hz), 26.65, 20.37 (t, J = 4.3 Hz).

¹⁹F NMR (376 MHz, CDCl₃) δ -97.88 (t, J = 17.5 Hz).

HRMS (**ESI-TOF**) m/z calcd. for C₂₄H₂₈F₂N₃ ([M+H]⁺): 396.2246, found: 396.2238.

4-(5,5-difluoro-5-(5-(trifluoromethyl)-[1,1'-biphenyl]-3-yl)pentyl)morpholine (41a)

The title product was prepared via procedure A & D, purified by flash chromatography (PE:EA:Et₃N = 10:1:0.03) on silica gel to afford the title compound (99.2 mg, 80% yield; 38.6 mg, 93% yield) as a colorless oil.

¹**H NMR (400 MHz, CDCl**₃) δ 7.89 (s, 1H), 7.85 (s, 1H), 7.69 (s, 1H), 7.61 – 7.59 (m, 2H), 7.51 – 7.47 (m, 2H), 7.45 – 7.40 (m, 1H), 3.68 (t, *J* = 4.7 Hz, 4H), 2.40 (t, *J* = 4.6 Hz, 4H), 2.31 (t, *J* = 7.0 Hz, 2H), 2.19 (tt, *J* = 16.0, 7.4 Hz, 2H), 1.56 – 1.48 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 142.79, 139.16 (t, J = 27.4 Hz), 139.06, 131.71 (q, J = 32.6 Hz), 129.27, 128.65, 127.36, 127.17 (t, J = 5.9 Hz), 125.33 (d, J = 3.8 Hz), 123.89 (q, J = 273.7 Hz), 122.46 (t, J = 243.4 Hz), 120.84 – 120.74 (m), 67.04, 58.63, 53.82, 39.00 (t, J = 27.1 Hz), 26.15, 20.47 (t, J = 4.0 Hz).

¹⁹F NMR (376 MHz, CDCl₃) δ -62.59, -95.92 (td, *J* = 16.7, 3.5 Hz).

HRMS (**ESI-TOF**) m/z calcd. for $C_{22}H_{25}F_5NO$ ([M+H]⁺): 414.1851, found: 414.1837.

(Z)-4-(5,5-difluoro-5-(5-(trifluoromethyl)-[1,1'-biphenyl]-3-yl)pent-2-en-1-yl)thio morpholine (42ab)

The title product was prepared via procedure A, purified by flash chromatography (PE:EA:Et₃N = 10:1:0.03) on silica gel to afford the title compound (102.5 mg, 80% yield; 69.2 mg, 54% yield for Z isomer) as a yellow oil.

¹**H NMR (400 MHz, CDCl**₃) δ 7.89 (s, 1H), 7.84 (s, 1H), 7.69 (s, 1H), 7.61 – 7.58 (m, 3H), 7.52 – 7.47 (m, 3H), 7.46 – 7.41 (m, 1H), 5.73 – 5.66 (m, 1H), 5.61 – 5.54 (m, 1H), 3.00 (td, J = 15.6, 7.5 Hz, 1H), 2.90 (d, J = 6.6 Hz, 1H), 2.62 – 2.59 (m, 6H), 2.57 – 2.54 (m, 5H).

¹³C NMR (101 MHz, CDCl₃) δ 142.81, 138.97, 138.59 (t, J = 27.2 Hz), 132.27, 131.72 (q, J = 32.7 Hz), 129.30, 128.71, 127.35, 125.42 (d, J = 3.9 Hz), 123.84 (q, J = 273.7 Hz), 122.58, 122.53, 121.49 (t, J = 246.4 Hz), 120.92 (q, J = 6.1 Hz), 55.95, 54.92, 37.75 (t, J = 28.3 Hz), 28.04.

¹⁹F NMR (**376** MHz, CDCl₃) δ -62.61, -94.96 (t, J = 15.5 Hz).

HRMS (ESI-TOF) m/z calcd. for C₂₂H₂₃F₅NS ([M+H]⁺): 428.1466, found: 428.1460.

4-(5,5-difluoro-5-(5-(trifluoromethyl)-[1,1'-biphenyl]-3-yl)pentyl)thiomorpholine 1,1-dioxide (43a)

The title product was prepared via procedure A & C, purified by flash chromatography (PE:EA:Et₃N = 6:1:0.03) on silica gel to afford the title compound (77.5 mg, 56% yield; 40.7 mg, 88% yield) as a white solid.

¹**H NMR (400 MHz, CDCl₃)** δ 7.90 (s, 1H), 7.85 (s, 1H), 7.69 (s, 1H), 7.62 – 7.60 (m, 2H), 7.52 – 7.48 (m, 2H), 7.46 – 7.42 (m, 1H), 3.04 – 2.94 (m, 8H), 2.51 – 2.48 (m, 2H), 2.19 (tt, *J* = 15.9, 7.5 Hz, 2H), 1.54 – 1.50 (m, 4H).

¹³**C NMR (101 MHz, CDCl₃)** δ 142.83, 139.04 (t, J = 27.4 Hz), 138.95, 131.73 (q, J = 32.7 Hz), 129.30, 128.71, 127.33, 127.09 (t, J = 5.9 Hz), 125.40 – 125.37 (m), 123.85 (q, J = 273.7 Hz), 122.34 (t, J = 244.4 Hz), 120.70 – 120.68 (m), 56.55, 51.37, 50.80, 38.87 (t, J = 27.1 Hz), 26.66, 20.19 (t, J = 4.0 Hz).

¹⁹F NMR (376 MHz, CDCl₃) δ -62.56 (d, J = 2.1 Hz), -96.07 (td, J = 16.5, 4.0 Hz).

HRMS (ESI-TOF) m/z calcd. for $C_{22}H_{25}F_5NO_2S$ ([M+H]⁺): 462.1521, found: 462.1510.

1-(5,5-difluoro-5-(5-(trifluoromethyl)-[1,1'-biphenyl]-3-yl)pentyl)-4-methylpiperi dine (44a)

The title product was prepared via procedure A & D, purified by flash chromatography (PE:EA:Et₃N = 10:1:0.03) on silica gel to afford the title compound (118.6 mg, 93% yield; 32.9 mg, 77% yield) as a pale yellow oil.

¹**H** NMR (400 MHz, CDCl₃) δ 7.88 (s, 1H), 7.85 (s, 1H), 7.69 (s, 1H), 7.61 – 7.58 (m, 2H), 7.51 – 7.47 (m, 2H), 7.44 – 7.40 (m, 1H), 2.84 (dt, *J* = 11.1, 2.5 Hz, 2H), 2.28 (dd, *J* = 8.6, 6.3 Hz, 2H), 2.23 – 2.13 (m, 2H), 1.86 (td, *J* = 11.6, 2.5 Hz, 2H), 1.62 – 1.44 (m, 6H), 1.40 – 1.28 (m, 1H), 1.26 – 1.16 (m, 2H), 0.90 (d, *J* = 6.3 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 142.80, 139.26 (t, J = 27.5 Hz), 139.14, 131.74 (q, J = 32.7 Hz), 129.27, 128.62, 127.40, 127.20 (t, J = 6.1 Hz), 125.33 – 125.28 (m), 123.93 (q, J = 273.7 Hz), 122.51 (t, J = 243.2 Hz), 120.89 – 120.79 (m), 58.75, 54.20, 39.07 (t, J = 27.1 Hz), 34.42, 30.95, 26.77, 21.99, 20.74.

¹⁹F NMR (**376** MHz, CDCl₃) δ -62.61, -95.82 (t, J = 16.5 Hz).

HRMS (**ESI-TOF**) m/z calcd. for C₂₄H₂₉F₅N ([M+H]⁺): 426.2215, found: 426.2204.

2-(5,5-difluoro-5-(5-(trifluoromethyl)-[1,1'-biphenyl]-3-yl)pentyl)-1,2,3,4-tetrahy droisoquinoline (45a)

The title product was prepared via procedure A & D, purified by flash chromatography (PE:EA:Et₃N = 6:1:0.03) on silica gel to afford the title compound (113.0 mg, 82% yield; 33.6 mg, 73% yield) as a yellow solid.

¹**H NMR (400 MHz, CDCl**₃) δ 7.91 (s, 1H), 7.88 (s, 1H), 7.73 (s, 1H), 7.63 – 7.61 (m, 2H), 7.52 – 7.48 (m, 2H), 7.46 – 7.42 (m, 1H), 7.14 – 7.08 (m, 3H), 7.02 – 7.00 (m,

1H), 3.62 (s, 2H), 2.90 (t, *J* = 6.0 Hz, 2H), 2.72 (t, *J* = 6.0 Hz, 2H), 2.52 (dd, *J* = 8.1, 6.5 Hz, 2H), 2.31 – 2.19 (m, 2H), 1.72 – 1.54 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 142.81, 139.22 (t, J = 27.5 Hz), 139.10, 134.73, 134.35, 131.74 (q, J = 32.7 Hz), 129.26, 128.77, 128.62, 127.39, 127.20 (t, J = 6.1 Hz), 126.69, 126.27, 125.74, 125.33, 123.92 (q, J = 273.7 Hz), 122.50 (t, J = 243.3 Hz), 120.80 – 120.77 (m), 58.03, 56.27, 51.05, 39.08 (t, J = 27.1 Hz), 29.10, 26.86, 20.61 (t, J = 4.0 Hz).

¹⁹F NMR (**376** MHz, CDCl₃) δ -62.56, -95.80 (t, J = 16.4 Hz).

HRMS (**ESI-TOF**) m/z calcd. for C₂₇H₂₇F₅N ([M+H]⁺): 460.2058, found: 460.2054.

3-(1-(5,5-difluoro-5-(5-(trifluoromethyl)-[1,1'-biphenyl]-3-yl)pentyl)piperidin-4-y l)-6-fluoro-2,3-dihydrobenzo[d]isoxazole (46a)

The title product was prepared via procedure A & D, purified by flash chromatography (PE:EA:Et₃N = 2:1:0.03) on silica gel to afford the title compound (153.5 mg, 94% yield; 33.9 mg, 62% yield) as a yellow solid.

¹**H NMR (400 MHz, CDCl**₃) δ 12.82 (s, 1H), 7.90 (s, 1H), 7.86 (s, 1H), 7.76 (dd, J = 8.9, 6.5 Hz, 1H), 7.70 (s, 1H), 7.61 (d, J = 7.5 Hz, 2H), 7.50 (t, J = 7.5 Hz, 2H), 7.43 (t, J = 7.3 Hz, 1H), 6.66 (dd, J = 10.4, 2.6 Hz, 1H), 6.60 (td, J = 8.5, 2.5 Hz, 1H), 3.18 (tt, J = 10.4, 4.4 Hz, 1H), 2.99 (d, J = 11.1 Hz, 2H), 2.36 (t, J = 7.1 Hz, 2H), 2.21 (tt, J = 15.8, 7.5 Hz, 2H), 2.06 (td, J = 11.4, 3.3 Hz, 2H), 1.92 – 1.79 (m, 4H), 1.59 – 1.49 (m, 4H).

¹³**C NMR (101 MHz, CDCl₃)** δ 207.70, 167.39 (d, J = 256.7 Hz), 165.82 (d, J = 14.3 Hz), 142.79, 139.17 (t, J = 27.4 Hz), 139.06, 132.09 (d, J = 11.7 Hz), 131.70 (q, J = 32.3 Hz), 129.28, 128.65, 127.38, 127.18 (t, J = 6.0 Hz), 125.34, 123.90 (q, J = 273.7 Hz), 122.49 (t, J = 244.4 Hz), 120.76 (d, J = 3.8 Hz), 115.41 (d, J = 2.3 Hz), 107.20 (d, J = 22.8 Hz), 105.45 (d, J = 23.4 Hz), 58.40, 53.24, 43.68, 39.02 (t, J = 27.1 Hz), 28.90, 26.62, 20.59 (t, J = 4.0 Hz).

¹⁹F NMR (376 MHz, CDCl₃) δ -62.55, -95.89 (t, J = 16.4 Hz), -98.54 - -101.81 (m).

HRMS (ESI-TOF) m/z calcd. for $C_{30}H_{30}F_6NO_2$ ([M+H]⁺): 550.2175, found: 550.2177.

5-(5,5-difluoro-5-(5-(trifluoromethyl)-[1,1'-biphenyl]-3-yl)pentyl)-4,5,6,7-tetrahy drothieno[3,2-c]pyridine (47a)

The title product was prepared via procedure A & E, purified by flash chromatography (PE:EA:Et₃N = 6:1:0.03) on silica gel to afford the title compound (125.1 mg, 90% yield; 20.1 mg, 43% yield) as a pale yellow oil.

¹**H** NMR (400 MHz, CDCl₃) δ 7.90 (s, 1H), 7.86 (s, 1H), 7.71 (s, 1H), 7.61 (d, J = 7.6 Hz, 2H), 7.50 (t, J = 7.4 Hz, 2H), 7.44 (t, J = 7.3 Hz, 1H), 7.07 (d, J = 5.1 Hz, 1H), 6.72 (d, J = 5.1 Hz, 1H), 3.54 (s, 2H), 2.87 (t, J = 5.7 Hz, 2H), 2.77 (t, J = 5.8 Hz, 2H), 2.54 (t, J = 7.4 Hz, 2H), 2.29 – 2.17 (m, 2H), 1.69 – 1.52 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 142.79, 139.18 (t, J = 27.4 Hz), 139.09, 133.84, 133.50, 131.72 (q, J = 32.6 Hz), 129.28, 128.64, 127.40, 127.19, 125.34, 123.90 (q, J = 274.7 Hz), 122.83, 122.48 (t, J = 244.4 Hz), 120.79, 57.55, 53.27, 51.08, 39.11 (t, J = 27.1 Hz), 27.10, 25.53, 20.59 (t, J = 3.9 Hz).

¹⁹F NMR (376 MHz, CDCl₃) δ -62.55, -95.86 (t, J = 16.4 Hz).

HRMS (ESI-TOF) m/z calcd. for C₂₅H₂₅F₅NS ([M+H]⁺): 466.1622, found: 466.1614.

6-(5,5-difluoro-5-(5-(trifluoromethyl)-[1,1'-biphenyl]-3-yl)pentyl)-6-azaspiro[2.5] octane (48a)

The title product was prepared via procedure A & D, purified by flash chromatography (PE:EA:Et₃N = 6:1:0.03) on silica gel to afford the title compound (108.9 mg, 83% yield; 43.0 mg, 96% yield) as a pink solid.

¹**H** NMR (400 MHz, CDCl₃) δ 7.89 (s, 1H), 7.85 (s, 1H), 7.69 (s, 1H), 7.60 (d, J = 7.0 Hz, 2H), 7.49 (t, J = 7.4 Hz, 2H), 7.42 (t, J = 7.3 Hz, 1H), 2.54 (s, 4H), 2.44 (dd, J = 9.1, 6.3 Hz, 2H), 2.27 – 2.15 (m, 2H), 1.67 – 1.59 (m, 2H), 1.54 – 1.42 (m, 6H), 0.27 (s, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 142.81, 139.13 (t, J = 27.4 Hz), 139.05, 131.71 (q, J = 32.7 Hz), 129.25, 128.62, 127.37, 127.17 (t, J = 5.9 Hz), 125.33, 123.89 (q, J = 273.7 Hz), 122.42 (t, J = 243.2 Hz), 120.73 (d, J = 3.1 Hz), 58.35, 53.25, 38.93 (t, J = 27.0 Hz), 34.53, 26.16, 20.59 (t, J = 4.0 Hz), 17.36, 11.56.

¹⁹F NMR (376 MHz, CDCl₃) δ -62.61, -95.81 (t, J = 16.3 Hz).

HRMS (**ESI-TOF**) m/z calcd. for C₂₅H₂₉F₅N ([M+H]⁺): 438.2215, found: 438.2202.

tert-butyl-7-(5,5-difluoro-5-(5-(trifluoromethyl)-[1,1'-biphenyl]-3-yl)pentyl)-2,7-d iazaspiro[3.5]nonane-2-carboxylate (49a)

The title product was prepared via procedure A & D, purified by flash chromatography (PE:EA:Et₃N = 6:1:0.03) on silica gel to afford the title compound (99.4 mg, 60% yield; 53.7 mg, 97% yield) as a yellow solid.

¹**H NMR (400 MHz, CDCl**₃) δ 7.87 (s, 1H), 7.83 (s, 1H), 7.68 (s, 1H), 7.60 – 7.57 (m, 2H), 7.49 – 7.45 (m, 2H), 7.43 – 7.38 (m, 1H), 3.57 (s, 4H), 2.43 – 2.09 (m, 8H), 1.70 (t, *J* = 5.4 Hz, 4H), 1.53 – 1.40 (m, 13H).

¹³C NMR (101 MHz, CDCl₃) δ 156.59, 142.78, 139.18 (t, J = 27.5 Hz), 139.06, 131.71 (q, J = 32.7 Hz), 129.25, 128.63, 127.35, 127.16 (t, J = 5.9 Hz), 125.29, 123.89 (q, J = 273.7 Hz), 122.45 (t, J = 243.1 Hz), 120.75, 79.38, 58.28, 50.61, 38.92 (t, J = 27.0 Hz), 35.53, 33.46, 28.52, 26.56, 20.55 (t, J = 4.0 Hz).

¹⁹F NMR (**376** MHz, CDCl₃) δ -62.60, -95.80 (t, J = 16.4 Hz).

HRMS (ESI-TOF) m/z calcd. for $C_{30}H_{38}F_5N_2O_2$ ([M+H]⁺): 553.2848, found: 553.2841.

8-(5,5-difluoro-5-(5-(trifluoromethyl)-[1,1'-biphenyl]-3-yl)pentyl)-1,4-dioxa-8-aza spiro[4.5]decane (50a)

The title product was prepared via procedure A & D, purified by flash chromatography (PE:EA:Et₃N = 10:1:0.03) on silica gel to afford the title compound (90.1 mg, 64% yield; 38.6 mg, 82% yield) as a colorless oil.

¹**H NMR (400 MHz, CDCl₃)** δ 7.88 (s, 1H), 7.84 (s, 1H), 7.69 (s, 1H), 7.61 – 7.58 (m, 2H), 7.51 – 7.47 (m, 2H), 7.42 – 7.40 (m, 1H), 3.94 (s, 4H), 2.51 – 2.48 (m, 4H), 2.35 (t, J = 7.2 Hz, 2H), 2.25 – 2.13 (m, 2H), 1.73 (t, J = 5.7 Hz, 4H), 1.57 – 1.46 (m, 4H).

¹³**C NMR (101 MHz, CDCl₃)** δ 142.81, 139.23 (t, J = 27.5 Hz), 139.11, 131.74 (q, J = 32.7 Hz), 129.27, 128.63, 127.39, 127.19 (t, J = 5.7 Hz), 125.33, 123.91 (q, J = 274.7 Hz), 122.47 (t, J = 243.1 Hz), 120.79 – 120.76 (d, J = 3.3 Hz), 107.34, 64.33, 57.88, 51.49, 39.04 (t, J = 27.1 Hz), 34.90, 26.92, 20.65.

¹⁹F NMR (**376** MHz, CDCl₃) δ -62.62, -95.85 (t, J = 16.4 Hz).

HRMS (ESI-TOF) m/z calcd. for $C_{25}H_{29}F_5NO_2$ ([M+H]⁺): 470.2113, found: 470.2108.

1'-(5,5-difluoro-5-(5-(trifluoromethyl)-[1,1'-biphenyl]-3-yl)pentyl)-2,3-dihydrospi ro[indene-1,4'-piperidine] (51a)

The title product was prepared via procedure A & D, purified by flash chromatography (PE:EA:Et₃N = 5:1:0.03) on silica gel to afford the title compound (123.2 mg, 80% yield; 36.4 mg, 71% yield) as a white solid.

¹**H** NMR (400 MHz, CDCl₃) δ 7.92 (s, 1H), 7.89 (s, 1H), 7.73 (s, 1H), 7.63 (d, J = 7.8 Hz, 2H), 7.51 (t, J = 7.5 Hz, 2H), 7.45 (t, J = 7.3 Hz, 1H), 7.23 – 7.17 (m, 4H), 2.92 – 2.86 (m, 4H), 2.39 (t, J = 7.4 Hz, 2H), 2.30 – 2.11 (m, 4H), 2.02 – 1.91 (m, 4H), 1.63 – 1.53 (m, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 151.41, 143.21, 142.79, 139.23 (t, J = 27.5 Hz), 139.09, 131.72 (q, J = 32.7 Hz), 129.27, 128.63, 127.38, 127.19, 126.78, 126.53, 125.32, 124.66, 123.91 (q, J = 273.7 Hz), 122.65, 122.49 (t, J = 244.4 Hz), 120.79, 58.87, 51.42, 46.52, 39.10 (t, J = 27.1 Hz), 36.93, 35.03, 29.98, 26.80, 20.75 (t, J = 4.0 Hz).

¹⁹F NMR (**376** MHz, CDCl₃) δ -62.53, -95.85 (t, J = 16.3 Hz).

HRMS (**ESI-TOF**) m/z calcd. for C₃₁H₃₃F₅N ([M+H]⁺):514.2528, found: 514.2521.

1'-(5,5-difluoro-5-(5-(trifluoromethyl)-[1,1'-biphenyl]-3-yl)pentyl)spiro[isoindoli ne-1,4'-piperidin]-3-one (52a)

The title product was prepared via procedure A & D, purified by flash chromatography (PE:EA:Et₃N = 3:1:0.03) on silica gel to afford the title compound (112.5 mg, 71% yield; 50.3 mg, 95% yield) as a white solid.

¹**H NMR (400 MHz, CDCl**₃) δ 9.10 (s, 1H), 7.91 (s, 1H), 7.88 (s, 1H), 7.73 (s, 1H), 7.64 – 7.60 (m, 2H), 7.52 – 7.48 (m, 2H), 7.45 – 7.41 (m, 1H), 7.35 (d, *J* = 7.5 Hz, 1H), 7.20 (td, *J* = 7.7, 1.2 Hz, 1H), 7.01 (td, *J* = 7.6, 1.0 Hz, 1H), 6.92 (d, *J* = 7.7 Hz, 1H), 2.97 – 2.91 (m, 2H), 2.73 – 2.68 (m, 2H), 2.53 (t, *J* = 7.3 Hz, 2H), 2.24 (tt, *J* = 16.2, 7.6 Hz, 2H), 2.01 – 1.85 (m, 4H), 1.69 – 1.53 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 182.87, 142.81, 140.31, 139.24 (t, J = 27.4 Hz), 139.09, 135.17, 131.73 (q, J = 32.7 Hz), 129.26, 128.62, 127.81, 127.38, 127.18 (t, J = 5.9 Hz), 125.35 –125.30 (m), 123.92 (q, J = 273.7 Hz), 123.81, 122.48 (t, J = 244.4 Hz), 122.20, 120.80 – 120.78 (m), 109.83, 58.48, 48.63, 45.63, 39.07 (t, J = 27.0 Hz), 33.08, 26.62, 20.66 (t, J = 4.0 Hz).

