Fabrication and characterization of xanthan gum nanofibers reinforced with thiosemicarbazide: adsorption of Pb²⁺ from aqueous medium

Reem Ghubayra^{a,b}, Ibtisam Mousa^{a,b}, Marwah M. M. Madkhali^{a,b}, Abdel-Nasser M.A. Alaghaz^{a,b}, Asaad F. Hassan*^c

- ^a Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, P.O. Box. 114, Jazan 45142, Kingdom of Saudi Arabia.
- ^b Nanotechnology Research Unit, College of Science, Jazan University, P.O. Box. 114, Jazan 45142, Kingdom of Saudi Arabia.
- ^c Department of Chemistry, Faculty of Science, Damanhour University, Egypt

*Corresponding author: <u>asmz68@sci.dmu.edu.eg</u>

Fig. S1: X-ray diffraction patterns for XF and TXF.

Mechanism of Pb²⁺ adsorption onto XFT surface

The possible lead ions adsorption mechanism onto TXF nanofibers is shown in Fig. S2. The surface functional groups of the TXF composite, including C=S, -OH, O-, -NH, and COO- groups, interacted with Pb^{2+} through surface complexation and electrostatic interactions. Electrostatic attraction was the result of interactions between Pb^{2+} and the active functional groups on TXF surface.¹

Fig. S2: Possible mechanism of Pb²⁺ adsorption onto TXF.

References

1 H. Wang, S. Wang, S. Wang, L. Fu and L. Zhang, *J. Environ. Chem. Eng.*, 2023, *11*, 109335.