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Abstract17

Total electron content (TEC) in the ionosphere is vital for space weather applica-18

tions, including monitoring Global Navigation Satellite Systems (GNSS) scintillations19

and detecting natural hazards, making comprehensive understanding, modeling, and fore-20

casting of TEC perturbations critical for modern society. While modulations of TEC per-21

turbations (dTEC) in the auroral region have been observed to be associated with ultra-22

low-frequency (ULF) waves, their driving mechanisms remain unclear. Using fortuitously23

timed and positioned conjugate observations from the THEMIS spacecraft and a GPS24

receiver at Fairbanks, Alaska, we provide direct evidence that dTEC modulations are25

driven by magnetospheric precipitation due to electron scattering into the loss cone by26

ULF-modulated whistler-mode waves. Peak-to-peak dTEC amplitudes reached ∼0.5 TECU27

with modulations spanning scales of ∼5–80 km. The cross-correlation between modeled28

and observed dTEC reached ∼0.8 during the conjugacy period but decreased outside of29

it. The amplitude spectra of whistler-mode waves and dTEC also matched closely from30

1 mHz to tens of mHz during the conjugacy period but diverged outside of it. Our find-31

ings offer crucial insights that could improve physics-based TEC modeling and ultimately32

enhance TEC forecast capabilities.33

Plain Language Summary34

Radio signals experience group delay and phase advance as they transit the iono-35

sphere filled with free electrons. The total number of these electrons along the raypath36

from the satellite to a receiver defines the total electron content (TEC) of the ionosphere.37

Small-scale number density irregularities or TEC perturbations may be associated with38

rapid phase and amplitude fluctuations that cause GNSS signal flickering or scintilla-39

tions. Scintillations degrade positioning accuracy, disrupt navigation and communica-40

tion, and lead to signal reception failures. Thus, precise understanding, modeling, and41

forecasting of TEC perturbations (dTEC) is vital for space weather monitoring and GNSS42

scintillation prediction. In this study, we analyze fortuitously conjugate observations of43

ionospheric dTEC from a ground-based GPS receiver and magnetospheric very-low-frequency44

(VLF) whistler-mode waves from the THEMIS spacecraft, which were optimally aligned45

in time and space. We find consistent amplitude spectra of dTEC and whistler-mode waves46

during conjunction, as well as a good cross-correlation (∼0.8) between observed and mod-47

eled dTEC, pointing to whistler-mode waves as the driver of the observed ionospheric48
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dTEC. The dTEC and whistler-mode wave amplitudes were modulated by ultra-low-frequency49

(ULF) waves. Our findings offer crucial insights that could ultimately enhance forecast50

capabilities of auroral TEC models.51

1 Introduction52

One of the first observed space weather phenomena was phase and amplitude fluc-53

tuations of radio signals traversing the inhomogeneous ionosphere (Hey et al., 1946). Rapid54

or small-scale fluctuations can cause signal scintillations of the Global Navigation Satel-55

lite Systems (GNSS), degrading positioning accuracy, disrupting navigation and com-56

munication, and leading to signal reception failures or loss of lock (Yeh & Liu, 1982; Kint-57

ner et al., 2007). The ionospheric signal errors, if caused by refractive effects, can be mit-58

igated by using dual-frequency reception to navigate the dispersive ionosphere and com-59

pensating for differential phase delays in the calculated total electron content (TEC) (Mannucci60

et al., 1998; Ciraolo et al., 2007; McCaffrey & Jayachandran, 2017). The rate of TEC61

changes serves as an indicator for predicting GNSS scintillations (Pi et al., 1997; Makare-62

vich et al., 2021). Furthermore, relative TEC perturbations have been used to monitor63

natural hazards, such as tsunamis, earthquakes, explosions, and volcanic eruptions (Komjathy64

et al., 2016; Astafyeva, 2019). Consequently, precise understanding, modeling, and fore-65

casting of ionospheric TEC perturbations is critical for modern society (Kintner et al.,66

2007; Jakowski et al., 2007, 2011).67

Strong small-scale (<∼100 km) TEC perturbations have been observed across both68

low and high latitudes due to a multitude of mechanisms and drivers involved (Pi et al.,69

1997; Basu et al., 2002; Kintner et al., 2007; Moen et al., 2013; Pilipenko et al., 2014;70

Jin et al., 2015; Prikryl et al., 2015; Watson, Jayachandran, Singer, et al., 2016; Fæhn71