¹⁹F NMR (**376** MHz, CDCl₃) δ -62.55, -95.85 (t, J = 16.3 Hz).

HRMS (ESI-TOF) m/z calcd. for $C_{30}H_{30}F_5N_2O$ ([M+H]⁺): 529.2273, found: 529.2265.

1-(5,5-difluoro-5-(5-(trifluoromethyl)-[1,1'-biphenyl]-3-yl)pentyl)-4-methylpipera zine (53a)

The title product was prepared via procedure A & D, purified by flash chromatography (PE:EA:Et₃N = 5:1:0.03) on silica gel to afford the title compound (111.2 mg, 87% yield; 35.2 mg, 83% yield) as a pale yellow oil.

¹**H NMR (400 MHz, CDCl₃)** δ 7.88 (s, 1H), 7.84 (s, 1H), 7.68 (s, 1H), 7.60 – 7.58 (m, 2H), 7.50 – 7.46 (m, 2H), 7.43 – 7.39 (m, 1H), 2.43 – 2.13 (m, 15H), 1.57 – 1.44 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 142.77, 139.18 (t, J = 27.4 Hz), 139.08, 131.71 (q, J = 32.6 Hz), 129.25, 128.62, 127.37, 127.17 (t, J = 6.1 Hz), 125.31, 123.89 (q, J = 32.6 Hz)

273.7 Hz), 122.46 (t, J = 244.4 Hz), 120.79 – 120.75 (m), 58.19, 55.17, 53.24, 46.09, 39.00 (t, *J* = 27.1 Hz), 26.49, 20.56 (t, *J* = 4.1 Hz).

¹⁹F NMR (**376** MHz, CDCl₃) δ -62.59, -95.89 (t, J = 16.3 Hz).

HRMS (**ESI-TOF**) m/z calcd. for C₂₃H₂₈F₅N₂ ([M+H]⁺): 427.2167, found: 427.2159.

tert-butyl-4-(5,5-difluoro-5-(5-(trifluoromethyl)-[1,1'-biphenyl]-3-yl)pentyl)piper azine-1-carboxylate (54a)

The title product was prepared via procedure A & D, purified by flash chromatography (PE:EA:Et₃N = 6:1:0.03) on silica gel to afford the title compound (107.6 mg, 70% yield; 38.0 mg, 74% yield) as a colorless oil.

¹**H NMR (400 MHz, CDCl**₃) δ 7.89 (s, 1H), 7.85 (s, 1H), 7.69 (s, 1H), 7.62 – 7.59 (m, 2H), 7.49 (t, J = 7.4 Hz, 2H), 7.45 – 7.41 (m, 1H), 3.41 (t, J = 5.0 Hz, 4H), 2.36 – 2.31 (m, 6H), 2.20 (tt, J = 15.9, 7.5 Hz, 2H), 1.59 – 1.49 (m, 4H), 1.45 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 154.85, 142.80, 139.15 (t, J = 27.5 Hz), 139.06, 131.71 (q, J = 32.7 Hz), 129.27, 128.65, 127.36, 127.17 (t, J = 5.7 Hz), 125.34, 123.88 (q, J = 273.7 Hz), 122.44 (t, J = 244.4 Hz), 121.31 – 120.46 (m), 79.75, 58.22, 53.09, 38.98 (t, J = 27.1 Hz), 28.53, 26.37, 20.49 (t, J = 4.0 Hz).

¹⁹F NMR (376 MHz, CDCl₃) δ -62.59, -95.95 (t, J = 16.3 Hz).

HRMS (ESI-TOF) m/z calcd. for $C_{27}H_{34}F_5N_2O_2$ ([M+H]⁺): 513.2535, found: 513.2525.

1-(5,5-difluoro-5-(5-(trifluoromethyl)-[1,1'-biphenyl]-3-yl)pentyl)-4-(oxetan-3-yl) piperazine (55a)

The title product was prepared via procedure A & D, purified by flash chromatography (PE:EA:Et₃N = 6:1:0.03) on silica gel to afford the title compound (102.5 mg, 73% yield; 35.7 mg, 76% yield) as a pink solid.

¹**H NMR (400 MHz, CDCl₃)** δ 7.88 (s, 1H), 7.84 (s, 1H), 7.68 (s, 1H), 7.61 – 7.58 (m, 2H), 7.50 – 7.46 (m, 2H), 7.44 – 7.40 (m, 1H), 4.61 (dt, *J* = 16.9, 6.3 Hz, 4H), 3.46 (p, *J* = 6.4 Hz, 1H), 2.47 – 2.13 (m, 12H), 1.56 – 1.46 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 142.79, 139.18 (t, J = 27.5 Hz), 139.08, 131.73 (q, J = 32.7 Hz), 129.26, 128.64, 127.36, 127.16 (t, J = 6.0 Hz), 125.31, 123.89 (q, J = 273.7 Hz), 122.45 (t, J = 243.2 Hz), 120.93 – 120.59 (m), 75.56, 59.34, 58.13, 52.79, 49.60, 38.97 (t, J = 27.0 Hz), 26.40, 20.53 (t, J = 4.0 Hz).

¹⁹F NMR (**376** MHz, CDCl₃) δ -62.62, -95.83 (t, J = 16.4 Hz).

HRMS (ESI-TOF) m/z calcd. for $C_{25}H_{30}F_5N_2O$ ([M+H]⁺): 469.2273, found: 469.2263.

cyclohexyl(4-(5,5-difluoro-5-(5-(trifluoromethyl)-[1,1'-biphenyl]-3-yl)pentyl)pipe razin-1-yl)methanone (56a)

The title product was prepared via procedure A & D, purified by flash chromatography (PE:EA:Et₃N = 6:1:0.03) on silica gel to afford the title compound (131.6 mg, 84% yield; 38.2 mg, 73% yield) as a pale yellow solid.

¹**H NMR (400 MHz, CDCl**₃) δ 7.88 (s, 1H), 7.85 (s, 1H), 7.68 (s, 1H), 7.61 – 7.58 (m, 2H), 7.50 – 7.46 (m, 2H), 7.44 – 7.40 (m, 1H), 3.58 (t, *J* = 5.1 Hz, 2H), 3.46 (t, *J* = 4.9 Hz, 2H), 2.46 – 2.31 (m, 7H), 2.19 (tt, *J* = 15.9, 7.5 Hz, 2H), 1.81 – 1.77 (m, 2H), 1.71 – 1.67 (m, 3H), 1.56 – 1.46 (m, 6H), 1.31 – 1.20 (m, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 174.62, 142.80, 139.12 (t, J = 27.4 Hz), 139.03, 131.71 (q, J = 32.7 Hz), 129.27, 128.65, 127.34, 127.14, 125.33, 123.87 (q, J = 273.7 Hz), 122.42 (t, J = 243.1 Hz), 120.72, 58.01, 53.79, 53.00, 45.34, 41.51, 40.46, 38.93 (t, J = 27.0 Hz), 29.47, 26.30, 25.94, 20.45 (d, J = 4.1 Hz).

¹⁹F NMR (**376** MHz, CDCl₃) δ -62.58, -95.94 (t, *J* = 16.3 Hz).

HRMS (ESI-TOF) m/z calcd. for $C_{29}H_{36}F_5N_2O$ ([M+H]⁺): 523.2742, found: 523.2737.

(4-(5,5-difluoro-5-(5-(trifluoromethyl)-[1,1'-biphenyl]-3-yl)pentyl)piperazin-1-yl) (furan-2-yl)methanone (57a)

The title product was prepared via procedure A & C, purified by flash chromatography (PE:EA:Et₃N = 6:1:0.03) on silica gel to afford the title compound (59.2 mg, 39% yield; 42.7 mg, 84% yield) as a pale yellow solid.

¹**H NMR (400 MHz, CDCl₃)** δ 7.89 (s, 1H), 7.85 (s, 1H), 7.70 (s, 1H), 7.62 – 7.59 (m, 2H), 7.51 – 7.40 (m, 4H), 6.98 (d, *J* = 3.5 Hz, 1H), 6.47 (dd, *J* = 3.5, 1.8 Hz, 1H), 3.78 (s, 4H), 2.45 (t, *J* = 5.1 Hz, 4H), 2.36 (t, *J* = 6.8 Hz, 2H), 2.21 (tt, *J* = 15.8, 7.4 Hz, 2H), 1.60 – 1.48 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 159.12, 148.03, 143.73, 142.79, 139.12 (t, J = 27.4 Hz), 139.02, 131.70 (q, J = 32.7 Hz), 129.27, 128.65, 127.35, 127.15 (t, J = 6.2 Hz), 125.35 – 125.31 (m), 123.87 (q, J = 273.7 Hz), 122.43 (t, J = 244.4 Hz), 120.82 – 120.72 (m), 116.40, 111.34, 58.00, 53.35, 38.95 (t, J = 27.1 Hz), 26.36, 20.43 (t, J = 4.0 Hz).

¹⁹F NMR (**376** MHz, CDCl₃) δ -62.57, -95.92 (t, J = 16.4 Hz).

HRMS (ESI-TOF) m/z calcd. for $C_{27}H_{28}F_5N_2O_2$ ([M+H]⁺): 507.2065, found: 507.2059.

2-(4-(5,5-difluoro-5-(5-(trifluoromethyl)-[1,1'-biphenyl]-3-yl)pentyl)piperazin-1-y l)-*N*-(2,6-dimethylphenyl)acetamide (58a)

The title product was prepared via procedure A & D, purified by flash chromatography (PE:EA:Et₃N = 3:1:0.03) on silica gel to afford the title compound (68.8 mg, 40% yield; 47.7 mg, 83% yield) as a pale yellow solid.

¹**H** NMR (400 MHz, CDCl₃) δ 8.66 (s, 1H), 7.90 (s, 1H), 7.86 (s, 1H), 7.70 (s, 1H), 7.62 – 7.59 (m, 2H), 7.52 – 7.48 (m, 2H), 7.45 – 7.41 (m, 1H), 7.10 – 7.08 (m, 3H), 3.18 (s, 2H), 2.70 (s, 4H), 2.51 (s, 4H), 2.35 (t, *J* = 7.0 Hz, 2H), 2.27 – 2.15 (m, 8H), 1.60 – 1.47 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 168.57, 142.80, 139.15 (t, J = 27.4 Hz), 139.03, 135.06, 133.76, 131.71 (q, J = 32.7 Hz), 129.26, 128.65, 128.38, 127.33, 127.24, 127.15 (t, J = 6.1 Hz), 125.30, 123.88 (q, J = 273.7 Hz), 122.44 (t, J = 243.2 Hz),

120.74 – 120.72 (m), 61.74, 57.99, 53.84, 53.42, 38.92 (t, *J* = 27.1 Hz), 26.41, 20.46, 18.71.

¹⁹F NMR (**376** MHz, CDCl₃) δ -62.56, -95.77 (t, J = 16.3 Hz).

HRMS (**ESI-TOF**) m/z calcd. for $C_{32}H_{37}F_5N_3O$ ([M+H]⁺): 574.2851, found: 574.2846.

1-(bis(4-fluorophenyl)methyl)-4-(5,5-difluoro-5-(5-(trifluoromethyl)-[1,1'-biphen yl]-3-yl)pentyl)piperazine (59a)

The title product was prepared via procedure A & C, purified by flash chromatography (PE:EA:Et₃N = 6:1:0.03) on silica gel to afford the title compound (94.0 mg, 51% yield; 52.9 mg, 86% yield) as a pale yellow solid.

¹**H NMR (400 MHz, CDCl**₃) δ 7.90 (s, 1H), 7.86 (s, 1H), 7.71 (s, 1H), 7.62 – 7.60 (m, 2H), 7.52 – 7.48 (m, 2H), 7.46 – 7.42 (m, 1H), 7.36 – 7.32 (m, 4H), 6.97 (t, *J* = 8.7 Hz, 4H), 4.20 (s, 1H), 2.45 – 2.16 (m, 12H), 1.56 – 1.48 (m, 4H).

¹³**C NMR (101 MHz, CDCl₃)** δ 161.91 (d, J = 245.4 Hz), 142.77, 139.18 (t, J = 27.4 Hz), 139.06, 138.37 (d, J = 3.2 Hz), 131.70 (q, J = 32.7 Hz), 129.35 (d, J = 7.8 Hz), 129.26, 128.63, 127.37, 127.16 (t, J = 6.0 Hz), 125.32, 123.90 (q, J = 273.7 Hz), 122.46 (t, J = 244.4 Hz), 120.78, 115.48 (d, J = 21.2 Hz), 74.62, 58.17, 53.50, 51.79, 38.98 (t, J = 27.0 Hz), 26.43, 20.57 (t, J = 4.0 Hz).

¹⁹**F** NMR (376 MHz, CDCl₃) δ -62.58, -95.86 (t, J = 16.4 Hz), -115.71 - -115.78 (m).

HRMS (**ESI-TOF**) m/z calcd. for C₃₅H₃₄F₇N₂ ([M+H]⁺): 615.2605, found: 615.2596.

(*E*/Z)11-(4-(5,5-difluoro-5-(5-(trifluoromethyl)-[1,1'-biphenyl]-3-yl)pent-2-en-1-yl)piperazin-1-yl)dibenzo[b,f][1,4]thiazepine (60ab)

The title product was prepared via procedure A, purified by flash chromatography (PE:EA:Et₃N = 1:1:0.03) on silica gel to afford the title compound (176.4 mg, 95% yield) as a pale yellow solid.

¹**H** NMR (400 MHz, CDCl₃) δ 7.77 – 7.72 (m, 2H), 7.59 (d, J = 10.5 Hz, 1H), 7.48 – 7.44 (m, 2H), 7.41 – 7.31 (m, 3H), 7.30 – 7.26 (m, 2H), 7.22 – 7.14 (m, 3H), 7.06 (td, J = 7.6, 1.6 Hz, 1H), 6.97 (dd, J = 8.0, 1.5 Hz, 1H), 6.77 (td, J = 7.4, 1.5 Hz, 1H), 5.67 – 5.43 (m, 2H), 3.37 (s, 4H), 2.96 – 2.79 (m, 4H), 2.31 – 2.20 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 160.75, 148.99, 148.95, 142.76, 142.72, 139.96, 139.92, 138.84, 138.78, 138.61 (t, J = 27.3 Hz), 138.57 (t, J = 27.3 Hz), 134.17, 133.67, 132.21, 132.18, 131.61 (q, J = 32.3 Hz), 131.59 (q, J = 33.3 Hz), 130.80, 129.23, 129.22, 129.13, 129.02, 128.62, 128.27, 128.01, 127.26, 127.20, 125.40, 125.26 – 125.22 (m, J = 4.9 Hz), 123.83 (t, J = 5.1 Hz), 123.81 (q, J = 273.7 Hz), 122.86, 122.83, 122.39 (t, J = 5.1 Hz), 121.45 (t, J = 245.4 Hz), 121.36 (t, J = 245.4 Hz), 120.83, 60.50, 55.13, 52.80, 42.44 (t, J = 28.1 Hz), 37.72 (t, J = 28.2 Hz).

¹⁹**F NMR (376 MHz, CDCl₃)** δ -62.42, -62.43, -94.75 – -94.84 (m), -94.96 – -95.10 (m).

HRMS (ESI-TOF) m/z calcd. for $C_{35}H_{31}F_5N_3S$ ([M+H]⁺): 620.2153, found: 620.2156.

1-(5,5-difluoro-5-(5-(trifluoromethyl)-[1,1'-biphenyl]-3-yl)pentyl)-4-(methylsulfo nyl)piperazine (61a)

The title product was prepared via procedure A & D, purified by flash chromatography (PE:EA:Et₃N = 3:1:0.03) on silica gel to afford the title compound (104.4 mg, 71% yield; 32.5 mg, 66% yield) as a colorless oil.

¹**H NMR (400 MHz, CDCl**₃) δ 7.89 (s, 1H), 7.84 (s, 1H), 7.68 (s, 1H), 7.68 – 7.58 (m, 2H), 7.51 – 7.47 (m, 2H), 7.45 – 7.41 (m, 1H), 3.20 (t, *J* = 4.9 Hz, 4H), 2.75 (s, 3H),

2.50 (t, *J* = 5.0 Hz, 4H), 2.37 (t, *J* = 6.7 Hz, 2H), 2.19 (tt, *J* = 15.9, 7.4 Hz, 2H), 1.56 – 1.48 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 142.80, 139.11 (t, J = 27.4 Hz), 139.00, 131.70 (q, J = 32.7 Hz), 129.29, 128.69, 127.34, 127.14 (t, J = 6.1 Hz), 125.33, 123.88 (q, J = 273.7 Hz), 122.42 (t, J = 243.4 Hz), 120.75 – 120.72 (m), 57.67, 52.46, 45.93, 38.92 (t, J = 27.1 Hz), 34.07, 26.32, 20.35 (t, J = 3.9 Hz).

¹⁹F NMR (**376** MHz, CDCl₃) δ -62.56, -95.95 (t, J = 16.3 Hz).

HRMS (ESI-TOF) m/z calcd. for $C_{23}H_{28}F_5N_2O_2S$ ([M+H]⁺): 491.1786, found: 491.1775.

1-(5,5-difluoro-5-(5-(trifluoromethyl)-[1,1'-biphenyl]-3-yl)pentyl)-4-(4-(trifluoro methyl)phenyl)piperazine (62a)

The title product was prepared via procedure A & D, purified by flash chromatography (PE:EA:Et₃N = 6:1:0.03) on silica gel to afford the title compound (133.0 mg, 80% yield; 40.7 mg, 73% yield) as a white solid.

¹**H NMR (400 MHz, CDCl**₃) δ 7.91 (s, 1H), 7.88 (s, 1H), 7.73 (s, 1H), 7.63 – 7.61 (m, 2H), 7.52 – 7.42 (m, 5H), 6.91 (d, *J* = 8.6 Hz, 2H), 3.26 (t, *J* = 5.2 Hz, 4H), 2.57 (t, *J* = 5.2 Hz, 4H), 2.40 (t, *J* = 7.0 Hz, 2H), 2.30 – 2.18 (m, 2H), 1.65 – 1.51 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 153.42, 142.85, 139.22 (t, J = 27.4 Hz), 139.08, 131.78 (q, J = 32.6 Hz), 129.30, 128.68, 127.38, 127.20 (t, J = 6.1 Hz), 126.50 (q, J = 3.7 Hz), 125.37, 124.93 (q, J = 271.7 Hz), 123.94 (q, J = 273.7 Hz), 122.51 (t, J = 243.4 Hz), 120.74 (t, J = 32.3 Hz), 120.82 – 120.79 (m), 114.59, 58.12, 53.04, 48.04, 38.98 (t, J = 27.0 Hz), 26.44, 20.54 (t, J = 4.0 Hz).

¹⁹F NMR (376 MHz, CDCl₃) δ -61.29, -62.57, -95.82 (t, J = 16.5 Hz).

HRMS (ESI-TOF) m/z calcd. for $C_{29}H_{29}F_8N_2$ ([M+H]⁺): 557.2198, found: 557.2190.

1-(5,5-difluoro-5-(5-(trifluoromethyl)-[1,1'-biphenyl]-3-yl)pentyl)-4-methyl-1,4-di azepane (63a)

The title product was prepared via procedure A & C, purified by flash chromatography (PE:EA:Et₃N = 1:1:4%) on silica gel to afford the title compound (112.3 mg, 85% yield; 60.1 mg, 68% yield) as a yellow oil.

¹**H** NMR (400 MHz, CDCl₃) δ 7.87 (s, 1H), 7.84 (s, 1H), 7.68 (d, J = 1.9 Hz, 1H), 7.60 – 7.58 (m, 2H), 7.49 – 7.44 (m, 2H), 7.43 – 7.38 (m, 1H), 2.67 – 2.64 (m, 4H), 2.59 – 2.54 (m, 4H), 2.43 (t, J = 6.8 Hz, 2H), 2.31 (s, 3H), 2.18 (tt, J = 15.8, 7.5 Hz, 2H), 1.75 (p, J = 6.0 Hz, 2H), 1.51 – 1.45 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 142.75, 139.23 (t, J = 27.5 Hz), 139.06, 131.68 (q, J = 32.6 Hz), 129.22, 128.58, 127.34, 127.15 (t, J = 5.9 Hz), 125.27 – 125.23 (m), 123.88 (q, J = 274.7 Hz), 122.50 (t, J = 243.1 Hz), 120.84 – 120.73 (m), 58.07, 58.02, 56.95, 54.77, 54.25, 47.08, 38.99 (t, J = 27.0 Hz), 27.41, 27.19, 20.43 (t, J = 4.1 Hz).

¹⁹F NMR (**376** MHz, CDCl₃) δ -62.59, -95.78 (t, J = 16.3 Hz).

HRMS (**ESI-TOF**) m/z calcd. for C₂₄H₃₀F₅N₂ ([M+H]⁺): 441.2324, found: 441.2313.

1-(5,5-difluoro-5-(5-(trifluoromethyl)-[1,1'-biphenyl]-3-yl)pentyl)pyrrolidine (64a)

The title product was prepared via procedure A & D, purified by flash chromatography (PE:EA:Et₃N = 10:1:0.03) on silica gel to afford the title compound (102.5 mg, 86% yield; 31.9 mg, 80% yield) as a colorless oil.

¹**H NMR (400 MHz, CDCl₃)** δ 7.88 (s, 1H), 7.85 (s, 1H), 7.69 (s, 1H), 7.61 – 7.59 (m, 2H), 7.51 – 7.47 (m, 2H), 7.44 – 7.40 (m, 1H), 2.48 – 2.40 (m, 6H), 2.26 – 2.14 (m, 2H), 1.77 – 1.74 (m, 4H), 1.59 – 1.49 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 142.78, 139.22 (t, J = 27.4 Hz), 139.10, 131.70 (q, J = 32.6 Hz), 129.26, 128.62, 127.39, 127.20 (t, J = 6.1 Hz), 125.33 – 125.29 (m), 123.91 (q, J = 273.7 Hz), 122.49 (t, J = 243.4 Hz), 120.79 (d, J = 4.1 Hz), 56.28, 54.33, 39.10 (t, J = 27.1 Hz), 28.71, 23.48, 20.71 (t, J = 4.0 Hz).

¹⁹F NMR (**376** MHz, CDCl₃) δ -62.59, -95.89 (t, J = 16.4 Hz).

HRMS (**ESI-TOF**) m/z calcd. for C₂₂H₂₅F₅N ([M+H]⁺): 398.1902, found: 398.1891.

(*R*)-(1-(5,5-difluoro-5-(5-(trifluoromethyl)-[1,1'-biphenyl]-3-yl)pentyl)pyrrolidin-2-yl)methanol (65a)

The title product was prepared via procedure A & D, purified by flash chromatography (PE:EA:Et₃N = 2:1:0.03) on silica gel to afford the title compound (117.4 mg, 92% yield; 18.4 mg, 43% yield) as a yellow oil.

¹**H NMR (400 MHz, CDCl₃)** δ 7.89 (s, 1H), 7.86 (s, 1H), 7.70 (s, 1H), 7.61 (d, J = 7.6 Hz, 2H), 7.50 (t, J = 7.5 Hz, 2H), 7.43 (t, J = 7.3 Hz, 1H), 3.60 (dd, J = 10.7, 3.6 Hz, 1H), 3.38 (dd, J = 10.8, 2.4 Hz, 1H), 3.14 (dt, J = 9.1, 4.1 Hz, 1H), 2.75 – 2.68 (m, 1H), 2.56 – 2.54 (m, 1H), 2.29 – 2.15 (m, 4H), 1.91 – 1.82 (m, 1H), 1.78 – 1.69 (m, 3H), 1.58 – 1.49 (m, 4H).

¹³**C** NMR (101 MHz, CDCl₃) δ 142.83, 139.22 (t, *J* = 27.6 Hz), 139.10, 131.58 (t, *J* = 32.8 Hz), 129.28, 128.64, 127.40, 127.20 (d, *J* = 6.1 Hz), 125.36, 123.91 (q, *J* = 273.7 Hz), 122.45 (t, *J* = 243.1 Hz), 120.77, 65.02, 61.94, 54.26, 54.19, 39.05 (t, *J* = 27.2 Hz), 28.66, 27.71, 23.67, 20.38 (t, *J* = 4.0 Hz).

¹⁹F NMR (**376** MHz, CDCl₃) δ -62.61, -96.08 (t, J = 16.4 Hz).

HRMS (**ESI-TOF**) m/z calcd. for $C_{23}H_{27}F_5NO$ ([M+H]⁺): 428.2007, found: 428.2001.

2-(5,5-difluoro-5-(5-(trifluoromethyl)-[1,1'-biphenyl]-3-yl)pentyl)octahydro-1*H*-is oindole (66a)

The title product was prepared via procedure A & D, purified by flash chromatography (PE:EA:Et₃N = 6:1:0.03) on silica gel to afford the title compound (102.9 mg, 76% yield; 35.8 mg, 79% yield) as a pale yellow oil.

¹**H NMR (400 MHz, CDCl**₃) δ 7.88 (s, 1H), 7.85 (s, 1H), 7.69 (s, 1H), 7.61 – 7.58 (m, 2H), 7.51 – 7.46 (m, 2H), 7.44 – 7.40 (m, 1H), 2.73 (dd, *J* = 9.2, 6.9 Hz, 2H), 2.50 (t,

J = 7.1 Hz, 2H), 2.44 (dd, *J* = 9.3, 5.6 Hz, 2H), 2.26 – 2.07 (m, 4H), 1.56 – 1.36 (m, 10H), 1.33 – 1.27 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 142.80, 139.27 (t, J = 27.5 Hz), 139.14, 131.73 (q, J = 32.7 Hz), 129.26, 128.62, 127.39, 127.21 (t, J = 5.9 Hz), 125.33 – 125.29 (m), 123.94 (q, J = 273.7 Hz), 122.52 (t, J = 243.2 Hz), 120.89 – 120.73 (m), 58.52, 57.33, 39.06 (t, J = 27.1 Hz), 37.19, 28.64, 26.98, 22.98, 20.54.

¹⁹F NMR (**376** MHz, CDCl₃) δ -62.63, -95.84 (t, J = 16.4 Hz).

HRMS (**ESI-TOF**) m/z calcd. for C₂₆H₃₁F₅N ([M+H]⁺): 452.2371, found: 452.2364.

3-(5,5-difluoro-5-(5-(trifluoromethyl)-[1,1'-biphenyl]-3-yl)pentyl)-3-azabicyclo[3. 1.0]hexane (67a)

The title product was prepared via procedure A & D, purified by flash chromatography (PE:EA:Et₃N = 6:1:0.03) on silica gel to afford the title compound (73.7 mg, 60% yield; 25.8 mg, 63% yield) as a colorless oil.

¹**H** NMR (400 MHz, CDCl₃) δ 7.89 (s, 1H), 7.85 (s, 1H), 7.70 (s, 1H), 7.61 (d, J = 7.2 Hz, 2H), 7.50 (t, J = 7.3 Hz, 2H), 7.43 (t, J = 7.4 Hz, 1H), 2.96 (d, J = 8.5 Hz, 2H), 2.38 (t, J = 6.8 Hz, 2H), 2.26 – 1.12 (m, 4H), 1.48 (p, J = 3.5 Hz, 4H), 1.33 – 1.29 (m, 2H), 0.63 (q, J = 4.0 Hz, 1H), 0.31 (td, J = 7.7, 4.2 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 142.77, 139.25 (t, J = 27.5 Hz), 139.14, 131.70 (q, J = 32.8 Hz), 129.27, 128.62, 127.41, 127.21 (t, J = 6.0 Hz), 125.28, 123.93 (q, J = 273.7 Hz), 122.56 (t, J = 244.4 Hz), 120.83 – 120.72 (m), 55.21, 55.08, 38.98 (t, J = 27.0 Hz), 28.39, 20.43, 15.39, 7.06.

¹⁹F NMR (**376** MHz, CDCl₃) δ -62.59, -95.87 (t, J = 16.5 Hz).

HRMS (**ESI-TOF**) m/z calcd. for C₂₃H₂₅F₅N ([M+H]⁺): 410.1902, found: 410.1888.

tert-butyl-7-(5,5-difluoro-5-(5-(trifluoromethyl)-[1,1'-biphenyl]-3-yl)pentyl)-2,7-d iazaspiro[4.4]nonane-2-carboxylate (68a)

The title product was prepared via procedure A & E, purified by flash chromatography (PE:EA:Et₃N = 3:1:0.03) on silica gel to afford the title compound (96.1 mg, 58% yield; 43.2 mg, 78% yield) as a colorless oil.

¹**H** NMR (400 MHz, CDCl₃) δ 7.88 (s, 1H), 7.84 (s, 1H), 7.68 (s, 1H), 7.60 (d, J = 7.4 Hz, 2H), 7.48 (t, J = 7.4 Hz, 2H), 7.42 (t, J = 7.6 Hz, 1H), 3.39 – 3.15 (m, 4H), 2.63 (dt, J = 13.6, 6.3 Hz, 1H), 2.49 (dd, J = 9.4, 3.9 Hz, 2H), 2.41 – 2.33 (m, 3H), 2.19 (td, J = 16.2, 8.6 Hz, 2H), 1.81 – 1.69 (m, 4H), 1.52 (s, 4H), 1.44 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 154.86, 154.76, 142.78, 139.21 (t, J = 27.4 Hz), 139.07, 131.70 (q, J = 32.7 Hz), 129.27, 128.63, 127.37, 127.17 (t, J = 6.2 Hz), 125.31, 123.89 (q, J = 273.7 Hz), 122.46 (t, J = 244.4 Hz), 120.77 (d, J = 3.7 Hz), 79.25, 79.18, 64.45, 64.29, 58.06, 57.12, 56.11, 54.06, 48.11, 47.30, 45.54, 45.13, 39.02 (t, J = 27.1 Hz), 38.38, 37.37, 35.77, 35.61, 28.64, 28.35, 20.55 (t, J = 4.3 Hz).

¹⁹F NMR (376 MHz, CDCl₃) δ -62.59, -95.87 – -96.01 (m).

HRMS (ESI-TOF) m/z calcd. for $C_{30}H_{38}F_5N_2O_2$ ([M+H]⁺): 553.2848, found: 553.2839.

N-benzyl-5,5-difluoro-*N*-methyl-5-(5-(trifluoromethyl)-[1,1'-biphenyl]-3-yl)penta n-1-amine (69a)

The title product was prepared via procedure A & C, purified by flash chromatography (PE:EA:Et₃N = 10:1:0.03) on silica gel to afford the title compound (104.6 mg, 78% yield; 23.8 mg, 53% yield) as a colorless oil.

¹**H NMR (400 MHz, CDCl**₃) δ 7.81 (s, 1H), 7.76 (s, 1H), 7.61 (s, 1H), 7.53 – 7.51 (m, 2H), 7.43 – 7.39 (m, 2H), 7.37 – 7.32 (m, 1H), 7.23 – 7.11 (m, 5H), 3.36 (s, 2H), 2.26 (t, *J* = 6.7 Hz, 2H), 2.13 – 2.01 (m, 5H), 1.51 – 1.39 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 142.76, 139.28 (t, J = 27.5 Hz), 139.22, 139.14, 131.69 (q, J = 32.7 Hz), 129.28, 129.10, 128.63, 128.34, 127.41, 127.21 (t, J = 6.0 Hz), 127.08, 125.31, 122.55 (t, J = 244.4 Hz), 120.81 – 120.79 (m), 62.58, 56.82, 42.35, 39.02 (t, J = 27.1 Hz), 27.02, 20.31.

¹⁹F NMR (**376** MHz, CDCl₃) δ -62.54, -95.88 (t, *J* = 16.5 Hz).

HRMS (**ESI-TOF**) m/z calcd. for C₂₆H₂₇F₅N ([M+H]⁺): 448.2058, found: 448.2048.

5,5-difluoro-*N*-methyl-*N*-(pyridin-3-ylmethyl)-5-(5-(trifluoromethyl)-[1,1'-biphen yl]-3-yl)pentan-1-amine (70a)

The title product was prepared via procedure A & E, purified by flash chromatography (PE:EA:Et₃N = 3:1:0.03) on silica gel to afford the title compound (95.5 mg, 71% yield; 17.1 mg, 38% yield) as a colorless oil.

¹**H** NMR (400 MHz, CDCl₃) δ 8.49 – 8.46 (m, 2H), 7.88 (s, 1H), 7.84 (s, 1H), 7.68 (s, 1H), 7.63 – 7.59 (m, 3H), 7.49 (t, *J* = 7.4 Hz, 2H), 7.45 – 7.41 (m, 1H), 7.20 (dd, *J* = 7.8, 4.8 Hz, 1H), 3.45 (s, 2H), 2.35 (t, *J* = 6.7 Hz, 2H), 2.22 – 2.10 (m, 5H), 1.55 – 1.50 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 150.40, 148.69, 142.80, 139.24 (t, J = 27.3 Hz), 139.11, 136.68, 134.63, 131.73 (q, J = 32.5 Hz), 129.29, 128.66, 127.40 127.18 (t, J = 6.1 Hz), 125.34, 123.92 (q, J = 273.7 Hz), 123.47, 122.49 (t, J = 244.4 Hz), 120.78, 59.73, 56.91, 42.18, 39.02 (t, J = 27.1 Hz), 27.01, 20.27 (t, J = 4.1 Hz).

¹⁹F NMR (**376** MHz, CDCl₃) δ -62.59, -95.98 (t, *J* = 16.5 Hz).

HRMS (**ESI-TOF**) m/z calcd. for C₂₅H₂₆F₅N₂ ([M+H]⁺): 449.2011, found: 449.2005.

5,5-difluoro-*N*-(4-methoxybenzyl)-*N*-methyl-5-(5-(trifluoromethyl)-[1,1'-biphenyl]-3-yl)pentan-1-amine (71a)

The title product was prepared via procedure A & C, purified by flash chromatography (PE:EA:Et₃N = 10:1:0.03) on silica gel to afford the title compound (117.4 mg, 82% yield; 41.7 mg, 87% yield) as a colorless oil.

¹**H** NMR (400 MHz, CDCl₃) δ 7.91 (s, 1H), 7.87 (s, 1H), 7.71 (s, 1H), 7.62 (d, J = 7.8 Hz, 2H), 7.50 (t, J = 7.5 Hz, 2H), 7.46 – 7.42 (m, 1H), 7.20 – 7.18 (m, 2H), 6.85 – 6.82 (m, 2H), 3.79 (s, 3H), 3.40 (s, 2H), 2.36 – 2.32 (m, 2H), 2.25 – 2.13 (m, 5H), 1.58 – 1.51 (m, 4H).
¹³C NMR (101 MHz, CDCl₃) δ 158.72, 142.75, 139.26 (t, J = 27.4 Hz), 139.10, 131.68 (q, J = 33.3 Hz), 131.18, 130.22, 129.27, 128.62, 127.39, 127.19 (t, J = 5.9 Hz), 125.32 – 125.28 (m), 122.55 (t, J = 244.4 Hz), 120.81 – 120.78 (m), 113.66, 61.88, 56.70, 55.31, 42.18, 39.02 (t, J = 27.0 Hz), 27.02, 20.36 (t, J = 4.1 Hz).

¹⁹F NMR (376 MHz, CDCl₃) δ -62.53 (d, J = 3.1 Hz), -95.77 (td, J = 15.7, 4.1 Hz).

HRMS (ESI-TOF) m/z calcd. for $C_{27}H_{29}F_5NO$ ([M+H]⁺): 478.2164, found: 478.2153.

(Z)-5,5-difluoro-N-methyl-N-(naphthalen-1-ylmethyl)-5-(5-(trifluoromethyl)-[1,1' -biphenyl]-3-yl)pent-2-en-1-amine (72ab)

The title product was prepared via procedure A, purified by flash chromatography (PE:EA = 10:1) on silica gel to afford the title compound (89.1 mg, 60% yield; 62.2 mg, 42% yield for Z isomer) as a pale yellow solid.

¹**H NMR (400 MHz, CDCl**₃) δ 8.28 – 8.25 (m, 1H), 7.90 (s, 1H), 7.87 – 7.85 (m, 2H), 7.79 (dd, *J* = 7.2, 2.3 Hz, 1H), 7.75 (s, 1H), 7.58 – 7.56 (m, 2H), 7.51 – 7.45 (m, 5H), 7.42 – 7.38 (m, 2H), 5.91 (dt, *J* = 12.3, 6.8 Hz, 1H), 5.68 – 5.61 (m, 1H), 3.81 (s, 2H), 3.09 – 2.99 (m, 4H), 2.17 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 142.73, 138.98, 138.67 (t, J = 27.3 Hz), 134.65, 133.97, 133.09, 132.53, 131.65 (q, J = 32.7 Hz), 130.24, 129.22, 128.59, 128.51, 127.62, 127.33, 125.93, 125.71, 125.40 – 125.36 (m), 125.16, 124.69, 123.90 (q, J = 273.7 Hz), 122.20 (t, J = 5.2 Hz), 121.61 (t, J = 245.4 Hz), 121.06, 121.03 – 120.74 (m), 60.37, 54.37, 42.46, 37.73 (t, J = 28.1 Hz).

¹⁹F NMR (**376** MHz, CDCl₃) δ -62.48, -94.95 (t, J = 15.6 Hz).

HRMS (**ESI-TOF**) m/z calcd. for C₃₀H₂₇F₅N ([M+H]⁺): 496.2058, found: 496.2051.

(*E*)-*N*-benzyl-*N*-ethyl-5,5-difluoro-5-(5-(trifluoromethyl)-[1,1'-biphenyl]-3-yl)pen t-2-en-1-amine (73ab)

The title product was prepared via procedure A, purified by flash chromatography (PE:EA:Et₃N = 10:1:0.03) on silica gel to afford the title compound (107.5 mg, 78% yield; 41.3 mg, 30% yield for *E* isomer) as a pale yellow oil.

¹**H** NMR (400 MHz, CDCl₃) δ 7.90 (s, 1H), 7.86 (s, 1H), 7.73 (s, 1H), 7.60 (d, J = 7.9 Hz, 2H), 7.55 – 7.45 (m, 3H), 7.31 – 7.29 (m, 4H), 7.27 – 7.23 (m, 1H), 5.82 (dt, J = 12.3, 6.3 Hz, 1H), 5.59 (dt, J = 11.1, 6.9 Hz, 1H), 3.47 (s, 2H), 3.04 – 2.96 (m, 4H), 2.44 (q, J = 7.2 Hz, 2H), 1.03 (t, J = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 142.72, 139.41, 139.06, 138.69 (t, J = 27.3 Hz), 133.54, 131.66 (q, J = 32.8 Hz), 129.26, 129.00, 128.63, 128.29, 127.38, 126.99, 125.39, 123.90 (q, J = 273.7 Hz), 121.61 (t, J = 245.4 Hz), 121.72, 121.67, 121.17 – 120.68 (m), 57.87, 50.05, 47.48, 37.78 (t, J = 28.1 Hz), 12.00.

¹⁹F NMR (**376** MHz, CDCl₃) δ -62.56, -95.01 (t, J = 15.6 Hz).

HRMS (**ESI-TOF**) m/z calcd. for C₂₇H₂₇F₅N ([M+H]⁺): 460.2058, found: 460.2048.

(Z)-N-benzyl-N-butyl-5,5-difluoro-5-(5-(trifluoromethyl)-[1,1'-biphenyl]-3-yl)pen t-2-en-1-amine (74ab)

The title product was prepared via procedure A, purified by flash chromatography (PE:EA = 20:1) on silica gel to afford the title compound (61.4 mg, 42% yield; 38.0 mg, 26% yield for Z isomer) as a yellow solid.

¹**H NMR (400 MHz, CDCl**₃) δ 7.75 (s, 1H), 7.71 (s, 1H), 7.57 (s, 1H), 7.46 (dd, J = 7.5, 2.3 Hz, 2H), 7.40 – 7.36 (m, 2H), 7.34 – 7.30 (m, 1H), 7.16 – 7.13 (m, 4H), 7.11 – 7.07 (m, 1H), 5.67 (dt, J = 12.3, 6.6 Hz, 1H), 5.47 – 5.40 (m, 1H), 3.31 (s, 2H), 2.88 – 2.78 (m, 4H), 2.21 (t, J = 7.2 Hz, 2H), 1.33 – 1.26 (m, 2H), 1.16 (h, J = 7.2 Hz, 2H), 0.74 (t, J = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 142.70, 139.66, 139.06, 138.71 (t, J = 27.3 Hz), 133.76, 131.65 (q, J = 32.7 Hz), 129.25, 128.94, 128.63, 128.25, 127.38, 127.31, 126.92, 125.39 – 125.35 (m), 123.90 (q, J = 273.7 Hz), 121.63 (t, J = 244.5 Hz), 121.54 (t, J = 5.2 Hz), 121.03 – 120.93 (m), 58.39, 53.56, 50.55, 37.78 (t, J = 28.1 Hz), 29.37, 20.61, 14.09.

¹⁹F NMR (**376** MHz, CDCl₃) δ -62.56, -95.04 (t, *J* = 15.6 Hz).

HRMS (**ESI-TOF**) m/z calcd. for C₂₉H₃₁F₅N ([M+H]⁺): 488.2371, found: 488.2363.

3-((5,5-difluoro-5-(5-(trifluoromethyl)-[1,1'-biphenyl]-3-yl)pentyl)(methyl)amino) -1-phenylpropan-1-ol (75a)

The title product was prepared via procedure A & D, purified by flash chromatography (PE:EA:Et₃N = 2:1:0.03) on silica gel to afford the title compound (105.7 mg, 72% yield; 36.0 mg, 73% yield) as a pale yellow solid.

¹**H NMR (400 MHz, CDCl**₃) δ 7.80 (s, 1H), 7.78 (s, 1H), 7.62 (s, 1H), 7.52 – 7.49 (m, 2H), 7.39 – 7.29 (m, 3H), 7.24 (dt, *J* = 15.1, 7.5 Hz, 4H), 7.15 – 7.11 (m, 1H), 4.80 (t, *J* = 5.8 Hz, 1H), 2.60 (dt, *J* = 13.0, 6.6 Hz, 1H), 2.45 – 2.31 (m, 2H), 2.29 – 2.22 (m, 1H), 2.21 – 2.07 (m, 5H), 1.73 (q, *J* = 6.0 Hz, 2H), 1.53 – 1.40 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 145.17, 142.87, 139.23 (t, J = 27.4 Hz), 139.08, 131.77 (q, J = 32.6 Hz), 129.25, 128.61, 128.29, 127.40, 127.19 (t, J = 5.9 Hz), 126.99, 125.67, 125.35, 123.93 (q, J = 273.7 Hz), 122.42 (t, J = 243.4 Hz), 120.75, 75.74, 57.76, 57.13, 41.89, 39.06 (t, J = 27.2 Hz), 34.59, 26.95, 20.42 (t, J = 4.1 Hz).

¹⁹F NMR (**376** MHz, CDCl₃) δ -62.57, -95.96 (t, J = 16.5 Hz).

HRMS (ESI-TOF) m/z calcd. for $C_{28}H_{31}F_5NO$ ([M+H]⁺): 492.2320, found: 492.2313.

N,*N*-diethyl-5,5-difluoro-5-(5-(trifluoromethyl)-[1,1'-biphenyl]-3-yl)pentan-1-ami ne (76a)

The title product was prepared via procedure A & C, purified by flash chromatography (PE:EA:Et₃N = 6:1:0.03) on silica gel to afford the title compound (103.0 mg, 86% yield; 20.1 mg, 50% yield) as a pale yellow oil.

¹**H** NMR (400 MHz, CDCl₃) δ 7.89 (s, 1H), 7.85 (s, 1H), 7.70 (s, 1H), 7.61 (d, J = 8.1 Hz, 2H), 7.50 (t, J = 7.4 Hz, 2H), 7.45 – 7.41 (m, 1H), 2.50 (q, J = 7.6, 7.1 Hz, 4H), 2.40 (t, J = 6.8 Hz, 2H), 2.26 – 2.14 (m, 2H), 1.50 – 1.47 (m, 4H), 0.99 (t, J = 7.1 Hz, 6H).