Follestad et al., 2020). Near equatorial latitudes, the most intense ionospheric TEC per-72

turbations and GPS scintillations result from irregularities of plasma bubbles or equa-73

torial spread F , driven by the Rayleigh-Taylor instability due to lower atmosphere-ionosphere74

coupling processes (C.-S. Huang & Kelley, 1996; Kelley, 2009; Xiong et al., 2010; Aa et75

al., 2020; Jin et al., 2020). At higher latitudes, TEC perturbations are caused by plasma76

irregularities in the cusp and polar cap regions, ranging from a few meters to hundreds77

of kilometers and associated with solar wind-magnetosphere-ionosphere coupling pro-78

cesses (e.g., Basu et al., 1990; Moen et al., 2013; Spicher et al., 2017). These polar cap79

irregularities, or density patches, emerge from complex dynamics involving EUV radi-80
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ation, convection, cusp precipitation, field-aligned currents, and various plasma insta-81

bilities (Kintner et al., 2007; Moen et al., 2013; Fæhn Follestad et al., 2020).82

TEC perturbations have also been frequently observed in the auroral region, where83

structured particle precipitation prevails (Basu et al., 1983; Coker et al., 1995; Newell84

et al., 2009; Nishimura et al., 2010; Chaston et al., 2003; Watson et al., 2011; Watson,85

Jayachandran, Singer, et al., 2016; Kasahara et al., 2018; Liang et al., 2019; Shen et al.,86

2020; Nishimura et al., 2023). This auroral precipitation, often accompanied by plasma87

flow shears, can induce plasma instabilities and density gradients on scales down to the88

first Fresnel (diffractive) zone of hundreds of meters (Fejer & Kelley, 1980; Keskinen &89

Ossakow, 1983; Tsunoda, 1988; Semeter et al., 2017). Statistical studies have showed that90

strong TEC perturbations and GPS phase scintillations were closely collocated in the91

auroral region (e.g., Spogli et al., 2009; Jin et al., 2015; Prikryl et al., 2015; Makarevich92

et al., 2021).93

Previous studies have identified modulations of TEC perturbations near the au-94

roral region associated with ultra-low-frequency (ULF) waves (Davies & Hartmann, 1976;95

Okuzawa & Davies, 1981; Skone, 2009; Pilipenko et al., 2014; Watson et al., 2015; Wat-96

son, Jayachandran, Singer, et al., 2016; Zhai et al., 2021). Skone (2009) noted that av-97

erage power of magnetic and TEC perturbations in the Pc3 band (∼0.02–0.1 Hz) dis-98

played similar temporal variations. Pilipenko et al. (2014) observed a high coherence (∼0.9)99

between TEC perturbations and global Pc5 pulsations in a few millihertz during a ge-100

omagnetic storm. High coherence and significant common power between TEC pertur-101

bations and ULF radial magnetic field variations in the Pc4 band were also reported by102

Watson, Jayachandran, Singer, et al. (2016). Despite proposals for various direct TEC103

modulation mechanisms by ULF waves (Pilipenko et al., 2014), no mechanism has yet104

been conclusively established.105

Combining spacecraft and ground-based radar observations, Wang et al. (2020) re-106

ported a storm-time event where duskside ionospheric density was modulated by ULF107

waves in the Pc5 range. Density inversion suggests that the Pc5 pulsations modulated108

precipitating electrons over an energy range of ∼1–500 keV and an altitude range of ∼80–109

200 km. The authors postulated that these precipitation and density perturbations are110

likely due to electron scattered into the loss cone by ULF-modulated very-low-frequency111

(VLF) whistler-mode waves.112
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Numerous observations and models demonstrate that ULF waves coexist with and113

modulate whistler-mode chorus waves (Coroniti & Kennel, 1970; W. Li, Thorne, et al.,114

2011; W. Li, Bortnik, Thorne, Nishimura, et al., 2011; Watt et al., 2011; Jaynes et al.,115

2015; Xia et al., 2016, 2020; Zhang et al., 2019, 2020; X. Shi et al., 2022; L. Li et al., 2022,116

2023). The modulation of the whistler-mode wave growth is potentially caused by compression-117

induced ambient thermal or resonant hot electron density variations (W. Li, Bortnik, Thorne,118

Nishimura, et al., 2011; Xia et al., 2016, 2020; Zhang et al., 2019, 2020), resonant elec-119

tron anisotropy variations (W. Li, Thorne, et al., 2011; Watt et al., 2011), and nonlin-120

ear effects from periodic magnetic field configuration variations (L. Li et al., 2022, 2023).121