¹³**C NMR (101 MHz, CDCl₃)** δ 142.83, 139.31 (t, *J* = 28.3 Hz), 139.19, 131.78 (q, *J* = 32.3 Hz), 129.28, 128.66, 127.41, 127.23, 125.31, 122.55 (t, *J* = 244.4 Hz), 120.84, 52.69, 47.07, 39.12 (t, *J* = 27.1 Hz), 26.94, 20.70, 11.79.

¹⁹F NMR (376 MHz, CDCl₃) δ -62.62, -95.81 (t, *J* = 16.4 Hz).

HRMS (**ESI-TOF**) m/z calcd. for C₂₂H₂₇F₅N ([M+H]⁺): 400.2058, found: 400.2049.

N-(5,5-difluoro-5-(5-(trifluoromethyl)-[1,1'-biphenyl]-3-yl)pentyl)-*N*-methylcyclo hexanamine (77a)

The title product was prepared via procedure A & D, purified by flash chromatography (PE:EA:Et₃N = 6:1:0.03) on silica gel to afford the title compound (118.6 mg, 90% yield; 17.6 mg, 40% yield) as a colorless oil.

¹**H** NMR (400 MHz, CDCl₃) δ 7.89 (s, 1H), 7.85 (s, 1H), 7.70 (s, 1H), 7.61 (d, J = 8.2 Hz, 2H), 7.52 – 7.48 (m, 2H), 7.45 – 7.41 (m, 1H), 2.42 – 2.14 (m, 8H), 1.77 – 1.75 (m, 4H), 1.61 (d, J = 12.5 Hz, 1H), 1.49 – 1.47 (m, 4H), 1.28 – 1.15 (m, 5H).

¹³C NMR (101 MHz, CDCl₃) δ 142.78, 139.29 (t, J = 27.4 Hz), 139.16, 131.73 (q, J = 32.7 Hz), 129.27, 128.62, 127.40, 127.23, 125.30, 122.56 (t, J = 244.4 Hz), 120.83, 62.90, 53.27, 39.13 (t, J = 27.0 Hz), 37.95, 28.71, 27.74, 26.51, 26.17, 20.61 (t, J = 4.0 Hz).

¹⁹F NMR (**376** MHz, CDCl₃) δ -62.63, -95.74 (t, J = 16.4 Hz).

HRMS (**ESI-TOF**) m/z calcd. for C₂₅H₃₁F₅N ([M+H]⁺): 440.2371, found: 440.2364.

N-(5,5-difluoro-5-(5-(trifluoromethyl)-[1,1'-biphenyl]-3-yl)pentyl)adamantan-1-a mine (78a)

The title product was prepared via procedure A & D, purified by flash chromatography (PE:EA:Et₃N = 6:1:0.03) on silica gel to afford the title compound (51.3 mg, 36% yield; 44.8 mg, 94% yield) as a white solid.

¹**H** NMR (400 MHz, CDCl₃) δ 7.88 (s, 1H), 7.85 (s, 1H), 7.69 (s, 1H), 7.60 (d, J = 7.6 Hz, 2H), 7.49 (t, J = 7.4 Hz, 2H), 7.42 (t, 1H), 2.56 (t, J = 6.6 Hz, 2H), 2.19 (tt, J = 15.9, 7.2 Hz, 4H), 2.04 (t, J = 3.3 Hz, 3H), 1.67 – 1.47 (m, 17H).

¹³**C NMR (101 MHz, CDCl₃)** δ 142.77, 139.22 (t, *J* = 27.4 Hz), 139.10, 131.71 (q, *J* = 32.6 Hz), 129.25, 128.61, 127.38, 127.18 (t, *J* = 6.0 Hz), 125.30 – 125.25 (m), 123.91 (q, *J* = 274.7 Hz), 122.49 (t, *J* = 243.4 Hz), 120.78, 50.48, 42.90, 40.09, 39.09 (t, *J* = 27.1 Hz), 36.86, 30.84, 29.69, 20.51 (t, *J* = 4.0 Hz).

¹⁹F NMR (**376** MHz, CDCl₃) δ -62.59, -95.88 (t, J = 16.3 Hz).

HRMS (**ESI-TOF**) m/z calcd. for C₂₈H₃₃F₅N ([M+H]⁺): 478.2528, found: 478.2519.

(*E*/Z)-1-(5,5-difluoro-5-(5-(trifluoromethyl)-[1,1'-biphenyl]-3-yl)pent-2-en-1-yl)py rrolidine-2,5-dione (80ab)

The title product was prepared via procedure A & D, purified by flash chromatography (PE:EA: $Et_3N = 10:1:2\%$) on silica gel to afford the title compound (35.5 mg, 28% yield) as a pale yellow oil.

¹**H NMR (400 MHz, CDCl**₃) δ 7.90, 7.81 (s, s, 2H), 7.73, 7.65 – 7.60 (s, m, 3H), 7.52 – 7.48 (m, 2H), 7.45 – 7.41 (m, 1H), 5.73 – 5.55 (m, 2H), 4.06 – 4.04 (m, 2H), 3.20, 2.90 (td, *J* = 16.2, 6.7 Hz, td, *J* = 15.6, 6.6 Hz, 2H), 2.66, 2.63 (s, s, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 176.75, 176.71, 142.74, 142.69, 138.94, 138.49 (t, *J* = 27.1 Hz), 138.42, 131.65 (q, *J* = 32.8 Hz), 131.61 (q, *J* = 32.3 Hz), 129.32, 129.27, 129.26, 128.66, 128.64, 127.68, 127.38, 125.47, 125.07 (t, *J* = 5.2 Hz), 124.80 (t, *J* = 4.8 Hz), 123.83 (q, *J* = 273.7 Hz), 121.37 (t, *J* = 245.4 Hz), 120.90, 42.27 (t, *J* = 28.4 Hz), 40.06, 37.36 (t, *J* = 28.1 Hz), 35.25, 28.27, 28.18.

¹⁹F NMR (376 MHz, CDCl₃) δ -62.56, -62.57, -95.20 (t, J = 16.0 Hz).

MS (**EI**) m/z calcd. for C₂₂H₁₈F₅NO₂ ([M]⁺): 423.1258 found: 422.99.

1-(5,5-difluoro-5-(5-(trifluoromethyl)-[1,1'-biphenyl]-3-yl)pentyl)indoline (81a)

The title product was prepared via procedure A & D, purified by flash chromatography (PE:EA = 20:1) on silica gel to afford the title compound (74.5 mg, 56% yield; 29.8 mg, 67% yield) as a colorless oil.

¹**H** NMR (400 MHz, CDCl₃) δ 7.92 (s, 1H), 7.88 (s, 1H), 7.73 (s, 1H), 7.62 (d, J = 7.0 Hz, 2H), 7.53 – 7.49 (m, 2H), 7.47 – 7.43 (m, 1H), 7.09 – 7.04 (m, 2H), 6.68 – 6.64 (m, 1H), 6.45 (d, J = 7.8 Hz, 1H), 3.32 (t, J = 8.2 Hz, 2H), 3.07 (t, J = 6.9 Hz, 2H), 2.96 (t, J = 8.3 Hz, 2H), 2.32 – 2.20 (m, 2H), 1.71 – 1.60 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 152.64, 142.83, 139.16 (t, J = 27.4 Hz), 139.08, 131.75 (q, J = 32.7 Hz), 130.11, 129.29, 128.65, 127.42, 127.40, 127.20 (t, J = 6.1 Hz), 125.39, 124.56, 123.92 (q, J = 273.7 Hz), 122.48 (t, J = 243.4 Hz), 120.80, 117.67, 106.98, 53.33, 49.20, 39.05 (t, J = 27.1 Hz), 28.67, 27.17, 20.35.

¹⁹F NMR (**376** MHz, CDCl₃) δ -62.56, -95.90 (t, J = 16.6 Hz).

HRMS (**ESI-TOF**) m/z calcd. for C₂₆H₂₅F₅N ([M+H]⁺): 446.1902, found: 446.1896.

N-(5,5-difluoro-5-(5-(trifluoromethyl)-[1,1'-biphenyl]-3-yl)pentyl)aniline (82a)

The title product was prepared via procedure B & D, purified by flash chromatography (PE:EA = 10:1) on silica gel to afford the title compound (72.6 mg, 58% yield; 29.9 mg, 71% yield) as a pale yellow oil.

¹**H** NMR (400 MHz, CDCl₃) δ 7.92 (s, 1H), 7.88 (s, 1H), 7.73 (s, 1H), 7.62 (d, J = 8.2 Hz, 2H), 7.51 (t, J = 7.5 Hz, 2H), 7.47 – 7.43 (m, 1H), 7.20 – 7.16 (m, 2H), 6.71 (td, J = 7.3, 1.2 Hz, 1H), 6.62 – 6.59 (m, 2H), 3.14 (t, J = 6.6 Hz, 2H), 2.30 – 2.18 (m, 2H), 1.72 – 1.60 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 148.28, 142.84, 139.11 (t, J = 27.4 Hz), 139.04, 131.76 (q, J = 32.7 Hz), 129.40, 129.29, 128.66, 127.40, 127.15 (t, J = 6.0 Hz), 125.41, 123.89 (q, J = 272.7 Hz), 122.40 (t, J = 244.4 Hz), 120.74 (q, J = 6.4 Hz), 117.49, 112.84, 43.69, 39.01 (t, J = 27.2 Hz), 29.20, 20.23 (t, J = 3.9 Hz).

¹⁹F NMR (376 MHz, CDCl₃) δ -62.53, -96.05 (t, J = 16.3 Hz).

HRMS (**ESI-TOF**) m/z calcd. for C₂₄H₂₃F₅N ([M+H]⁺): 420.1745, found: 420.1736.

N-(3-((5,5-difluoro-5-(5-(trifluoromethyl)-[1,1'-biphenyl]-3-yl)pentyl)amino)phen yl)acetamide (83a)

The title product was prepared via procedure B & D, purified by flash chromatography (PE:EA = 5:1) on silica gel to afford the title compound (88.2 mg, 62% yield; 23.8 mg, 50% yield) as a green yellow solid.

¹**H** NMR (400 MHz, CDCl₃) δ 7.90 (s, 1H), 7.86 (s, 1H), 7.70 (s, 1H), 7.63 – 7.60 (m, 2H), 7.52 – 7.47 (m, 2H), 7.46 – 7.41 (m, 1H), 7.32 (s, 1H), 7.08 – 7.04 (m, 2H), 6.61 (dd, *J* = 7.9, 2.0 Hz, 1H), 6.32 (dd, *J* = 8.1, 2.3 Hz, 1H), 3.10 (t, *J* = 6.7 Hz, 2H), 2.27 – 2.13 (m, 5H), 1.68 – 1.57 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 168.51, 148.99, 142.85, 139.03, 139.10 (t, J = 28.3 Hz), 131.73 (q, J = 33.3 Hz), 129.72, 129.27, 128.64, 127.39, 127.14, 125.41, 123.88 (q, J = 273.7 Hz), 122.37 (t, J = 244.4 Hz), 120.72, 108.73, 108.69, 104.44, 43.66, 38.96 (t, J = 27.1 Hz), 29.10, 24.82, 20.16.

¹⁹**F** NMR (**376** MHz, CDCl₃) δ -62.54, -96.08 (t, J = 16.4 Hz).

HRMS (ESI-TOF) m/z calcd. for $C_{26}H_{26}F_5N_2O$ ([M+H]⁺): 477.1960, found: 477.1951.

3-(*tert*-butyl)-*N*-(5,5-difluoro-5-(5-(trifluoromethyl)-[1,1'-biphenyl]-3-yl)pentyl)a niline (84a)

The title product was prepared via procedure B & D, purified by flash chromatography (PE:EA = 10:1) on silica gel to afford the title compound (74.1mg, 52% yield; 32.9 mg, 69% yield) as a yellow oil.

¹**H NMR (400 MHz, CDCl₃)** δ 7.92 (s, 1H), 7.88 (s, 1H), 7.73 (s, 1H), 7.63 (dt, J = 8.6, 2.1 Hz, 2H), 7.51 (td, J = 8.3, 7.7, 2.2 Hz, 2H), 7.47 – 7.43 (m, 1H), 7.14 (td, J = 8.0, 2.8 Hz, 1H), 6.79 – 6.76 (m, 1H), 6.64 (q, J = 2.3 Hz, 1H), 6.44 (ddd, J = 7.9, 2.4, 1.0 Hz, 1H), 3.15 (t, J = 6.6 Hz, 2H), 2.31 – 2.19 (m, 2H), 1.72 – 1.62 (m, 4H), 1.31 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 152.45, 148.09, 142.85, 139.14 (t, J = 27.5 Hz), 139.07, 131.77 (q, J = 32.7 Hz), 129.29, 129.08, 128.66, 127.40, 127.17 (t, J = 6.1 Hz), 125.41, 123.90 (q, J = 273.7 Hz), 122.41 (t, J = 244.4 Hz), 120.75, 114.95, 110.61, 109.65, 43.85, 39.05 (t, J = 27.2 Hz), 34.73, 31.45, 29.33, 20.29 (t, J = 3.9 Hz).

¹⁹F NMR (**376** MHz, CDCl₃) δ -62.53, -96.03 (t, J = 16.5 Hz).

HRMS (**ESI-TOF**) m/z calcd. for C₂₈H₃₁F₅N ([M+H]⁺): 476.2371, found: 476.2365.

N-(5,5-difluoro-5-(5-(trifluoromethyl)-[1,1'-biphenyl]-3-yl)pentyl)-4-isopropylani line (85a)

The title product was prepared via procedure B & D, purified by flash chromatography (PE:EA = 10:1) on silica gel to afford the title compound (62.0 mg, 45% yield; 34.7 mg, 75% yield) as a yellow oil.

¹**H NMR (400 MHz, CDCl**₃) δ 7.93 (s, 1H), 7.89 (s, 1H), 7.74 (s, 1H), 7.64 (dt, J = 8.5, 2.6 Hz, 2H), 7.54 – 7.49 (m, 2H), 7.48 – 7.43 (m, 1H), 7.07 (d, J = 8.5 Hz, 2H), 6.57 (d, J = 8.5 Hz, 2H), 3.13 (t, J = 6.6 Hz, 2H), 2.83 (hept, J = 6.9 Hz, 1H), 2.31 – 2.19 (m, 2H), 1.71 – 1.61 (m, 4H), 1.23 (d, J = 6.9 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 146.32, 142.85, 139.15 (t, J = 27.3 Hz), 139.07, 138.10, 131.77 (q, J = 32.7 Hz), 129.29, 128.65, 127.40, 127.24, 127.16 (t, J = 8.1 Hz), 125.40, 123.91 (q, J = 273.7 Hz), 122.41 (t, J = 244.4 Hz), 120.76, 112.95, 43.02, 39.01 (t, J = 27.1 Hz), 33.28, 29.29, 24.37, 20.24 (t, J = 4.1 Hz).

¹⁹F NMR (**376** MHz, CDCl₃) δ -62.54, -95.99 (t, J = 16.4 Hz).

HRMS (**ESI-TOF**) m/z calcd. for C₂₇H₂₉F₅N ([M+H]⁺): 462.2215, found: 462.2210.

4-benzyl-*N*-(5,5-difluoro-5-(5-(trifluoromethyl)-[1,1'-biphenyl]-3-yl)pentyl)anilin e (86a)

The title product was prepared via procedure B & D, purified by flash chromatography (PE:EA = 10:1) on silica gel to afford the title compound (83.7 mg, 55% yield; 32.7 mg, 64% yield) as a yellow solid.

¹**H NMR (400 MHz, CDCl**₃) δ 7.93 (s, 1H), 7.89 (s, 1H), 7.74 (s, 1H), 7.65 – 7.62 (m, 2H), 7.54 – 7.50 (m, 2H), 7.48 – 7.44 (m, 1H), 7.32 – 7.28 (m, 2H), 7.22 – 7.19 (m, 3H), 7.04 – 7.01 (m, 2H), 6.58 – 6.56 (m, 2H), 3.90 (s, 2H), 3.13 (t, *J* = 6.6 Hz, 2H), 2.31 – 2.19 (m, 2H), 1.72 – 1.61 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 146.41, 142.84, 142.14, 139.04, 139.12 (t, *J* = 27.3 Hz), 131.76 (q, *J* = 32.6 Hz), 130.28, 129.88, 129.28, 128.91, 128.65, 128.47, 127.39, 127.15, 125.94, 125.40, 123.90 (q, *J* = 273.7 Hz), 122.39 (t, *J* = 244.4 Hz), 120.75 – 120.72 (m), 113.15, 44.02, 41.14, 38.99 (t, *J* = 27.2 Hz), 29.18, 20.22.

¹⁹F NMR (376 MHz, CDCl₃) δ -62.52 (d, J = 2.6 Hz), -96.02 (td, J = 16.3, 2.7 Hz).

HRMS (**ESI-TOF**) m/z calcd. for C₃₁H₂₉F₅N ([M+H]⁺): 510.2215, found: 510.2209.

Ethyl-1-(5,5-difluoro-5-(3-(pyridin-3-yl)-5-(trifluoromethyl)phenyl)pentyl)-2-oxo cyclopentane-1-carboxylate (87a)

The title product was prepared via procedure A & D, purified by flash chromatography (PE:EA:Et₃N = 5:1:0.03) on silica gel to afford the title compound (96.7 mg, 67% yield; 42.0 mg, 87% yield) as a colorless oil.

¹**H** NMR (400 MHz, CDCl₃) δ 8.85 (d, J = 2.4 Hz, 1H), 8.66 (dd, J = 4.9, 1.5 Hz, 1H), 7.90 (dt, J = 8.0, 2.0 Hz, 1H), 7.87 (s, 1H), 7.81 (s, 1H), 7.72 (s, 1H), 7.42 (dd, J = 8.0, 4.9 Hz, 1H), 4.12 (q, J = 7.1 Hz, 2H), 2.49 – 2.35 (m, 2H), 2.25 – 2.10 (m, 3H), 2.02 – 1.80 (m, 4H), 1.58 – 1.36 (m, 4H), 1.30 – 1.19 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 214.88, 171.08, 149.78, 148.34, 139.67 (t, J = 27.6 Hz), 139.53, 134.74, 132.14 (q, J = 33.0 Hz), 127.15 (t, J = 6.4 Hz), 125.35, 123.90, 123.65 (q, J = 273.7 Hz), 122.20 (t, J = 244.4 Hz), 121.64 – 121.60 (m), 61.49, 60.28, 38.83 (t, J = 27.1 Hz), 38.01, 33.46, 33.02, 24.44, 22.71 (t, J = 3.9 Hz), 19.69, 14.16.

¹⁹F NMR (**376** MHz, CDCl₃) δ -62.69, -96.20 (t, J = 16.4 Hz).

HRMS (ESI-TOF) m/z calcd. for $C_{25}H_{27}F_5NO_3$ ([M+H]⁺): 484.1906, found: 484.1896.

(*E*)-3-acetyl-3-(5,5-difluoro-5-(3-(pyridin-3-yl)-5-(trifluoromethyl)phenyl)pent-2en-1-yl)dihydrofuran-2(3*H*)-one (88ab)

The title product was prepared via procedure A, purified by flash chromatography (PE:EA:Et₃N = 5:1:0.03) on silica gel to afford the title compound (78.8 mg, 58% yield) as a colorless oil.

¹**H** NMR (400 MHz, CDCl₃) δ 8.84 (d, J = 2.4 Hz, 1H), 8.65 (dd, J = 4.9, 1.6 Hz, 1H), 7.92 – 7.88 (m, 2H), 7.81 (s, 1H), 7.70 (s, 1H), 7.42 (dd, J = 7.9, 4.8 Hz, 1H), 5.58 – 5.51 (m, 1H), 5.40 (dt, J = 15.0, 7.2 Hz, 1H), 4.18 – 4.06 (m, 2H), 2.90 (td, J = 16.0, 7.0 Hz, 2H), 2.74 – 2.65 (m, 2H), 2.60 – 2.55 (m, 1H), 2.24 (s, 3H), 1.96 (dt, J = 13.0, 8.8 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 201.84, 175.01, 149.79, 148.27, 139.64, 138.96 (t, *J* = 27.3 Hz), 134.73, 134.55, 132.11 (q, *J* = 33.0 Hz), 130.16, 127.20 (t, *J* = 6.1 Hz), 125.64 – 125.51 (m), 123.91, 123.58 (q, *J* = 273.7 Hz), 121.70 – 121.54 (m), 120.90 (t, *J* = 244.4 Hz), 66.25, 60.93, 42.48 (t, *J* = 28.0 Hz), 37.62, 28.75, 25.66.

¹⁹F NMR (**376** MHz, CDCl₃) δ -62.69, -95.62 (t, J = 15.9 Hz).

HRMS (ESI-TOF) m/z calcd. for $C_{23}H_{21}F_5NO_3$ ([M+H]⁺): 454.1436, found: 454.1429.

Methyl-(*E*)-1-(5,5-difluoro-5-(3-(pyridin-3-yl)-5-(trifluoromethyl)phenyl)pent-2-e n-1-yl)-2-oxocycloheptane-1-carboxylate (89ab)

The title product was prepared via procedure A, purified by flash chromatography (PE:EA:Et₃N = 4:1:0.03) on silica gel to afford the title compound (111.2 mg, 73% yield) as a colorless oil.

¹**H** NMR (400 MHz, CDCl₃) δ 8.82 (d, J = 2.4 Hz, 1H), 8.62 (dd, J = 4.8, 1.6 Hz, 1H), 7.89 (dt, J = 7.9, 2.1 Hz, 1H), 7.84 (s, 1H), 7.79 (s, 1H), 7.69 (s, 1H), 7.39 (dd, J = 7.9, 4.8 Hz, 1H), 5.53 – 5.46 (m, 1H), 5.37 (dt, J = 14.8, 6.9 Hz, 1H), 3.60 (s, 3H), 2.86 (td, J = 15.9, 6.9 Hz, 2H), 2.63 (dd, J = 14.0, 6.4 Hz, 1H), 2.58 – 2.52 (m, 1H), 2.38 – 2.32 (m, 1H), 2.24 (dd, J = 14.1, 7.9 Hz, 1H), 1.98 – 1.91 (m, 1H), 1.66 – 1.44 (m, 6H), 1.31 – 1.23 (m, 1H).

¹³**C NMR (101 MHz, CDCl₃)** δ 208.96, 172.29, 149.66, 148.22, 139.41, 139.13 (t, *J* = 27.1 Hz), 134.67, 134.59, 132.50, 131.98 (q, *J* = 33.3 Hz), 127.28 (t, *J* = 5.9 Hz), 125.30, 123.82, 123.68 (t, *J* = 4.9 Hz), 123.57 (q, *J* = 273.7 Hz), 121.69 – 121.61 (m), 121.05 (t, *J* = 245.4 Hz), 62.81, 52.19, 42.42 (t, *J* = 27.8 Hz), 42.10, 38.43, 32.19, 29.84, 25.52, 24.54.

¹⁹**F NMR (376 MHz, CDCl₃)** δ -62.71, -94.63 (t, *J* = 15.9 Hz), -94.98 - -95.09 (m), -95.28 (t, *J* = 15.9 Hz), -95.44 (t, *J* = 16.0 Hz), -96.10 (t, *J* = 16.0 Hz).

HRMS (ESI-TOF) m/z calcd. for $C_{26}H_{26}F_5NO_3$ ([M+H]⁺): 496.1906, found: 496.1895.

(*E*)-2-acetyl-2-(5,5-difluoro-5-(3-(pyridin-3-yl)-5-(trifluoromethyl)phenyl)pent-2en-1-yl)cyclohexan-1-one (90ab)

The title product was prepared via procedure A, purified by flash chromatography (PE:EA:Et₃N = 5:1:0.03) on silica gel to afford the title compound (71.1 mg, 51% yield) as a colorless oil.

¹**H** NMR (400 MHz, CDCl₃) δ 8.84 (d, J = 2.4 Hz, 1H), 8.65 (dd, J = 4.8, 1.6 Hz, 1H), 7.90 (dt, J = 8.0, 2.0 Hz, 1H), 7.86 (s, 1H), 7.79 (s, 1H), 7.69 (s, 1H), 7.41 (dd, J = 7.9, 4.9 Hz, 1H), 5.44 – 5.32 (m, 2H), 2.86 (td, J = 15.9, 5.3 Hz, 2H), 2.51 – 2.16 (m, 5H), 2.01 – 1.88 (m, 4H), 1.65 – 1.51 (m, 3H), 1.33 – 1.26 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 209.48, 205.90, 149.73, 148.29, 139.51, 139.12 (t, *J* = 27.3 Hz), 134.74, 134.66, 132.05 (q, *J* = 33.0 Hz), 131.84, 127.30 (t, *J* = 5.8 Hz), 125.40 – 125.36 (m), 123.89, 123.66 (t, *J* = 5.0 Hz), 123.62 (q, *J* = 273.7 Hz), 121.79 – 121.65 (m), 121.09 (t, *J* = 245.4 Hz), 67.45, 42.45 (t, *J* = 27.9 Hz), 41.73, 37.41, 34.05, 27.09, 26.21, 22.10.

¹⁹F NMR (376 MHz, CDCl₃) δ -62.69, -95.32 (td, J = 15.8, 8.7 Hz).

HRMS (ESI-TOF) m/z calcd. for $C_{25}H_{25}F_5NO_2$ ([M+H]⁺): 466.1800, found: 466.1792.

Ethyl-(*E*)-1-(5,5-difluoro-5-(3-(pyridin-3-yl)-5-(trifluoromethyl)phenyl)pent-2-en -1-yl)-2-oxocyclohexane-1-carboxylate (91ab)

The title product was prepared via procedure A, purified by flash chromatography (PE:EA:Et₃N = 5:1:0.03) on silica gel to afford the title compound (78.7 mg, 53% yield) as a pale yellow oil.

¹**H** NMR (400 MHz, CDCl₃) δ 8.84 (d, J = 2.4 Hz, 1H), 8.64 (dd, J = 4.9, 1.6 Hz, 1H), 7.89 (dt, J = 8.0, 1.9 Hz, 1H), 7.85 (s, 1H), 7.80 (s, 1H), 7.70 (s, 1H), 7.40 (dd, J = 7.9, 4.9 Hz, 1H), 5.52 (dt, J = 15.0, 7.4 Hz, 1H), 5.36 (dt, J = 14.9, 7.0 Hz, 1H), 4.13 – 4.05 (m, 2H), 2.86 (td, J = 15.9, 7.0 Hz, 2H), 2.48 (dd, J = 14.0, 6.8 Hz, 1H), 2.40 – 2.35 (m, 2H), 2.30 – 2.25 (m, 2H), 1.96 – 1.92 (m, 1H), 1.65 – 1.48 (m, 3H), 1.31 – 1.23 (m, 1H), 1.18 (t, J = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 207.42, 171.38, 149.74, 148.31, 139.46, 139.20 (t, *J* = 27.3 Hz), 134.69, 134.65, 132.33, 132.03 (q, *J* = 32.9 Hz), 127.33 (t, *J* = 5.7 Hz), 125.34 – 125.29 (m), 123.85, 123.63 (q, *J* = 273.7 Hz), 123.42 (t, *J* = 5.0 Hz), 121.83 – 121.68 (m), 121.12 (t, *J* = 244.4 Hz), 61.31, 60.80, 42.44 (t, *J* = 27.8 Hz), 41.08, 38.02, 35.77, 27.45, 22.45, 14.14.

¹⁹F NMR (376 MHz, CDCl₃) δ -62.72, -95.31 (td, J = 15.9, 4.0 Hz).

HRMS (ESI-TOF) m/z calcd. for $C_{26}H_{27}F_5NO_3$ ([M+H]⁺): 496.1906, found: 496.1897.

Trimethyl-(*E*)-7,7-difluoro-7-(3-(pyridin-3-yl)-5-(trifluoromethyl)phenyl)hept-4ene-1,2,2-tricarboxylate (92ab)

The title product was prepared via procedure A, purified by flash chromatography (PE:EA:Et₃N = 3:1:0.03) on silica gel to afford the title compound (91.4 mg, 57% yield) as a colorless oil.

¹**H** NMR (400 MHz, CDCl₃) δ 8.84 (d, J = 2.4 Hz, 1H), 8.64 (dd, J = 4.9, 1.6 Hz, 1H), 7.90 (dt, J = 8.0, 2.1 Hz, 1H), 7.86 (s, 1H), 7.81 (s, 1H), 7.71 (s, 1H), 7.40 (dd, J = 7.9, 4.8 Hz, 1H), 5.47 – 5.45 (m, 2H), 3.67 (s, 6H), 3.59 (s, 3H), 2.93 – 2.83 (m, 2H), 2.79 (s, 2H), 2.69 (d, J = 6.0 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 170.69, 170.26, 149.74, 148.31, 139.56, 139.07 (t, *J* = 27.3 Hz), 134.71, 134.62, 132.11 (q, *J* = 33.0 Hz), 130.96, 127.25 (t, *J* = 6.0 Hz), 125.46, 125.11 (t, *J* = 4.7 Hz), 123.86, 123.60 (q, *J* = 273.7 Hz), 121.68, 120.93 (t, *J* = 244.4 Hz), 55.38, 52.86, 51.84, 42.38 (t, *J* = 27.9 Hz), 37.13, 36.54.

¹⁹F NMR (**376** MHz, CDCl₃) δ -62.73, -95.50 (t, J = 16.0 Hz).

HRMS (ESI-TOF) m/z calcd. for $C_{25}H_{25}F_5NO_6$ ([M+H]⁺): 530.1597, found: 530.1594.

Diethyl-2-(5,5-difluoro-5-(3-(pyridin-3-yl)-5-(trifluoromethyl)phenyl)pentyl)-2-et hylmalonate (93a)

The title product was prepared via procedure A & D, purified by flash chromatography (PE:EA:Et₃N = 4:1:0.03) on silica gel to afford the title compound (55.4 mg, 36% yield; 38.0 mg, 74% yield) as a colorless oil.

¹**H** NMR (400 MHz, CDCl₃) δ 8.85 (d, J = 2.4 Hz, 1H), 8.67 (dd, J = 4.8, 1.7 Hz, 1H), 7.90 (dt, J = 7.9, 2.0 Hz, 1H), 7.87 (s, 1H), 7.82 (s, 1H), 7.73 (s, 1H), 7.42 (dd, J = 7.9, 4.9 Hz, 1H), 4.15 (q, J = 7.1 Hz, 4H), 2.22 – 2.10 (m, 2H), 1.92 – 1.82 (m, 4H), 1.48 (p, J = 7.8 Hz, 2H), 1.21 (t, J = 7.0 Hz, 9H), 0.78 (t, J = 7.6 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 171.77, 149.79, 148.36, 139.70 (t, J = 27.6 Hz), 139.54, 134.74, 132.17 (q, J = 33.0 Hz), 127.18, 125.36, 123.90, 123.66 (q, J = 273.7 Hz), 122.21 (t, J = 244.4 Hz), 121.63, 61.14, 57.88, 38.91 (t, J = 27.1 Hz), 31.53, 25.46, 23.73, 22.73 (t, J = 4.2 Hz), 14.18, 8.52.

¹⁹F NMR (**376** MHz, CDCl₃) δ -62.70, -96.18 (t, J = 16.5 Hz).

HRMS (ESI-TOF) m/z calcd. for $C_{28}H_{31}F_5NO_4$ ([M+H]⁺): 516.2168, found: 516.2166.

Diethyl-(*E*)-2-(2-cyanoethyl)-2-(5,5-difluoro-5-(3-(pyridin-3-yl)-5-(trifluoromethy l)phenyl)pent-2-en-1-yl)malonate (94ab)

The title product was prepared via procedure A, purified by flash chromatography (PE:EA:Et₃N = 3:1:0.03) on silica gel to afford the title compound (121.3 mg, 75% yield) as a colorless oil.

¹**H** NMR (400 MHz, CDCl₃) δ 8.83 (d, J = 2.4 Hz, 1H), 8.63 (dd, J = 4.9, 1.6 Hz, 1H), 7.91 – 7.87 (m, 2H), 7.81 (s, 1H), 7.70 (s, 1H), 7.40 (dd, J = 7.9, 4.8 Hz, 1H), 5.52 (dt, J = 15.1, 6.7 Hz, 1H), 5.43 (dt, J = 14.9, 7.0 Hz, 1H), 4.14 (q, J = 7.1 Hz, 4H), 2.88 (td, J = 16.2, 6.7 Hz, 2H), 2.60 (d, J = 7.0 Hz, 2H), 2.34 (dd, J = 8.7, 7.0 Hz, 2H), 2.08 (dd, J = 8.7, 7.0 Hz, 2H), 1.20 (t, J = 7.1 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 169.79, 149.72, 148.23, 139.54, 138.98 (t, J = 27.3 Hz), 134.65, 134.49, 132.02 (q, J = 32.9 Hz), 130.23, 127.15 (t, J = 5.7 Hz), 125.48, 125.21 (t, J = 4.6 Hz), 123.83, 123.55 (q, J = 273.7 Hz), 121.59, 120.82 (t, J = 244.4 Hz), 118.93, 61.84, 56.28, 42.29 (t, J = 27.8 Hz), 36.62, 28.74, 13.94, 12.80.

¹⁹F NMR (**376** MHz, CDCl₃) δ -62.69, -95.60 (t, J = 16.2 Hz).

HRMS (ESI-TOF) m/z calcd. for $C_{27}H_{28}F_5N_2O_4$ ([M+H]⁺): 539.1964, found: 539.1959.

tert-butyl-(*E*)-2-acetyl-7,7-difluoro-7-(3-(pyridin-3-yl)-5-(trifluoromethyl)phenyl) hept-4-enoate (95ab)

The title product was prepared via procedure A, purified by flash chromatography (PE:EA:Et₃N = 4:1:0.03) on silica gel to afford the title compound (44.3 mg, 31% yield) as a colorless oil.

¹**H** NMR (400 MHz, CDCl₃) δ 8.86 (s, 1H), 8.67 (d, J = 4.3 Hz, 1H), 7.91 (dt, J = 8.0, 2.0 Hz, 1H), 7.87 (s, 1H), 7.81 (s, 1H), 7.71 (s, 1H), 7.42 (dd, J = 7.9, 4.8 Hz, 1H), 5.53 (dt, J = 15.4, 6.4 Hz, 1H), 5.44 (dt, J = 15.6, 6.6 Hz, 1H), 3.32 (t, J = 7.3 Hz, 1H), 2.86 (td, J = 15.9, 6.6 Hz, 2H), 2.48 (t, J = 6.9 Hz, 2H), 2.15 (s, 3H), 1.41 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 202.55, 168.25, 149.78, 148.34, 139.49, 139.20 (t, J = 27.3 Hz), 134.77, 134.70, 133.38, 132.08 (q, J = 33.0 Hz), 127.33 (t, J = 6.8 Hz), 125.41, 123.92, 123.65 (q, J = 273.7 Hz), 122.57 (t, J = 4.9 Hz), 121.81, 121.07 (t, J = 245.4 Hz), 82.26, 60.27, 42.48 (t, J = 28.0 Hz), 30.98, 29.06, 27.95.

¹⁹F NMR (376 MHz, CDCl₃) δ -62.69, -95.20 (dt, J = 33.0, 16.0 Hz), -95.50 (dt, J = 20.4, 15.9 Hz).

HRMS (ESI-TOF) m/z calcd. for $C_{25}H_{27}F_5NO_3$ ([M+H]⁺): 484.1906, found: 484.1898.

The title product was prepared via procedure A, purified by flash chromatography (PE:EA: $Et_3N = 3:1:4\%$) on silica gel to afford the title compound (109 mg, 66% yield, 1:3) as a pale yellow solid.

¹**H** NMR (400 MHz, CDCl₃) δ 8.84 (d, J = 2.4 Hz, 1H), 8.64 (dd, J = 4.8, 1.6 Hz, 1H), 7.95 – 7.85 (m, 2H), 7.83, 7.81 (s, s, 1H), 7.72, 7.69 (s, s, 1H), 7.40 (dd, J = 7.9, 4.8 Hz, 1H), 5.34 – 5.19, 5.14 – 4.87 (m, 1H), 4.12 (q, J = 7.1 Hz, 4H), 2.84 (t, J = 16.6 Hz, 2H), 2.69, 2.58 (s, d, J = 7.4 Hz, 2H), 2.30 (dd, J = 8.7, 7.0 Hz, 2H), 2.03 (dd, J = 8.7, 6.9 Hz, 2H), 1.68, 1.48 (s, s, 3H), 1.35 – 1.07 (m, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 170.22, 169.96, 149.74, 148.26, 139.52, 139.46, 139.27 (t, J = 27.4 Hz), 135.91, 134.65, 134.50, 132.00 (q, J = 33.3 Hz), 131.93 (q, J = 33.3 Hz), 131.47 (t, J = 3.0 Hz), 127.09, 125.40, 124.94, 123.83, 123.57 (q, J = 273.7 Hz), 121.57, 121.42, 120.24, 118.94, 61.86, 61.81, 56.21, 55.98, 48.76 (t, J = 26.8 Hz), 43.17, 37.94 (t, J = 27.7 Hz), 32.09, 28.76, 28.69, 17.70, 17.09, 13.93, 13.90, 12.98, 12.90.

¹⁹**F NMR (376 MHz, CDCl₃)** δ -62.66, -62.67, -94.43 (t, *J* = 16.6 Hz), -95.21 (t, *J* = 16.3 Hz).

HRMS (ESI-TOF) m/z calcd. for $C_{28}H_{30}F_5N_2O_4$ ([M+H]⁺): 553.2120, found: 553.2117.

Diethyl-(E)-2-(2-cyanoethyl)-2-(5,5-difluoro-1-phenyl-5-(3-(pyridin-3-yl)-5-(trifluoro-1-phenyl)phenyl)pent-1-en-3-yl)malonate

Diethyl-(*E*)-2-(2-cyanoethyl)-2-(5,5-difluoro-1-phenyl-5-(3-(pyridin-3-yl)-5-(triflu oromethyl)phenyl)pent-2-en-1-yl)malonate (97)

The title product was prepared via procedure A, purified by flash chromatography (PE:EA: $Et_3N = 3:1:4\%$) on silica gel to afford the title compound (54.1 mg, 29% yield, 2:1) as a pale yellow solid.

¹**H NMR (400 MHz, CDCl₃)** δ 8.73, 8.62, 8.60, 8.57 (d, J = 2.4 Hz, d, J = 2.4 Hz, dd, J = 4.9, 1.5 Hz, dd, J = 4.9, 1.5 Hz, 2H), 7.77 – 7.61 (m, 4H), 7.34, 7.29 (dd, J = 7.9, 4.9 Hz, dd, J = 7.9, 4.8 Hz, 1H), 7.19 – 7.12 (m, 3H), 7.05 – 6.96 (m, 2H), 6.11, 6.03 (dd, J = 15.3, 8.6 Hz, d, J = 15.8 Hz, 1H), 5.67, 5.34 (dd, J = 15.8, 10.1 Hz, dt, J = 14.8, 7.1 Hz, 1H), 4.22 – 4.04, 3.86 (m, d, J = 8.6 Hz, 4H), 2.88 – 2.78 (m, 1H), 2.63 – 2.36 (m, 3H), 2.24 – 2.15 (m, 1H), 2.10 – 1.94 (m, 2H), 1.25 – 1.12 (m, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 169.46, 169.43, 169.09, 168.96, 149.73, 149.70, 148.29, 148.23, 139.56, 139.40, 138.83 (t, J = 27.0 Hz), 137.87, 135.84, 135.81, 135.11, 134.68, 134.65, 134.55, 134.50, 132.04 (q, J = 32.7 Hz), 128.96, 128.68, 128.65, 128.21, 127.80, 127.64, 127.22, 126.31, 125.88, 125.57, 125.36, 123.85, 123.79, 123.57 (q, J = 273.7 Hz), 123.18, 121.76, 121.06, 119.25, 119.11, 62.36, 62.12, 62.03, 61.80, 61.42, 60.43, 54.32, 44.10, 42.49 (t, J = 28.1 Hz), 40.69 (t, J = 26.6 Hz), 30.50, 29.76 (t, J = 78.5 Hz), 14.15, 14.09, 13.97, 13.70 (d, J = 1.5 Hz).

¹⁹**F NMR (376 MHz, CDCl₃)** δ -62.63, -62.70, -89.57 (t, *J* = 14.6 Hz), -90.23 (t, *J* = 14.6 Hz), -93.94 (dd, *J* = 16.3, 13.7 Hz), -94.59 (t, *J* = 15.1 Hz), -95.46 (t, *J* = 16.9 Hz), -95.98 - -96.17 (m), -96.68 (t, *J* = 16.7 Hz).

HRMS (ESI-TOF) m/z calcd. for $C_{33}H_{32}F_5N_2O_4$ ([M+H]⁺): 615.2277 found: 615.2270.

(*13S*)-2-(3-(1,1-difluoro-5-(4-phenylpiperazin-1-yl)pentyl)-5-(trifluoromethyl)phe noxy)-13-methyl-6,7,8,9,11,12,13,14,15,16-decahydro-17*H*-cyclopenta[a]phenant hren-17-one (98a)

The title product was prepared via procedure A & D, purified by flash chromatography (PE:EA:Et₃N = 6:1:0.03) on silica gel to afford the title compound (122.1 mg, 60% yield; 42.3 mg, 87% yield) as a pink solid.

¹**H NMR (400 MHz, CDCl₃)** δ 7.32 (s, 1H), 7.21 – 7.14 (m, 5H), 6.83 (d, *J* = 7.8 Hz, 2H), 6.77 – 6.69 (m, 3H), 3.11 – 3.08 (m, 4H), 2.83 – 2.79 (m, 2H), 2.50 – 2.39 (m, 5H), 2.35 – 2.18 (m, 4H), 2.12 – 1.87 (m, 6H), 1.60 – 1.34 (m, 10H), 0.85 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 158.62, 153.36, 151.35, 140.35 (t, J = 27.7 Hz), 138.95, 136.43, 132.54 (q, J = 33.0 Hz), 129.16, 127.18, 123.43 (q, J = 274.7 Hz), 122.08 (t, J = 244.4 Hz), 119.78, 119.75, 118.06 (t, J = 6.1 Hz), 116.98, 116.08, 115.94 –115.81 (m), 58.18, 53.32, 50.48, 49.14, 48.01, 44.18, 38.75 (t, J = 27.0 Hz), 38.12, 35.90, 31.64, 29.54, 26.41, 26.39, 25.88, 21.65, 20.47 (t, J = 3.9 Hz), 13.93.

¹⁹F NMR (376 MHz, CDCl₃) δ -62.62 (d, J = 4.1 Hz), -95.79 (td, J = 16.6, 5.4 Hz).

HRMS (ESI-TOF) m/z calcd. for $C_{40}H_{46}F_5N_2O_2$ ([M+H]⁺): 681.3474, found: 681.3464.

1-(5,5-difluoro-5-(3-(((3aR,5R,5aR,8aS,8bR)-2,2,7,7-tetramethyltetrahydro-5*H*-bi s([1,3]dioxolo)[4,5-*b*:4',5'-*d*]pyran-5-yl)methoxy)-5-(trifluoromethyl)phenyl)pent yl)-4-phenylpiperazine (99a)

The title product was prepared via procedure A & D, purified by flash chromatography (PE:EA:Et₃N = 6:1:0.03) on silica gel to afford the title compound (164.4 mg, 82% yield; 65.2 mg, 97% yield) as a colorless oil.

¹**H NMR (400 MHz, CDCl**₃) δ 7.22 (s, 1H), 7.19 – 7.15 (m, 4H), 6.84 (d, *J* = 7.7 Hz, 2H), 6.77 (t, *J* = 7.3 Hz, 1H), 5.50 (d, *J* = 4.9 Hz, 1H), 4.59 (dd, *J* = 7.9, 2.4 Hz, 1H), 4.30 – 4.26 (m, 2H), 4.15 – 4.08 (m, 3H), 3.11 (t, *J* = 5.2 Hz, 4H), 2.50 (t, *J* = 5.2 Hz, 4H), 2.30 (t, *J* = 7.2 Hz, 2H), 2.07 (tt, *J* = 16.1, 7.8 Hz, 2H), 1.53 – 1.35 (m, 10H), 1.29 – 1.27 (m, 6H).

¹³**C NMR** (**101 MHz, CDCl**₃) δ 159.11, 151.42, 139.99 (t, *J* = 27.5 Hz), 132.29 (q, *J* = 32.9 Hz), 129.19, 123.66 (q, *J* = 272.5 Hz), 122.25 (t, *J* = 244.4 Hz), 119.78, 116.14, 115.36 (t, *J* = 6.5 Hz), 114.43, 112.85, 109.76, 108.96, 96.47, 71.04, 70.77, 70.63, 67.48, 66.35, 58.27, 53.35, 49.19, 38.87 (t, *J* = 27.1 Hz), 26.47, 26.16, 26.10, 25.01, 24.53, 20.55 (t, *J* = 4.0 Hz).