The periodic excitation of whistler-mode waves at the ULF wave frequency leads to pe-122

riodic electron precipitation, which drives pulsating auroras (e.g., Miyoshi et al., 2010;123

Nishimura et al., 2010; Jaynes et al., 2015) and may account for many previously reported124

dTEC modulations at ULF frequencies (Pilipenko et al., 2014; Watson, Jayachandran,125

Singer, et al., 2016; Zhai et al., 2021).126

However, it is challenging to establish a direct link between magnetospheric drivers127

and ionospheric TEC perturbations during ULF modulation events due to several fac-128

tors: (1) the path-integrated nature of TEC perturbations, which strongly depend on129

the satellite-to-receiver raypath elevation (e.g., Jakowski et al., 1996; Komjathy, 1997),130

(2) inherent phase shifts due to complex propagation and modulation effects (Watson131

et al., 2015), particularly when conjugate observations are misaligned or not synchro-132

nized, and (3) the dynamic and turbulent nature of the auroral ionosphere (Kelley, 2009).133

Direct evidence linking TEC perturbations to magnetospheric drivers is yet to be dis-134

covered.135

In this study, fortuitously conjugate observations from the THEMIS spacecraft and136

the GPS receiver at Fairbanks, Alaska (FAIR) allow us to identify the driver of GPS TEC137

perturbations as magnetospheric electron precipitation induced by ULF-modulated whistler-138

mode waves. Figure 1 illustrates the physical picture emerging from our conjugate mag-139

netospheric and ionospheric observations of ULF waves, modulated whistler-mode waves,140

electron precipitation, and TEC perturbations. These results provide better specifica-141

tions of high-latitude drivers for physics-based TEC modeling (Ridley et al., 2006; Zetter-142

gren & Snively, 2015; Meng et al., 2016, 2020; Sheng et al., 2020; Verkhoglyadova et al.,143

2020; Huba & Drob, 2017) and enhance forecasting capabilities by incorporating the ef-144

fects of magnetospheric wave-driven electron precipitation.145
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Figure 1. Schematic from THEMIS and FAIR observations of (a) modulation of magneto-

spheric precipitation due to electron scattering into the loss cone by ULF-modulated whistler-

mode waves near the magnetic equator; and (b) the modulated electron precipitation has energies

of ∼0.1–30 keV, depositing their energies at altitudes between ∼100–400 km, and inducing mod-

ulated impact ionization and TEC perturbations (dTEC) having amplitudes as large as ∼0.5

TECU and spanning scales of ∼5–80 km.
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In what follows, Section 2 describes datasets and models employed to study whistler-146

driven precipitation and resulting TEC perturbations. Section 3 presents a detailed anal-147

ysis and cross-correlation between observed and modeled TEC perturbations. Section148

4 discusses the geophysical implications and applications of our results, which are fol-149

lowed by our main conclusions.150

2 Data and Methodology151

We derive 1-s vertical TEC (VTEC) measurements from phase and pseudorange152

data collected by the GPS receiver at Fairbanks, Alaska (FAIR) during 15:06–16:36 UT153

on July 3, 2013, processed at Jet Propulsion Laboratory using the GipsyX and Global154

Ionospheric Mapping (GIM) software (Komjathy et al., 2005; Bertiger et al., 2020). Phase-155

based TEC measurements are leveled using pseudorange delays for each phase-connected156

data collection. We focus on links between FAIR and GPS satellites with pseudo ran-157

dom noise (PRN) numbers 40, 43, and 60, referred to as GPS40, GPS43, and GPS60,158

whose ionospheric pierce points (IPP) at 450 km altitude are within 300 km proximity159

to FAIR, or IPPs at 150 km are within 100 km proximity to FAIR. The obtained TEC160

is expressed in TEC units (TECU), i.e., 1016 electrons/m2. The slant TEC is converted161

to VTEC using the standard mapping function (e.g., Mannucci et al., 1998). Measure-162

ments with elevation angles less than 30◦ are not considered here. The VTEC data are163

then detrended to get TEC perturbations (dTEC) using a fourth-order Butterworth low-164

pass filter. We focus on dTEC with wave periods smaller than 25 min. The accuracy of165

dTEC based on phase measurements is ∼0.01–0.02 TECU (e.g., Coster et al., 2013).166

We use the following datasets from THEMIS-E (Angelopoulos, 2008): electron en-167

ergy and pitch-angle distributions measured by the Electrostatic Analyzers (ESA) in-168

strument in the energy range of several eV up to 30 keV (McFadden et al., 2008), DC169

vector magnetic field at spin resolution (∼3 s) measured by the Fluxgate Magnetome-170

ters (FGM) (Auster et al., 2008), electric and magnetic field wave spectra within 1 Hz–171

4 kHz, measured every ∼8 s by the Digital Fields Board (DFB), the Electric Field In-172

strument (EFI), and the search coil magnetometer (SCM) (Le Contel et al., 2008; Bon-173

nell et al., 2008; Cully, Ergun, et al., 2008). Background electron densities are inferred174

from spacecraft potentials (Bonnell et al., 2008; Nishimura et al., 2013). We also use ground-175

based magnetometer measurements every 1 s from the College (CMO) site operated by176
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the United States Geological Survey Geomagnetism Program and from the Fort Yukon177

(FYKN) site operated by the Geophysical Institute at the University of Alaska.178

THEMIS observations of electron distributions and wave spectra allow us to cal-179

culate the precipitating flux of electrons scattered into the loss cone by whistler-mode180

waves using quasilinear diffusion theory (Kennel & Engelmann, 1966; Lyons, 1974). For181

whistler-mode wave normals θ <45◦, we use a validated analytical formula of bounce-182

averaged electron diffusion coefficients from Artemyev et al. (2013). For small pitch an-183

gle αeq approaching the loss cone αLC , the first-order cyclotron resonance provides the184

main contribution to the bounce-averaged diffusion rate:185

⟨Dαeqαeq
⟩ ≃ πB2

wΩceqωm

4γB2
eq∆ω(pϵmeq)13/9T (αLC) cos2αLC

× ∆λR,N (1 + 3 sin2 λR)
7/12(1− ω̄)

|γω̄ − 2γω̄2 + 1||1− γω̄|4/9
, (1)

with Bw indicating the wave amplitude, ωm the mean wave frequency, ∆ω the frequency186

width, ω̄ = ωm/Ωce the normalized frequency, Ωce and Ωceq the local and equatorial187

electron cyclotron frequency, γ the relativistic factor, p the electron momentum, ϵmeq =188

Ωpe/Ωceq

√
ωm/Ωceq where Ωpe is the plasma frequency, T (αeq) the bounce period, λR189

the latitude of resonance, and ∆λR,N the latitudinal range of resonance (see details in190

Artemyev et al. (2013)). The precipitating differential energy flux within the loss cone191

can be estimated as x(E)J (E,αLC), where192

x(E) = 2

∫ 1

0

I0(Z0τ)τdτ/I0(Z0), (2)

being the index of loss cone filling, J(E,αLC) is the electron differential energy flux near193

the loss cone, I0 is the modified Bessel function with an argument Z0 ≃ αLC/
√

⟨Dαeqαeq ⟩ · τloss194

(Kennel & Petschek, 1966), and τloss is assumed to be half of the bounce period.195

With an energy distribution of precipitating electrons within 0.1–30 keV, we es-196

timate the impact ionization rate altitude profile using the parameterization model de-197

veloped by Fang et al. (2010), covering isotropic electron precipitation from 100 eV up198

to 1 MeV. This model, derived through fits to first-principle model results, allows effi-199

cient ionization computation for arbitrary energy spectra. Atmospheric density and scale200

height data were obtained from the NRLMSISE-00 model (Picone et al., 2002). We model201

TEC perturbations resulting from whistler-induced electron precipitation by integrat-202

ing ionization rates over altitude and time, adopting an 8-s integration period to align203

with the temporal resolution of THEMIS wave spectra data. Although our analysis does204

not concern equilibrium densities and omits recombination and convective effects, this205
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neglect has little impact because we focus on relative TEC perturbations due to short-206

time precipitation. It takes nearly 60 s for the background ionosphere to relax to an equi-207

librium density solution for 10-keV precipitation and longer for lower energies (e.g., Kaep-208

pler et al., 2022). Our estimated dTEC also closely match observed dTEC values, un-209

derscoring the effectiveness of our modeling approach despite its approximation.210