¹⁹F NMR (**376** MHz, CDCl₃) δ -62.72, -87.33 – -106.50 (m).

HRMS (ESI-TOF) m/z calcd. for $C_{34}H_{44}F_5N_2O_6$ ([M+H]⁺): 671.3114, found: 671.3107.

1-(5-(3-((1-benzhydrylazetidin-3-yl)oxy)-5-(trifluoromethyl)phenyl)-5,5-difluorop entyl)-4-phenylpiperazine (100a)

The title product was prepared via procedure A & D, purified by flash chromatography (PE:EA:Et₃N = 3:1:0.03) on silica gel to afford the title compound (137.9 mg, 71% yield; 35.8 mg, 55% yield) as a white solid.

¹**H** NMR (400 MHz, CDCl₃) δ 7.34 (dt, J = 8.2, 1.9 Hz, 4H), 7.22 – 7.10 (m, 9H), 6.94 (d, J = 10.6 Hz, 2H), 6.84 (d, J = 7.9 Hz, 2H), 6.77 (td, J = 7.3, 1.1 Hz, 1H), 4.76 (p, J = 5.7 Hz, 1H), 4.35 (s, 1H), 3.66 – 3.62 (m, 2H), 3.12 – 3.04 (m, 6H), 2.49 (t, J = 5.0 Hz, 4H), 2.28 (t, J = 7.4 Hz, 2H), 2.09 – 1.97 (m, 2H), 1.52 – 1.33 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 157.62, 151.38, 141.82, 140.24 (t, J = 27.4 Hz), 132.52 (q, J = 32.8 Hz), 129.24, 128.70, 127.50, 123.54 (q, J = 273.7 Hz), 122.12 (t, J = 243.3 Hz), 119.87, 116.18, 115.15, 114.65, 112.63, 78.43, 66.83, 60.25, 58.22, 53.33, 49.17, 38.83 (t, J = 27.0 Hz), 26.39, 20.51.

¹⁹F NMR (**376** MHz, CDCl₃) δ -62.75, -96.01 (t, J = 16.4 Hz).

HRMS (ESI-TOF) m/z calcd. for $C_{38}H_{41}F_5N_3O$ ([M+H]⁺): 650.3164, found: 650.3157.

5,5-difluoro-*N*-methyl-*N*-(3-phenyl-3-(4-(trifluoromethyl)phenoxy)propyl)-5-(5-(t rifluoromethyl)-[1,1'-biphenyl]-3-yl)pentan-1-amine (101a)

The title product was prepared via procedure A & C, purified by flash chromatography (PE:EA:Et₃N = 6:1:0.03) on silica gel to afford the title compound (102.6 mg, 54% yield; 40.1 mg, 63% yield) as a pale yellow oil.

¹**H** NMR (400 MHz, CDCl₃) δ 7.88 (s, 1H), 7.83 (s, 1H), 7.68 (s, 1H), 7.59 (d, J = 7.5 Hz, 2H), 7.48 (t, J = 7.5 Hz, 2H), 7.41 (dd, J = 11.0, 7.9 Hz, 3H), 7.32 (d, J = 4.4 Hz, 4H), 7.27 – 7.23 (m, 1H), 6.88 (d, J = 8.5 Hz, 2H), 5.26 (dd, J = 8.4, 4.7 Hz, 1H), 2.52 (dt, J = 12.4, 7.3 Hz, 1H), 2.45 – 2.38 (m, 1H), 2.32 – 2.29 (m, 2H), 2.21 – 2.09 (m, 6H), 1.99 – 1.90 (m, 1H), 1.48 – 1.44 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 160.84, 142.82, 141.35, 139.26 (t, *J* = 27.6 Hz), 139.11, 131.75 (q, *J* = 32.7 Hz), 129.29, 128.88, 128.65, 127.93, 127.39, 127.17, 126.85 (q, *J* = 3.8 Hz), 125.99, 125.34, 124.53 (q, *J* = 272.7 Hz), 123.93 (q, *J* = 274.7 Hz), 122.85 (q, *J* = 32.3 Hz), 122.46 (t, *J* = 244.4 Hz), 120.78, 115.87, 78.57, 57.58, 53.81, 42.27, 39.05 (t, *J* = 27.0 Hz), 36.64, 27.08, 20.50 (t, *J* = 4.0 Hz).

¹⁹F NMR (**376** MHz, CDCl₃) δ -61.54, -62.59, -95.91 (t, J = 16.3 Hz).

HRMS (ESI-TOF) m/z calcd. for $C_{35}H_{34}F_8NO$ ([M+H]⁺): 636.2507, found: 636.2500.

N-(1-(5,5-difluoro-5-(5-(trifluoromethyl)-[1,1'-biphenyl]-3-yl)pentyl)piperidin-3-yl)-3,4,5-trimethoxybenzamide (102a)

The title product was prepared via procedure A & D, purified by flash chromatography (PE:EA:Et₃N = 2:1:0.03) on silica gel to afford the title compound (152.1 mg, 82% yield; 49.0 mg, 79% yield) as a pale yellow solid.

¹**H** NMR (400 MHz, CDCl₃) δ 7.88 (s, 1H), 7.83 (s, 1H), 7.67 (s, 1H), 7.59 (d, J = 7.6 Hz, 2H), 7.49 – 7.39 (m, 3H), 7.04 (s, 2H), 6.90 (s, 1H), 4.27 (s, 1H), 3.89 – 3.86 (m, 9H), 2.61 – 2.49 (m, 4H), 2.34 (s, 2H), 2.21 – 2.12 (m, 2H), 1.73 – 1.53 (m, 8H).

¹³C NMR (101 MHz, CDCl₃) δ 166.29, 153.20, 142.80, 140.85, 139.13 (t, J = 27.4 Hz), 138.94, 132.10, 131.67 (q, J = 32.6 Hz), 130.31, 129.24, 128.63, 127.31, 127.04, 125.33, 123.82 (q, J = 273.7 Hz), 122.32 (t, J = 243.4 Hz), 120.61, 104.51, 60.96, 58.24, 56.38, 53.95, 45.52, 39.01 (t, J = 27.1 Hz), 29.06, 26.41, 21.99, 20.28.

¹⁹F NMR (376 MHz, CDCl₃) δ -62.58, -96.36 – -96.49 (m).

HRMS (ESI-TOF) m/z calcd. for $C_{33}H_{38}F_5N_2O_4$ ([M+H]⁺): 621.2746, found: 621.2742.

N-(3-(9,10-ethanoanthracen-9(10*H*)-yl)propyl)-5,5-difluoro-*N*-methyl-5-(5-(triflu oromethyl)-[1,1'-biphenyl]-3-yl)pentan-1-amine (103a)

The title product was prepared via procedure A & D, purified by flash chromatography (PE:EA:Et₃N = 6:1:0.03) on silica gel to afford the title compound (173.2 mg, 96% yield; 42.3 mg, 70% yield) as a white solid.

¹**H NMR (400 MHz, CDCl₃)** δ 7.79 (d, J = 9.2 Hz, 2H), 7.63 (s, 1H), 7.50 (d, J = 7.5 Hz, 2H), 7.37 (t, J = 7.4 Hz, 2H), 7.31 (t, J = 7.1 Hz, 1H), 7.17 – 7.13 (m, 4H), 7.02 – 6.94 (m, 4H), 4.17 (s, 1H), 2.53 (t, J = 7.5 Hz, 2H), 2.34 (t, J = 7.2 Hz, 4H), 2.21 – 2.09 (m, 5H), 1.87 – 1.80 (m, 2H), 1.74 – 1.69 (m, 2H), 1.54 – 1.45 (m, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 145.59, 145.13, 142.79, 139.26 (t, *J* = 27.3 Hz), 139.08, 131.72 (q, *J* = 32.5 Hz), 129.25, 128.61, 127.38, 127.19, 125.36, 125.32, 123.45, 122.50 (t, *J* = 243.4 Hz), 121.40, 120.80, 59.09, 57.62, 44.94, 44.66, 42.48, 39.16 (t, *J* = 27.0 Hz), 29.81, 29.01, 27.79, 27.18, 22.81, 20.61 (t, *J* = 4.0 Hz).

¹⁹F NMR (**376** MHz, CDCl₃) δ -62.50, -95.82 (t, J = 16.5 Hz).

HRMS (**ESI-TOF**) m/z calcd. for C₃₈H₃₉F₅N ([M+H]⁺): 604.2997, found: 604.3000.

(*S*,*E*)-5,5-difluoro-*N*-methyl-*N*-(3-(naphthalen-1-yloxy)-3-(thiophen-2-yl)propyl)-5-(5-(trifluoromethyl)-[1,1'-biphenyl]-3-yl)pent-2-en-1-amine (104ab)

The title product was prepared via procedure A, purified by flash chromatography (PE:EA = 8:1) on silica gel to afford the title compound (173.3 mg, 93% yield; 109.1 mg, 59% yield for *E* isomer) as a yellow solid.

¹**H NMR (400 MHz, CDCl**₃) δ 8.33 (dd, *J* = 7.9, 1.7 Hz, 1H), 7.88 (s, 1H), 7.77 (s, 1H), 7.70 (dd, *J* = 7.5, 1.8 Hz, 1H), 7.63 (s, 1H), 7.58 (dd, *J* = 7.0, 1.6 Hz, 2H), 7.49 –

7.39 (m, 5H), 7.34 (d, J = 8.2 Hz, 1H), 7.23 (d, J = 7.2 Hz, 1H), 7.18 (dd, J = 5.0, 1.2 Hz, 1H), 7.03 (d, J = 4.2 Hz, 1H), 6.91 (dd, J = 5.0, 3.5 Hz, 1H), 6.84 (d, J = 7.6 Hz, 1H), 5.76 (dd, J = 7.8, 5.0 Hz, 1H), 5.52 – 5.42 (m, 2H), 2.99 – 2.87 (m, 2H), 2.65 – 2.54 (m, 3H), 2.48 – 2.33 (m, 2H), 2.19 – 2.10 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 153.63, 145.52, 142.72, 139.05, 138.79 (t, J = 27.3 Hz), 134.72, 134.47, 131.61 (q, J = 32.7 Hz), 129.27, 128.65, 127.56, 127.35, 127.28 (t, J = 7.1 Hz), 126.64, 126.38, 126.22, 125.89, 125.32, 125.28, 124.76, 124.65, 123.93 (q, J = 273.7 Hz), 123.09 (t, J = 4.9 Hz), 122.27, 121.31 (t, J = 245.4 Hz), 120.91 – 120.89 (m), 120.57, 106.95, 74.35, 59.89, 52.91, 42.23 (t, J = 28.0 Hz), 42.12, 36.97.

¹⁹**F** NMR (**376** MHz, CDCl₃) δ -62.49, -95.63 (t, J = 16.1 Hz).

HRMS (ESI-TOF) m/z calcd. for $C_{36}H_{33}F_5NOS$ ([M+H]⁺): 622.2198, found: 622.2193.

5,5-difluoro-*N*-methyl-*N*-(2-(pyridin-2-yl)ethyl)-5-(5-(trifluoromethyl)-[1,1'-biph enyl]-3-yl)pentan-1-amine (105a)

The title product was prepared via procedure A & D, purified by flash chromatography (PE:EA:Et₃N = 6:1:0.03) on silica gel to afford the title compound (99.4 mg, 72% yield; 36.2 mg, 78% yield) as a yellow oil.

¹**H** NMR (400 MHz, CDCl₃) δ 8.49 (d, J = 5.0 Hz, 1H), 7.88 (s, 1H), 7.84 (s, 1H), 7.69 (s, 1H), 7.61 – 7.53 (m, 3H), 7.48 (t, J = 7.4 Hz, 2H), 7.42 (t, J = 7.3 Hz, 1H), 7.14 (d, J = 7.8 Hz, 1H), 7.09 – 7.06 (m, 1H), 2.93 (t, J = 7.2 Hz, 2H), 2.75 (t, J = 6.4 Hz, 2H), 2.40 (t, J = 7.0 Hz, 2H), 2.28 (s, 3H), 2.17 (tt, J = 15.7, 7.4 Hz, 2H), 1.56 – 1.42 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 160.56, 149.33, 142.76, 139.23 (t, J = 27.5 Hz), 139.09, 136.41, 131.69 (q, J = 32.7 Hz), 129.24, 128.60, 127.37, 127.18 (t, J = 6.0 Hz), 125.28, 123.90 (q, J = 273.7 Hz), 123.34, 122.46 (t, J = 243.2 Hz), 121.25, 120.77 (d, J = 3.6 Hz), 57.57, 57.20, 42.21, 39.01 (t, J = 27.0 Hz), 36.01, 26.93, 20.43 (t, J = 4.1 Hz).

¹⁹F NMR (376 MHz, CDCl₃) δ -62.58, -95.83 (t, J = 16.5 Hz).

HRMS (**ESI-TOF**) m/z calcd. for C₂₆H₂₈F₅N₂ ([M+H]⁺): 463.2167, found: 463.2163.

2-((1-(5,5-difluoro-5-(5-(trifluoromethyl)-[1,1'-biphenyl]-3-yl)pentyl)piperidin-4yl)methyl)-5,6-dimethoxy-2,3-dihydro-1*H*-inden-1-one (106a)

The title product was prepared via procedure A & D, purified by flash chromatography (PE:EA:Et₃N = 6:1:0.03) on silica gel to afford the title compound (119.6 mg, 65% yield; 43.8 mg, 71% yield) as a white solid.

¹**H NMR (400 MHz, CDCl**₃) δ 7.88 (s, 1H), 7.84 (s, 1H), 7.68 (s, 1H), 7.59 (dd, J = 7.0, 1.7 Hz, 2H), 7.47 (t, J = 7.4 Hz, 2H), 7.41 (t, J = 7.3 Hz, 1H), 7.45 (s, 1H), 6.84 (s, 1H), 3.94 (s, 3H), 3.88 (s, 3H), 3.22 (dd, J = 17.6, 8.2 Hz, 1H), 2.88 (dd, J = 10.7, 7.0 Hz, 2H), 2.70 – 2.65 (m, 2H), 2.31 – 2.13 (m, 4H), 1.92 – 1.85 (m, 3H), 1.74 – 1.64 (m, 2H), 1.56 – 1.45 (m, 5H), 1.33 – 1.24 (m, 3H).

¹³**C NMR** (**101 MHz, CDCl**₃) δ 207.81, 155.57, 149.55, 148.82, 142.76, 139.19 (t, *J* = 27.4 Hz), 139.05, 131.68 (q, *J* = 33.3 Hz), 129.41, 129.23, 128.59, 127.34, 127.15 (t, *J* = 6.3 Hz), 125.25, 123.88 (q, *J* = 273.7 Hz), 122.46 (t, *J* = 243.1 Hz), 120.74, 107.46, 104.49, 58.64, 56.28, 56.17, 54.06, 54.02, 45.49, 39.00 (t, *J* = 27.1 Hz), 38.80, 34.57, 33.48, 33.01, 31.89, 26.68, 20.67 (t, *J* = 4.0 Hz).

¹⁹**F NMR (376 MHz, CDCl**₃) δ -62.58, -95.81 (t, J = 16.3 Hz).

HRMS (ESI-TOF) m/z calcd. for $C_{35}H_{39}F_5NO_3$ ([M+H]⁺): 616.2845, found: 616.2841.

tert-butyl-(5,5-difluoro-5-(5-(trifluoromethyl)-[1,1'-biphenyl]-3-yl)pentyl)-*D*-proli nate (107a)

The title product was prepared via procedure A & D, purified by flash chromatography (PE:EA:Et₃N = 3:1:0.03) on silica gel to afford the title compound (114.4 mg, 77% yield; 32.4 mg, 65% yield) as a pale yellow solid.

¹**H** NMR (400 MHz, CDCl₃) δ 7.88 (s, 1H), 7.86 (s, 1H), 7.70 (s, 1H), 7.60 (d, J = 8.5 Hz, 2H), 7.48 (t, J = 7.5 Hz, 2H), 7.42 (t, J = 6.6 Hz, 1H), 3.10 (td, J = 8.2, 3.4 Hz,

1H), 3.01 (dd, *J* = 8.9, 5.3 Hz, 1H), 2.73 – 2.67 (m, 1H), 2.40 – 2.14 (m, 4H), 2.08 – 2.00 (m, 1H), 1.91 – 1.83 (m, 2H), 1.79 – 1.71 (m, 1H), 1.59 – 1.48 (m, 4H), 1.43 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 173.57, 142.79, 139.29 (t, J = 27.4 Hz), 139.16, 131.72 (q, J = 32.7 Hz), 129.25, 128.59, 127.41, 127.25 (t, J = 6.2 Hz), 125.29, 123.94 (q, J = 273.7 Hz), 122.55 (t, J = 243.2 Hz), 120.84 – 120.80 (m), 80.62, 66.76, 54.40, 53.51, 38.93 (t, J = 27.0 Hz), 29.29, 28.45, 28.21, 23.13, 20.54 (t, J = 4.0 Hz).

¹⁹F NMR (376 MHz, CDCl₃) δ -62.61, -94.86 - -96.54 (m).

HRMS (ESI-TOF) m/z calcd. for $C_{27}H_{33}F_5NO_2$ ([M+H]⁺): 498.2426, found: 498.2420.

7-(5,5-difluoro-5-(5-(trifluoromethyl)-[1,1'-biphenyl]-3-yl)pentyl)-3-(trifluoromethyl)-5,6,7,8-tetrahydro-[1,2,4]triazolo[4,3-a]pyrazine (108a)

The title product was prepared via procedure A & D, purified by flash chromatography (PE:EA: $Et_3N = 2:1:4\%$) on silica gel to afford the title compound (145.5 mg, 94% yield; 46.6 mg, 90% yield) as a colorless oil.

¹**H NMR (400 MHz, CDCl**₃) δ 7.89 (s, 1H), 7.85 (s, 1H), 7.68 (s, 1H), 7.61 – 7.58 (m, 2H), 7.50 – 7.47 (m, 2H), 7.44 – 7.40 (m, 1H), 4.10 (t, *J* = 5.5 Hz, 2H), 3.84 (s, 2H), 2.91 (t, *J* = 5.5 Hz, 2H), 2.61 (t, *J* = 6.9 Hz, 2H), 2.21 (tt, *J* = 15.9, 7.5 Hz, 2H), 1.64 – 1.54 (m, 4H).

¹³**C NMR** (**101 MHz, CDCl**₃) δ 152.25, 143.38 (q, *J* = 39.4 Hz), 142.85, 139.04 (t, *J* = 27.4 Hz), 138.93, 131.73 (q, *J* = 32.7 Hz), 129.27, 128.69, 127.31, 127.08 (t, *J* = 6.1 Hz), 125.38, 123.84 (q, *J* = 273.7 Hz), 122.31 (t, *J* = 244.4 Hz), 120.66 (d, *J* = 3.7 Hz), 118.49 (q, *J* = 270.7 Hz), 56.85, 49.26, 48.92, 43.52 (d, *J* = 1.7 Hz), 38.87 (t, *J* = 27.2 Hz), 26.52, 20.10 (t, *J* = 4.0 Hz).

¹⁹F NMR (376 MHz, CDCl₃) δ -62.62, -63.17, -96.13 (t, J = 16.4 Hz).

HRMS (**ESI-TOF**) m/z calcd. for C₂₄H₂₃F₈N₄ ([M+H]⁺): 519.1789 found: 519.1788.

(1*R*,3*r*,5*S*)-8-(5,5-difluoro-5-(5-(trifluoromethyl)-[1,1'-biphenyl]-3-yl)pentyl)-8-az abicyclo[3.2.1]octan-3-ol (109a)

The title product was prepared via procedure A & D, purified by flash chromatography (PE:EA:Et₃N = 2:1:0.03) on silica gel to afford the title compound (94.7 mg, 70% yield; 35.0 mg, 77% yield) as a white solid.

¹**H NMR (400 MHz, CDCl**₃) δ 7.89 (s, 1H), 7.85 (s, 1H), 7.69 (s, 1H), 7.62 – 7.59 (m, 2H), 7.49 (td, J = 7.3, 1.1 Hz, 2H), 7.45 – 7.41 (m, 1H), 4.01 – 3.98 (m, 1H), 3.12 (t, J = 3.7 Hz, 2H), 2.95 – 2.88 (m, 1H), 2.31 (t, J = 7.0 Hz, 2H), 2.19 (tt, J = 16.0, 7.7 Hz, 2H), 2.06 – 2.00 (m, 4H), 1.89 – 1.85 (m, 2H), 1.63 (s, 1H), 1.60 (s, 1H), 1.51 – 1.49 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 142.76, 139.22 (t, J = 27.5 Hz), 139.10, 131.70 (q, J = 32.6 Hz), 129.26, 128.63, 127.37, 127.20 (t, J = 6.1 Hz), 125.28, 123.91 (q, J = 273.7 Hz), 122.54 (t, J = 244.4 Hz), 120.79 – 120.78 (m), 65.09, 58.14, 51.92, 39.26, 39.04 (t, J = 26.8 Hz), 28.49, 26.31, 20.62 (t, J = 4.0 Hz).

¹⁹**F** NMR (**376** MHz, CDCl₃) δ -62.60, -95.79 (t, J = 16.3 Hz).

HRMS (**ESI-TOF**) m/z calcd. for $C_{25}H_{29}F_5NO$ ([M+H]⁺): 454.2164, found: 454.2159.

N-(3-(10,11-dihydro-5*H*-dibenzo[a,d][7]annulen-5-ylidene)propyl)-5,5-difluoro-*N* -methyl-5-(5-(trifluoromethyl)-[1,1'-biphenyl]-3-yl)pentan-1-amine (110a)

The title product was prepared via procedure A & D, purified by flash chromatography (PE:EA:Et₃N = 10:1:0.03) on silica gel to afford the title compound (149.7 mg, 85% yield; 31.8 mg, 54% yield) as a yellow solid.

¹**H** NMR (400 MHz, CDCl₃) δ 7.91 (s, 1H), 7.86 (s, 1H), 7.71 (s, 1H), 7.62 (dd, J = 7.5, 1.9 Hz, 2H), 7.50 (t, J = 7.4 Hz, 2H), 7.44 (t, J = 7.4 Hz, 1H), 7.29 – 7.27 (m, 1H), 7.20 – 7.11 (m, 6H), 7.05 – 7.02 (m, 1H), 5.86 (t, J = 7.3 Hz, 1H), 3.34 (d, J = 41.0 Hz, 2H), 2.97 (s, 1H), 2.77 (s, 1H), 2.44 (t, J = 7.5 Hz, 2H), 2.30 – 2.14 (m, 9H), 1.48 – 1.44 (m, 4H).

¹³**C NMR (101 MHz, CDCl₃)** δ 143.68, 142.81, 141.42, 140.22, 139.46, 139.28 (t, *J* = 27.4 Hz), 139.13, 137.18, 131.74 (q, *J* = 32.7 Hz), 130.09, 129.49, 129.28, 128.71, 128.64, 128.33, 128.08, 127.50, 127.40, 127.20, 127.13, 126.11, 125.83, 125.30, 123.94 (q, *J* = 273.7 Hz), 122.47 (t, *J* = 244.4 Hz), 120.81, 57.43, 57.02, 42.18, 39.07 (t, *J* = 27.0 Hz), 33.91, 32.17, 27.30, 26.93, 20.50 (t, *J* = 4.0 Hz).

¹⁹F NMR (**376** MHz, CDCl₃) δ -62.55, -95.80 (t, J = 16.5 Hz).

HRMS (**ESI-TOF**) m/z calcd. for C₃₇H₃₇F₅N ([M+H]⁺): 590.2841, found: 590.2838.

(2*R*,3*S*)-2-((*R*)-1-(3,5-bis(trifluoromethyl)phenyl)ethoxy)-4-(5,5-difluoro-5-(5-(trif luoromethyl)-[1,1'-biphenyl]-3-yl)pentyl)-3-(4-fluorophenyl)morpholine (111a)

The title product was prepared via procedure A & C, purified by flash chromatography (PE:EA:Et₃N = 10:1:0.03) on silica gel to afford the title compound (212.4 mg, 93 % yield; 24.2 mg, 32% yield) as a pale yellow solid.

¹**H NMR (400 MHz, CDCl**₃) δ 7.91 (s, 1H), 7.84 (s, 1H), 7.69 (s, 1H), 7.64 – 7.60 (m, 3H), 7.52 – 7.48 (m, 2H), 7.46 – 7.42 (m, 1H), 7.32 (s, 2H), 7.15 (s, 2H), 6.98 (t, *J* = 8.5 Hz, 2H), 4.86 (q, *J* = 6.5 Hz, 1H), 4.29 – 4.26 (m, 2H), 3.67 (d, *J* = 11.1 Hz, 1H), 3.31 (s, 1H), 3.04 (d, *J* = 11.6 Hz, 1H), 2.47 – 2.35 (m, 2H), 2.12 (dt, *J* = 16.6, 8.6 Hz, 2H), 1.88 (s, 1H), 1.55 – 1.31 (m, 7H).

¹³C NMR (101 MHz, CDCl₃) δ 161.38, 145.83, 142.85, 139.24 (t, J = 27.1 Hz), 139.07, 131.76 (d, J = 32.3 Hz), 131.70 (q, J = 33.3 Hz), 130.86 (d, J = 7.9 Hz), 129.31, 128.69, 127.37, 127.14, 126.42, 125.33, 123.23 (q, J = 273.7 Hz), 122.46 (t, J = 244.3 Hz), 121.52, 120.74, 115.09 (d, J = 21.4 Hz), 95.79, 72.43, 69.68, 59.75, 54.96, 51.79, 39.06 (t, J = 27.2 Hz), 25.17, 24.54, 20.34.

¹⁹**F** NMR (376 MHz, CDCl₃) δ -62.63, -62.92, -96.00 (t, J = 16.3 Hz), -114.54 – -114.62 (m).

HRMS (ESI-TOF) m/z calcd. for $C_{38}H_{34}F_{12}NO_2$ ([M+H]⁺): 764.2392, found: 764.2396.

1-(5,5-difluoro-5-(5-(trifluoromethyl)-[1,1'-biphenyl]-3-yl)pentyl)-4-phenylpipera zine (112a)

The title product was prepared via procedure A & D, purified by flash chromatography (PE:EA:Et₃N = 6:1:0.03) on silica gel to afford the title compound (133.3 mg, 91% yield; 46.0 mg, 92% yield) as a colorless oil.

¹**H** NMR (400 MHz, CDCl₃) δ 7.80 (s, 1H), 7.77 (s, 1H), 7.62 (s, 1H), 7.51 (d, J = 7.5 Hz, 2H), 7.39 (t, J = 7.4 Hz, 2H), 7.33 (t, J = 7.3 Hz, 1H), 7.17 (t, J = 7.6 Hz, 2H), 6.82 (d, J = 8.1 Hz, 2H), 6.76 (t, J = 7.3 Hz, 1H), 3.08 (t, J = 5.0 Hz, 4H), 2.48 (t, J = 4.9 Hz, 4H), 2.29 (t, J = 7.1 Hz, 2H), 2.13 (tt, J = 15.9, 7.4 Hz, 2H), 1.58 – 1.37 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 151.43, 142.81, 139.20 (t, J = 27.4 Hz), 139.08, 131.74 (q, J = 32.7 Hz), 129.27, 129.21, 128.64, 127.38, 127.19 (t, J = 5.9 Hz), 125.34, 123.91 (q, J = 274.7 Hz), 122.49 (t, J = 243.3 Hz), 120.79 (d, J = 4.1 Hz), 119.80, 116.15, 58.25, 53.38, 49.22, 39.02 (t, J = 27.1 Hz), 26.50, 20.58 (t, J = 3.9 Hz).

¹⁹F NMR (**376** MHz, CDCl₃) δ -62.54, -95.81 (t, J = 16.4 Hz).

HRMS (**ESI-TOF**) m/z calcd. for C₂₈H₃₀F₅N₂ ([M+H]⁺): 489.2324, found: 489.2321.

1-(5-fluoro-9-(4-methylpiperidin-1-yl)-5-(5-(trifluoromethyl)-[1,1'-biphenyl]-3-yl) nonyl)-4-phenylpiperazine (113a)

The title product was prepared via procedure A & D, purified by flash chromatography (PE:EA:Et₃N = 2:1:0.03) on silica gel to afford the title compound (76.2 mg, 41% yield; 43.8 mg, 70% yield) as a white solid.

¹**H** NMR (400 MHz, CDCl₃) δ 7.66 (s, 1H), 7.57 (s, 1H), 7.52 (d, J = 7.6 Hz, 2H), 7.42 – 7.30 (m, 3H), 7.32 (t, J = 7.3 Hz, 1H), 7.17 (t, J = 7.8 Hz, 2H), 6.82 (d, J = 8.2 Hz, 2H), 6.76 (t, J = 7.3 Hz, 1H), 3.07 (t, J = 5.0 Hz, 4H), 2.77 – 2.72 (m, 2H), 2.45 (t, J = 5.0 Hz, 4H), 2.23 (t, J = 7.4 Hz, 2H), 2.14 (t, J = 7.6 Hz, 2H), 1.98 – 1.82 (m, 4H), 1.75 (t, J = 11.6 Hz, 2H), 1.52 – 1.31 (m, 8H), 1.17 – 1.02 (m, 5H), 0.81 (d, J = 6.3 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 151.40, 145.06 (d, J = 22.9 Hz), 142.19 (d, J = 1.8 Hz), 139.74, 131.77 – 130.82 (m), 129.15 (d, J = 4.0 Hz), 128.29, 127.38, 126.69 (d, J = 10.5 Hz), 124.26 (q, J = 273.7 Hz), 122.78 (d, J = 3.9 Hz), 120.32 – 120.20 (m), 119.73, 116.10, 99.67 (d, J = 177.8 Hz), 58.91, 58.42, 54.13 (d, J = 2.7 Hz), 53.33, 49.17, 40.91 (d, J = 10.6 Hz), 40.67 (d, J = 10.7 Hz), 34.36, 30.91, 27.22, 26.99, 22.00, 21.48 (d, J = 3.5 Hz), 21.32 (d, J = 3.6 Hz).

¹⁹F NMR (376 MHz, CDCl₃) δ -62.29, -160.65 – -161.92 (m).

HRMS (**ESI-TOF**) m/z calcd. for C₃₈H₅₀F₄N₃ ([M+H]⁺): 624.3935, found: 624.3931.

1-(5,6,6,7,7,8,8,9,9,10,10,10-dodecafluoro-5-(pyridin-3-yl)decyl)-4-phenylpiperazi ne (115a)

The title product was prepared via procedure A & D, purified by flash chromatography (PE:EA:Et₃N = 3:1:0.03) on silica gel to afford the title compound (98.2 mg, 55% yield; 49.6 mg, 83% yield) as a pale yellow solid.

¹**H** NMR (400 MHz, CDCl₃) δ 8.61 – 8.58 (m, 2H), 7.69 (dd, J = 7.9, 2.5 Hz, 1H), 7.29 (dd, J = 8.1, 4.8 Hz, 1H), 7.20 – 7.16 (m, 2H), 6.84 (d, J = 7.7 Hz, 2H), 6.77 (tt, J = 7.3, 1.0 Hz, 1H), 3.08 (dd, J = 6.5, 3.6 Hz, 4H), 2.47 – 2.08 (m, 8H), 1.54 – 1.26 (m, 3H), 0.98 – 0.87 (m, 1H).

¹³**C NMR (101 MHz, CDCl₃)** δ 151.38, 150.54, 147.28 (d, *J* = 10.3 Hz), 133.81 (d, *J* = 10.7 Hz), 129.79 (d, *J* = 21.5 Hz), 129.21, 123.30 (d, *J* = 2.5 Hz), 119.82, 116.14, 96.94 (dt, *J* = 191.9, 27.3 Hz), 57.96, 53.27, 49.17, 32.52 (d, *J* = 20.5 Hz), 26.46, 20.03 (d, *J* = 2.9 Hz).

¹⁹**F NMR (376 MHz, CDCl₃)** δ -80.87 (t, J = 9.9 Hz), -117.65 - -126.31 (m), -176.53 - -176.75.

HRMS (**ESI-TOF**) m/z calcd. for $C_{25}H_{26}F_{12}N_3$ ([M+H]⁺): 596.1930, found: 596.1925.

1-(5,5-difluoro-5-(3-methoxy-5-(trifluoromethyl)phenyl)pentyl)-4-phenylpiperazi ne (116a)

The title product was prepared via procedure A & D, purified by flash chromatography (PE:EA:Et₃N = 6:1:0.03) on silica gel to afford the title compound (122.0 mg, 92% yield; 42.6 mg, 96% yield) as a pale yellow oil.

¹**H** NMR (400 MHz, CDCl₃) δ 7.22 (s, 1H), 7.20 – 7.14 (m, 2H), 7.09 (s, 2H), 6.84 (d, J = 8.2 Hz, 2H), 6.77 (t, J = 7.3 Hz, 1H), 3.78 (s, 3H), 3.10 (t, 4H), 2.49 (t, 4H), 2.29 (t, J = 7.3 Hz, 2H), 2.07 (tt, J = 16.1, 7.5 Hz, 2H), 1.58 – 1.26 (m, 4H).

¹³**C NMR (101 MHz, CDCl₃)** δ 160.06, 151.42, 140.05 (t, J = 27.5 Hz), 132.39 (q, J = 32.7 Hz), 129.22, 123.71 (q, J = 272.7 Hz), 122.28 (t, J = 244.4 Hz), 119.83, 116.16, 114.62 (t, J = 6.3 Hz), 114.38 – 113.93 (m), 111.95 (d, J = 4.0 Hz), 58.25, 55.83, 53.36, 49.20, 38.86 (t, J = 27.0 Hz), 26.44, 20.55 (t, J = 4.0 Hz).

¹⁹F NMR (**376** MHz, CDCl₃) δ -62.75, -95.86 (t, J = 16.3 Hz).

HRMS (**ESI-TOF**) m/z calcd. for $C_{23}H_{28}F_5N_2O$ ([M+H]⁺): 443.2116, found: 443.2103.

5,5-bis(5,5-difluoro-5-(5-(trifluoromethyl)-[1,1'-biphenyl]-3-yl)pentyl)-2,2-dimeth yl-1,3-dioxane-4,6-dione (117a)

The title product was prepared via procedure G & D, purified by flash chromatography (PE:EA = 20:1) on silica gel to afford the title compound (101.0 mg, 85% yield; 75.6 mg, 95% yield) as a white solid.

¹**H NMR (400 MHz, CDCl₃)** δ 7.90 (s, 2H), 7.83 (s, 2H), 7.68 (s, 2H), 7.62 – 7.59 (m, 4H), 7.52 – 7.48 (m, 4H), 7.45 – 7.41 (m, 2H), 2.22 – 2.10 (m, 4H), 2.01 – 1.97 (m, 4H), 1.70 (s, 6H), 1.54 – 1.46 (m, 4H), 1.40 – 1.32 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 169.22, 142.90, 139.02, 138.98 (t, J = 27.3 Hz), 131.79 (q, J = 32.6 Hz), 129.26, 128.65, 127.39, 127.09 (t, J = 5.7 Hz), 125.44, 123.87 (q, J = 273.7 Hz), 122.19 (t, J = 244.4 Hz), 120.70 – 120.64 (m), 105.75, 54.50, 38.90, 38.76 (t, J = 27.4 Hz), 29.85, 25.24, 22.37 (t, J = 4.0 Hz).

¹⁹F NMR (**376** MHz, CDCl₃) δ -62.60, -96.29 (t, J = 16.3 Hz).

MS (ESI) m/z calculated for $C_{42}H_{39}F_{10}O_4$ ([M + H]⁺): 797.2683, found 797.1.

1,4-bis(5,5-difluoro-5-(5-(trifluoromethyl)-[1,1'-biphenyl]-3-yl)pentyl)piperazine (118a)

The title product was prepared via procedure F & D, purified by flash chromatography (PE:EA:Et₃N = 6:1:0.03) on silica gel to afford the title compound (82.8 mg, 75% yield; 56.1 mg, 76% yield) as a colorless oil.

¹**H NMR (400 MHz, CDCl₃)** δ 7.89 (s, 2H), 7.85 (s, 2H), 7.69 (s, 2H), 7.62 – 7.59 (m, 4H), 7.49 (t, *J* = 7.4 Hz, 4H), 7.42 (t, *J* = 7.3 Hz, 2H), 2.43 – 2.13 (m, 16H), 1.55 – 1.44 (m, 8H).

¹³C NMR (101 MHz, CDCl₃) δ 142.78, 139.19 (t, J = 27.5 Hz), 139.08, 131.72 (q, J = 32.7 Hz), 129.26, 128.62, 127.37, 127.17 (t, J = 5.9 Hz), 125.31, 123.91 (q, J = 273.7 Hz), 122.47 (t, J = 244.4 Hz), 120.78, 58.22, 53.22, 39.00 (t, J = 27.1 Hz), 26.45, 20.58.

¹⁹F NMR (**376** MHz, CDCl₃) δ -62.58, -95.85 (t, J = 16.3 Hz).

HRMS (**ESI-TOF**) m/z calcd. for $C_{40}H_{41}F_{10}N_2$ ([M+H]⁺): 739.3105, found: 739.3102.

tert-butyl-7-(5,5-difluoro-5-(2-methoxypyridin-3-yl)pentyl)-2,7-diazaspiro[4.4]no nane-2-carboxylate (119a)

The title product was prepared via procedure A & D, purified by flash chromatography (PE:EA:Et₃N = 3:1:0.03) on silica gel to afford the title compound (66.9 mg, 51% yield; 35.8 mg, 82% yield) as a white solid.

¹**H** NMR (400 MHz, CDCl₃) δ 8.19, 7.97 (dd, J = 5.1, 1.8 Hz, dd, J = 5.0, 1.9 Hz, 1H), 7.74, 7.33 (dd, J = 7.5, 1.9 Hz, dd, J = 7.1, 1.9 Hz, 1H), 6.91, 6.77 (dd, J = 7.5, 5.0 Hz, dd, J = 7.2, 5.0 Hz, 1H), 3.97, 3.92 (s, s, 3H), 3.38 – 3.13 (m, 4H), 2.65 – 2.43 (m, 4H), 2.40 – 2.24 (m, 4H), 1.83 – 1.67 (m, 4H), 1.59 – 1.31 (m, 13H).

¹³C NMR (101 MHz, CDCl₃) δ 162.24, 160.56 (t, J = 4.2 Hz), 154.84, 154.74, 148.35, 144.09, 137.56, 135.89 (t, J = 8.1 Hz), 125.17, 121.91 (t, J = 243.4 Hz), 119.50 (t, J = 27.3 Hz), 116.70, 116.43, 79.22, 79.16, 64.54, 64.46, 64.29, 58.15, 58.09, 57.24, 57.17, 56.67, 56.20, 54.18, 54.06, 53.73, 53.29, 48.08, 47.28, 45.54, 45.13, 38.37, 37.42, 37.36, 36.26 (t, J = 26.1 Hz), 35.78, 35.67, 35.61, 29.83, 28.92, 28.63, 28.40, 27.46, 20.71 (t, J = 4.2 Hz).

¹⁹F NMR (**376** MHz, CDCl₃) δ -75.59, -75.61, -96.07 – -96.24 (m).

HRMS (ESI-TOF) m/z calcd. for $C_{23}H_{36}F_2N_3O_3$ ([M+H]⁺): 440.2719, found: 440.2715.

2-(5,5-difluoro-5-(2-methoxypyridin-3-yl)pentyl)-7-(5,5-difluoro-5-(5-(trifluoromethyl)-[1,1'-biphenyl]-3-yl)pentyl)-2,7-diazaspiro[4.4]nonane (120a)

The title product was prepared via procedure H & D, purified by flash chromatography (PE:EA:Et₃N = 3:1:0.03) on silica gel to afford the title compound (91.5 mg, 46% yield; 51.7 mg, 78% yield) as a pale yellow solid.

¹**H** NMR (400 MHz, CDCl₃) δ 8.20 (dd, J = 5.0, 1.8 Hz, 1H), 7.88 (s, 1H), 7.84 (s, 1H), 7.75 (dd, J = 7.5, 1.9 Hz, 1H), 7.68 (s, 1H), 7.60 (dd, J = 7.4, 1.8 Hz, 2H), 7.48 (t, J = 7.4 Hz, 2H), 7.44 – 7.40 (m, 1H), 6.91 (dd, J = 7.5, 5.0 Hz, 1H), 3.98 (s, 3H), 2.57 – 2.46 (m, 6H), 2.39 – 2.13 (m, 10H), 1.85 – 1.70 (m, 4H), 1.52 – 1.44 (m, 6H), 1.40 – 1.32 (m, 2H).

¹³**C NMR** (**101 MHz, CDCl**₃) δ 160.58 (t, J = 4.4 Hz), 148.34, 142.75, 139.23 (t, J = 27.4 Hz), 139.07, 135.91 (t, J = 8.2 Hz), 132.16 (t, J = 9.1 Hz), 131.68 (q, J = 32.3 Hz), 129.25, 128.61, 127.36, 127.17, 125.27, 123.89 (q, J = 273.7 Hz), 122.49 (t, J = 244.4 Hz), 121.96 (t, J = 243.4 Hz), 120.75, 119.54 (t, J = 27.7 Hz), 116.43, 67.86, 67.83, 56.38, 56.27, 54.16, 53.74, 47.46, 39.30, 39.03 (t, J = 27.0 Hz), 36.29 (t, J = 26.0 Hz), 28.49, 28.43, 20.77 (t, J = 4.1 Hz), 20.59 (t, J = 4.0 Hz).

¹⁹F NMR (376 MHz, CDCl₃) δ -62.57, -95.88 (td, J = 16.4, 4.2 Hz), -96.12 (t, J = 17.0 Hz).

HRMS (ESI-TOF) m/z calcd. for $C_{36}H_{43}F_7N_3O$ ([M+H]⁺): 666.3289, found: 666.3286.

2-(3-(1,1-difluoro-5-(methyl(2-(pyridin-2-yl)ethyl)amino)pentyl)-5-(trifluorometh yl)phenyl)-N,2-dimethyl-N-(6-(4-methylpiperazin-1-yl)-4-(o-tolyl)pyridin-3-yl)pr opanamide (121)

The title product was prepared via procedure A & D, purified by flash chromatography (PE:EA:Et₃N = 1:1:5%) on silica gel to afford the title compound (220.0 mg, 98% yield; 45.0 mg, 60% yield) as a yellow solid.

¹**H NMR (400 MHz, CDCl₃)** δ 8.42 (d, *J* = 5.0 Hz, 1H), 7.93 (s, 1H), 7.53 – 7.42 (m, 5H), 7.24 – 7.05 (m, 5H), 7.02 (dd, *J* = 7.5, 5.0 Hz, 1H), 6.43 (s, 1H), 3.49 (t, *J* = 5.0 Hz, 4H), 2.84 (dd, *J* = 9.3, 6.1 Hz, 2H), 2.67 (dd, *J* = 9.5, 6.0 Hz, 2H), 2.43 (t, *J* = 5.1 Hz, 5H), 2.34 – 2.16 (m, 8H), 2.11 – 1.87 (m, 3H), 1.55 – 1.19 (m, 13H).

¹³C NMR (101 MHz, CDCl₃) δ 160.53, 158.20, 149.29, 148.16, 147.35, 139.60 (t, *J* = 27.5 Hz), 136.84, 136.40, 131.91 (q, *J* = 32.9 Hz), 130.29, 129.11, 128.32, 125.52, 125.05, 124.62, 123.31, 122.82, 122.29, 122.21, 121.23, 120.29, 119.79, 108.25, 57.53, 57.16, 54.89, 47.38, 46.26, 45.40, 42.15, 38.95 (t, *J* = 27.1 Hz), 35.95, 31.92, 26.88, 23.40, 20.36 (t, *J* = 4.0 Hz), 20.02.

¹⁹F NMR (**376** MHz, CDCl₃) δ -62.53, -95.08 – -96.84 (m).

HRMS (ESI-TOF) m/z calcd. for $C_{42}H_{52}F_5N_6O$ ([M+H]⁺): 751.4117, found: 751.4113.

tert-butyl-4-(5,5-difluoro-5-(2-methoxypyridin-3-yl)pentyl)piperazine-1-carboxyl ate (122)

The title product was prepared via procedure A & D, purified by flash chromatography (PE:EA:Et₃N = 6:1:0.03) on silica gel to afford the title compound (59.6 mg, 50% yield; 37.3 mg, 93% yield) as a colorless oil.

¹**H NMR (400 MHz, CDCl**₃) δ 8.19 (dd, J = 5.1, 1.8 Hz, 1H), 7.74 (dd, J = 7.5, 1.9 Hz, 1H), 6.91 (dd, J = 7.5, 5.0 Hz, 1H), 3.97 (s, 3H), 3.38 (t, J = 5.1 Hz, 4H), 2.36 – 2.24 (m, 8H), 1.52 – 1.32 (m, 13H).

¹³C NMR (101 MHz, CDCl₃) δ 160.57 (t, *J* = 4.4 Hz), 154.84, 148.38 (t, *J* = 1.9 Hz), 135.88 (t, *J* = 8.3 Hz), 121.88 (t, *J* = 243.4 Hz), 119.48 (t, *J* = 27.4 Hz), 116.44, 79.68, 58.33, 53.74, 53.09, 36.23 (t, *J* = 26.0 Hz), 28.52, 26.44, 20.64 (t, *J* = 4.2 Hz).

¹⁹**F** NMR (376 MHz, CDCl₃) δ -96.20 (t, *J* = 17.0 Hz).

HRMS (ESI-TOF) m/z calcd. for $C_{20}H_{32}F_2N_3O_3$ ([M+H]⁺): 400.2406, found: 400.2400.

1-(5,5-difluoro-5-(2-methoxypyridin-3-yl)pentyl)-4-(5,5-difluoro-5-(5-(trifluorom ethyl)-[1,1'-biphenyl]-3-yl)pentyl)piperazine (123)

The title product was prepared via procedure H & D, purified by flash chromatography (PE:EA:Et₃N = 3:1:0.03) on silica gel to afford the title compound (76.7 mg, 41% yield; 43.2 mg, 69% yield) as a colorless oil.

¹**H** NMR (400 MHz, CDCl₃) δ 8.20 (dd, J = 5.0, 1.8 Hz, 1H), 7.87 (s, 1H), 7.83 (s, 1H), 7.75 (dd, J = 7.4, 1.9 Hz, 1H), 7.68 (s, 1H), 7.59 (dd, J = 7.1, 1.6 Hz, 2H), 7.50 – 7.46 (m, 2H), 7.43 – 7.39 (m, 1H), 6.91 (dd, J = 7.4, 5.0 Hz, 1H), 3.98 (s, 3H), 2.42 – 2.12 (m, 16H), 1.52 – 1.45 (m, 6H), 1.39 – 1.31 (m, 2H).

¹³**C NMR** (**101 MHz, CDCl**₃) δ 160.59 (t, *J* = 4.5 Hz), 148.38 (t, *J* = 2.0 Hz), 142.78, 139.19 (t, *J* = 27.4 Hz), 139.07, 135.91 (t, *J* = 8.3 Hz), 131.71 (q, *J* = 32.6 Hz), 129.25, 128.62, 127.37, 127.17, 125.30, 123.89 (q, *J* = 274.7 Hz), 122.46 (t, *J* = 244.4 Hz), 121.91 (t, *J* = 243.4 Hz), 120.77, 119.52 (t, *J* = 27.4 Hz), 116.44, 58.33, 58.22, 53.75, 53.20, 38.99 (t, *J* = 27.1 Hz), 36.28 (t, *J* = 26.0 Hz), 26.49, 26.44, 20.74 (t, *J* = 4.2 Hz), 20.57 (t, *J* = 4.1 Hz).

¹⁹**F** NMR (376 MHz, CDCl₃) δ -62.60, -95.86 (t, J = 16.3 Hz), -96.15 (t, J = 17.0 Hz).

HRMS (**ESI-TOF**) m/z calcd. for $C_{33}H_{39}F_7N_3O$ ([M+H]⁺): 626.2976, found: 626.2971.

4-(2,2-difluoro-2-(3-methoxy-5-(trifluoromethyl)phenyl)ethyl)-1,2-dihydronapht halene (127)

The title product was prepared via procedure J & D, purified by flash chromatography (PE:EA = 20:1) on silica gel to afford the title compound (33.1 mg, 30% yield) as a colorless oil.

¹**H** NMR (400 MHz, CDCl₃) δ 7.12 (s, 1H), 7.01 – 6.96 (m, 6H), 5.75 (t, *J* = 4.7 Hz, 1H), 3.67 (s, 3H), 3.17 (t, *J* = 15.1 Hz, 2H), 2.57 (t, *J* = 8.0 Hz, 2H), 2.09 (td, *J* = 8.0, 4.7 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 159.76, 139.62 (t, J = 27.5 Hz), 136.32, 134.18, 132.05, 131.95 (q, J = 32.7 Hz), 128.67 (t, J = 4.4 Hz), 127.66, 127.05, 126.27, 123.71 (q, J = 273.7 Hz), 123.11 (t, J = 1.8 Hz), 121.70 (t, J = 247.5 Hz), 114.78 – 114.55 (m), 112.08 – 112.04 (m), 55.75, 42.13 (t, J = 28.3 Hz), 28.20, 23.27.

¹⁹F NMR (**376** MHz, CDCl₃) δ -62.83, -93.70 (t, J = 15.2 Hz).

MS (EI) m/z calculated for $C_{20}H_{17}F_5O$ ([M]⁺): 368.1200, found 368.01.

(*E*)-3-(3-(5-(1-(ethoxycarbonyl)-2-oxocyclohexyl)-1,1-difluoropent-3-en-1-yl)-5-(t rifluoromethyl)phenyl)pyridine 1-oxide (128)

The title product was prepared via procedure I & D, purified by flash chromatography (PE:EA:Et₃N = 1:5:5%) on silica gel to afford the title compound (50.6 mg, 99% yield) as a pale yellow solid.

¹**H** NMR (400 MHz, CDCl₃) δ 8.50 (s, 1H), 8.25 (d, J = 6.4 Hz, 1H), 7.83 (s, 1H), 7.78 (s, 1H), 7.75 (s, 1H), 7.49 (d, J = 8.0 Hz, 1H), 7.40 (dd, J = 8.0, 6.4 Hz, 1H), 5.52 (dt, J = 14.9, 7.3 Hz, 1H), 5.35 (dt, J = 14.9, 7.0 Hz, 1H), 4.13 – 4.07 (m, 2H),

2.85 (td, *J* = 15.9, 7.0 Hz, 2H), 2.52 – 2.34 (m, 3H), 2.30 – 2.23 (m, 2H), 1.97 – 1.93 (m, 1H), 1.67 – 1.50 (m, 3H), 1.33 – 1.16 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 207.48, 171.38, 139.64 (t, J = 27.6 Hz), 138.79, 138.36, 137.89, 136.82, 132.58, 132.42 (q, J = 33.7 Hz), 127.29 (t, J = 6.2 Hz), 126.38, 125.23, 124.60, 123.37 (q, J = 273.7 Hz), 123.23 – 123.01 (m), 120.93 (t, J = 245.4 Hz), 61.36, 60.81, 42.38 (t, J = 27.8 Hz), 41.12, 38.03, 35.89, 27.49, 22.48, 14.18.

¹⁹F NMR (376 MHz, CDCl₃) δ -62.81, -95.34 (td, *J* = 15.9, 4.6 Hz).

HRMS (ESI-TOF) m/z calcd. for $C_{26}H_{27}F_5NO_4$ ([M+H]⁺): 512.1855, found: 512.1852.

10. References

1. Pawar, G. G.; Wu, H.; De, S.; Ma, D. Copper(I) oxide/*N*,*N*'-bis[(2-furyl)methyl]oxalamide-catalyzed coupling of (hetero)aryl halides and nitrogen heterocycles at low catalytic loading. *Adv. Synth. Catal.* **2017**, *359*, 1631–1636.

2. Zhai, Y.; Chen, X.; Zhou, W.; Fan, M.; Lai, Y.; Ma, D. Copper-catalyzed diaryl ether formation from (hetero)aryl halides at low catalytic loadings. *J. Org. Chem.* 2017, 82, 4964–4969.

3. Chen, Z.; Jiang, Y.; Zhang, L.; Guo, Y.; Ma, D. Oxalic diamides and *tert*-butoxide: two types of ligands enabling practical access to alkyl aryl ethers via Cu-catalyzed coupling reaction. *J. Am. Chem. Soc.* **2019**, *141*, 3541–3549.

11. NMR Spectra

7.79 7.728 7.728 7.728 6.684 6.684 6.686 6.684 6.686 6.684 6.686 6.684 6.6886 6.688 6.6886 6.6886 6.6886 6.6886 6.6886 6.6886 6.6886 6.6886 6.6886 6.6886 6.6886 6

8.00 7.31 7.29 7.29 7.28 7.29 7.28 6.97 6.97 6.97 6.89

7a - ¹H NMR (400 MHz, CDCl₃)

120 110 100 90 80 70 f1 (ppm)

8.87 8.86 8.86 8.86 8.86 8.86 8.86 8.86 8.86 8.86 8.86 7.79 7.70

11a - ¹H NMR (400 MHz, CDCl₃)

12a - ¹⁹F NMR (376 MHz, CDCl₃)

7.78 7.749 7.749 7.745 7.745 7.745 7.118 7.118 7.118 7.113 7.116 6.98 6.98 6.73 6.73

13a - ¹H NMR (400 MHz, CDCl₃)

-57.60 -57.61 -57.65 -57.65 -57.65 -57.65 -57.70 -57.70 -57.70 -93.21 -93.22 -93.32 -93.32 -93.43

15a - ¹⁹F NMR (376 MHz, CDCl₃)

7,61 7,755 7,757 7,717 7,715 7,715 7,715 6,685 6,685 6,685 6,685 6,685 6,685 6,676 6,678 6,678 6,678 6,678 6,678 6,576 6,578 1,519 2,249 5,310 2,249 5,310 2,249 5,310 2,249 2

 F_2 NPh F₃C

16a - ¹H NMR (400 MHz, CDCl₃)

$\begin{array}{c} 7.566\\ 7.752\\ 7.$

20a - ¹⁹F NMR (376 MHz, CDCl₃)

21a - ¹H NMR (400 MHz, CDCl₃)

21a - ¹⁹F NMR (376 MHz, CDCl₃)

-95.27 -95.31 -95.35

$\begin{array}{c} & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & &$

22a - ¹H NMR (400 MHz, CDCl₃)

22a - ¹⁹F NMR (376 MHz, CDCl₃)

23a - ¹H NMR (400 MHz, CDCl₃)

24a - ¹⁹F NMR (376 MHz, CDCl₃)

25a - ¹⁹F NMR (376 MHz, CDCl₃)

-93.66 -93.70 -93.75

[837] [837] [837] [837] [838] [837] [838] [83

 $\frac{-95.95}{-96.00}$

28a - ¹⁹F NMR (376 MHz, CDCl₃)

8.805 8.805 8.804 8.805 8.804

8.20 7.7.67 7.67 7.7.67 7.7.67 7.7.69 7.7.69 7.7.69 7.7.169 8.10 8.11 8.

33a - ¹⁹F NMR (376 MHz, CDCl₃)

8.2 8.2.3 8.2.4 8.2.4 8.2.4 8.2.4 8.2.4 8.2.4 8.2.4 8.2.4 8.3.10 8.3.11 8.3.11 8.3.11 8.3.11 8.3.11 8.3.11 8.3.11 8.3.11 8.3.11 8.3.11 8.3.11 8.3.11 8.3.11 8.3.11 8.3.11 8.3.11 8.3.11 8.3.11 9

34a - ¹H NMR (400 MHz, CDCl₃)

34a - ¹⁹F NMR (376 MHz, CDCl₃)

82.0 82.1 <li

35a - ¹⁹F NMR (376 MHz, CDCl₃)

36ab - ¹⁹F NMR (376 MHz, CDCl₃)

[8] 89 [8] 89 [8] 81 [8] 81 [8] 81 [8] 81 [8] 81 [8] 81 [8] 81 [8] 81 [8] 82 [8] 83 [8] 84

 F_2 . NPh

39a - ¹H NMR (400 MHz, CDCl₃)

 $\underbrace{ \begin{array}{c} -92.15 \\ -92.19 \\ -92.24 \end{array} }$

F₃C. Ph

44a - ¹H NMR (400 MHz, CDCl₃)

7.28 7.66 7.77 7.76 7.76 7.77 7.76 7.77 7.76 7.77 7.76 7.77 7.76 7.76 7.77 7.76 7.77 7.76 7.77 7.76 7.76 7.76 7.76 7.77 7.76 7.77 7.76 7.77 7.76 7.77 7.76 7.77 7.76 7.77 7.76 7.77 7.76 7.77 7.76 7.77 7.76 7.77 7.76 7.77 7.76 7.77 7.76 7.77 7.76 7.77 7.77 7.76 7.77 7.77 7.76 7.77 7.77 7.76 7.77 7.77 7.77 7.77 7.77 7.76 7.77 7.76 7.77 7.77 7.77 7.76 7.77 7.76 7.77 7.76 7.77 7.76 7.77 7.77

 $\begin{array}{c} 7.38\\ 7.68\\ 7.68\\ 7.69\\ 7.56\\ 7.56\\ 7.56\\ 7.56\\ 7.75\\$

 $\begin{array}{c} 7,7,90\\ 7,7,60\\ 7,7,70\\$

60a - ¹H NMR (400 MHz, CDCl₃)

 $\begin{array}{c} 7.89\\ 7.76\\ 7.62\\ 7.62\\ 7.66\\ 7.76\\ 7.76\\ 7.76\\ 7.75\\$

F₃C.

63a - ¹H NMR (400 MHz, CDCl₃)

64a - ¹H NMR (400 MHz, CDCl₃)

7.78 7.78 7.76 7.76 7.76 7.75 7.74 7.74 7.74 7.74 7.74 7.74 7.74 7.74 7.74 7.74 7.74 7.74 7.74 7.74 7.74 7.75

7.7.8 7.7.7.7 7.7.7.7 7.7.7.7 7.7.7.4 7

7,755 7,757 7,257

67a - ¹H NMR (400 MHz, CDCl₃)

$\begin{array}{c} 7.38\\ 7.758\\ 7.7$

8.8.28 8.8.28 8.8.25 8.8.25 8.8.27 8.8.27 8.8.25 8.8.27 8.8.25 8.8.27 8.8.27 8.8.27 8.8.27 8.8.27 8.8.27 8.8.27 8.8.25 8.8.2

72ab - ¹H NMR (400 MHz, CDCl₃)

73ab - ¹H NMR (400 MHz, CDCl₃)

74ab - ¹H NMR (400 MHz, CDCl₃)

74ab - ¹⁹F NMR (376 MHz, CDCl₃)

80ab 19 F NMR (376 MHz, CDCl₃)

81a - ¹H NMR (400 MHz, CDCl₃)

 $\begin{array}{c} 7.79\\ 7.76\\ 7.75\\$

88. 88.4 88.64 88.

 $\begin{array}{c} 7.7\\ 7.12\\ 6.57\\ 7.12\\ 6.57\\ 6.57\\ 7.12\\ 6.57\\ 7.12\\ 6.57\\ 7.12\\ 6.57\\ 7.12\\ 6.57\\ 7.12\\ 6.57\\ 7.12\\ 6.57\\ 7.12\\ 8.57\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 7.22\\ 7.23\\ 7.22\\ 7.23\\ 7.22\\ 7.23\\ 7.22\\ 7.23\\ 7.22\\ 7.23\\ 7.22\\ 7.23\\ 7.22\\ 7.23\\ 7.22\\ 7.23\\ 7.22\\ 7.23\\ 7.22\\ 7.23\\ 7.22\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.23\\ 7.24\\ 7.22\\ 7.24\\ 7.22\\ 7.24\\ 7.22\\ 7.24\\ 7.22\\ 7.24\\ 7.22\\ 7.24\\ 7.22\\ 7.24\\ 7.22\\ 7.24\\ 7.22\\ 7.24\\ 7.22\\ 7.24\\ 7.22\\ 7.24\\ 7.22\\ 7.24\\ 7.22\\ 7.24\\ 7.22\\ 7.24\\ 7.22\\ 7.24\\ 7.22\\ 7.24\\ 7.22\\ 7.24\\ 7.22\\ 7.24\\ 7.22\\ 7.22\\ 7.24\\ 7.22\\ 7.22\\ 7.22\\ 7.22\\ 7.22\\ 7.22\\ 7.22\\ 7.22\\ 7.22\\ 7.22\\ 7.23\\ 7.22\\ 7.23\\ 7.22\\ 7.24\\ 7.22\\ 7.24\\ 7.22\\ 7.24\\ 7.22\\ 7.24\\ 7.22\\ 7.24\\ 7.22\\ 7.24\\ 7.22\\ 7.24\\ 7.22\\ 7.24\\ 7.22\\ 7.24\\ 7.22\\ 7.24\\ 7.22\\ 7.24\\ 7.22\\ 7.24\\ 7.22\\ 7.24\\ 7.22\\ 7.24\\ 7.22\\ 7.24\\ 7.22\\ 7.24\\ 7.22\\ 7.24\\ 7.22\\ 7.24\\ 7.22\\ 7.22\\ 7.24\\ 7.22\\$

103a - ¹H NMR (400 MHz, CDCl₃)

8.50 9.8450<

 8
 8

 8.85
 8

 8.85
 8

 8.85
 8

 8.85
 8

 8.85
 8

 8.85
 8

 8.85
 8

 8.85
 8

 8.85
 8

 8.85
 8

 8.85
 8

 8.85
 8

 8.85
 8

 8.85
 8

 8.85
 8

 8.85
 8

 8.85
 8

 8.85
 8

 8.85
 8

 8.85
 8

 8.85
 8

 8.85
 8

 8.85
 8

 8.85
 8

 8.85
 8

 8.85
 8

 8.85
 8

 8.85
 8

 8.85
 8

 8.85
 8

 8.85
 8

 8.85
 8

 8.85
 8

 <tr
80.84 80.87 80.87 -117.65 -117.65 -117.65 -117.65 -117.65 -117.65 -117.65 -118.44 -118.75 -118.75 -118.75 -118.75 -118.75 -118.75 -118.75 -118.75 -118.75 -118.75 -118.75 -119.70 -122.75 -122.75 -122.85 -122.85 -122.85 -122.85 -122.85 -122.85 -122.85 -122.85 -122.85 -122.85 -122.85 -122.85 -122.65 -122.85 -122.85 -122.85 -122.65 -122.85 -122.85 -122.65 -122.85 -122.85 -122.65 -122.85 -122.65 -122.85 -122.65

115a - ¹⁹F NMR (376 MHz, CDCl₃)

$\begin{array}{c} 8.19\\ 8.18\\ 8.18\\ 8.18\\ 8.18\\ 8.18\\ 8.18\\ 8.18\\ 8.18\\ 8.18\\ 8.18\\ 8.18\\ 8.19\\ 5.77\\ 7.77\\ 7.77\\ 5.33\\ 3.32\\ 5.33\\ 3.32\\ 3.32\\ 3.32\\ 3.32\\ 3.32\\ 3.32\\ 3.32\\ 3.32\\ 3.32\\ 1.17\\ 1.12\\$

8.8.3 8.8.4 <

121a - ¹H NMR (400 MHz, CDCl₃)

122a - ¹⁹F NMR (376 MHz, CDCl₃)

 $\frac{-96.15}{1-96.20}$

7.12 7.01 6.99 6.96 6.96 7.575 5.75 5.75

127 - ¹H NMR (400 MHz, CDCl₃)

E/Z = 4.3:1

6ab - ¹H NMR (400 MHz, CDCl₃)

E/Z = 2.5:1

E/Z = 4.9:1

5.61 5.56 5.56 5.55 5.54 5.37 5.33 5.33 5.33 5.33 5.33

13ab - ¹H NMR (400 MHz, CDCl₃)

E/Z = 2.2:1

E/Z = 1:1

15ab - ^1H NMR (400 MHz, CDCl_3) $E \ / \ Z = 2.2 : 1$

E/Z = 1:1.1

17ab - ¹H NMR (400 MHz, CDCl₃)

E/Z = 1.2:1

E/Z = 3.3:1

E/Z = 3.0:1

E/Z = 3.0:1

-90 -100 f1 (ppm)

24ab - ^1H NMR (400 MHz, CDCl₃) $E \ / \ Z = 12.7 : 1$

E/Z = 3.3:1

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 f1 (ppm)

E/Z = 9.9:1

-90 -100 f1 (ppm)

5.75 5.74 5.73 5.73 5.69 5.68 5.68

29ab - ¹H NMR (400 MHz, CDCl₃)

E/Z = 4.7:1

5.77 5.77 5.75 5.75 5.75 5.73 5.73 5.68 5.68 5.66 5.66 5.66

31ab - ¹H NMR (400 MHz, CDCl₃)

E/Z = 3.6:1

E/Z = 2.8:1

34ab - ¹H NMR (400 MHz, CDCl₃)

E/Z = 3.5:1

5.68 5.67 5.67 5.65 5.64 5.64 5.58 5.55 5.55 5.55 5.51 5.51

35ab - ¹H NMR (400 MHz, CDCl₃)

E/Z = 3.1:1

E/Z = 3.0:1

E/Z = 4.5:1

E/Z = 1:2.0

E/Z = 1:1.2

E/Z = 1:1.7

63ab - ¹H NMR (400 MHz, CDCl₃)

E/Z = 1:2.2

5.81 5.82 5.83 5.73 5.75 5.75 5.67 5.67 5.67 5.67 5.63 5.63

64ab - ¹H NMR (400 MHz, CDCl₃)

E / Z = 1 : 1.8

70ab - ¹H NMR (400 MHz, CDCl₃)

5.79 5.78 5.75 5.75 5.73 5.73 5.65 5.65 5.63 5.63 5.63 5.63 5.63

73ab - ¹H NMR (400 MHz, CDCl₃)

E/Z = 1:1.6

77ab - ¹H NMR (400 MHz, CDCl₃)

E/Z = 1:1.4

78ab - ¹H NMR (400 MHz, CDCl₃)

5.81 5.79 5.76 5.75 5.75

81ab - ¹H NMR (400 MHz, CDCl₃) E/Z = 1 : 2.0

5.82 5.81 5.79 5.76 5.76

82ab - ¹H NMR (400 MHz, CDCl₃)

E/Z = 5.3:1

-90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 f1 (ppm) -60 -70 -10 -20 -30 -40 -50 -80

109ab - ¹H NMR (400 MHz, CDCl₃)

E/Z = 1:2.3

112 - ¹H NMR (400 MHz, CDCl₃)

E/Z = 1:2.0

5.79 5.77 5.75 5.75 5.73

113 - ¹H NMR (400 MHz, CDCl₃)

-90 -100 fl (ppm) 10 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 0 -10 -20 -30 -40 -50 -60 -70 -80 -110 -120

117 - ¹H NMR (400 MHz, CDCl₃)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 f1 (ppm)

-90 -100 f1 (ppm)

453