3 Results211

On July 3, 2013, from 15:06 to 16:36 UT, the THEMIS-E spacecraft flew westward212

over the FAIR GPS receiver station, coming within ∼20 km relative to FAIR when mapped213

to 450 km altitude. This optimally timed and positioned space-ground conjunction of-214

fers a unique opportunity to link between magnetospheric and ionospheric processes along215

the field line. The event occurred at L ∼7, outside the plasmapause of Lpp ∼5.4 (based216

on THEMIS-E densities near 17:00 UT), near the magnetic local time (MLT ) of 4.5 hr,217

and during a geomagnetic quiet time with Kp ∼1 and AE ∼200 nT. Figure 2a illus-218

trates the trajectories of THEMIS-E and the ionosphere pierce points (IPPs) of GPS40,219

GPS43, and GPS60 near FAIR, mapped to 450 km altitude. The footprints of THEMIS-220

E are field-line traced using the Tsyganenko T96 model (Tsyganenko, 1995) but the GPS221

satellites are mapped using line of sight. Of these GPS satellites, the GPS43 IPPs, mov-222

ing eastward, were nearest to both the FAIR and THEMIS-E footprints, exhibiting close223

longitudinal alignment. A notable conjugacy, marked by the bright red segment from224

15:37 to 16:11 UT, occurred when the footprints of THEMIS-E and GPS43 IPPs were225

within ∼100 km to each other and FAIR (Figure 2j). In Supporting Information, we also226

present the configuration when the satellites and their IPPs are mapped to an altitude227

of 150 km. This adjustment does not significantly alter the geometry of our conjunction228

event, but it does slightly reduce the scale of the satellite footpaths near FAIR.229

Figures 2b–2d present THEMIS observations of whistler-mode waves. The observed230

wave frequencies were in the whistler lower band, spanning ∼0.2–0.5Ωce, with a mean231

frequency ωm ∼0.35Ωce, and ∆ω ∼0.15Ωce, where the electron cyclotron frequency fce ∼232

Ωce/2π ∼2.15 kHz. Figure 2d shows that whistler-mode wave amplitudes Bw range from233

several pT to over 100 pT, measured at 8-s cadence (black curve) and smoothed with234

2-min moving averages (red curve). Short-term oscillations in Bw on the order of tens235

of seconds were observed atop more gradual variations of several minutes. We mainly236

use smoothed or average Bw to estimate electron precipitation in the following. Absent237
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Figure 2. (a) Configuration of THEMIS-E (black curve), GPS40, GPS43, and GPS60 satel-

lites (green, purple, and blue curves), and the FAIR receiver (black star) in geographic coordi-

nates, with THEMIS and GPS mapped onto 450 km altitude using T96 field tracing (THEMIS)

or line of sight (GPS). The plus symbol indicates the start of the footpath. (b–e) THEMIS-E

magnetic field spectrogram, electric field spectrogram, whistler-mode wave amplitudes, and field-

aligned (0◦–22.5◦) electron energy spectrogram. (f) Bounce-averaged electron diffusion rates. (g)

Index of loss cone filling. (h) Whistler-driven precipitating electron energy spectrogram. (i) Com-

parison of whistler-driven model dTEC (red curve) and GPS43-observed dTEC (black curve). (j)

Great-circle distances between THEMIS-E footpath (red curve) and GPS43 raypath (black curve)

at IPP of 450 km relative to the FAIR station.
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direct waveform data on whistler-mode wave normals for our event, we infer, based on238

the measured E/cB spectra (E/cB ≪1, see Supporting Information) and statistical night-239

side equatorial plasma sheet observations (W. Li, Bortnik, Thorne, & Angelopoulos, 2011;240

Agapitov et al., 2013; Meredith et al., 2021), the presence of quasi-parallel whistlers with241

an assumed Gaussian wave normal width of ∆θ ∼30◦ confined within ±30◦ in latitude.242

Figures 2e–2h display the measured plasma sheet field-aligned (α ∼[0◦, 22.5◦]) elec-243

trons from 50 eV up to 25 keV, calculated diffusion rates ⟨Dαeqαeq
⟩, estimated loss cone244

filling x(E), and precipitating electron energy fluxes. Although ⟨Dαeqαeq ⟩ and x(E) in-245

crease at lower energies, the precipitating energy fluxes peak between 1-10 keV, exhibit-246

ing similar modulations as seen in the smoothed whistler-mode wave amplitude Bw. Elec-247

tron precipitation fluxes below ∼200 eV are absent due to an energy threshold for elec-248

tron cyclotron resonance interaction, with the lower limit primarily determined by the249

ratio Ωpe/Ωce (∼3 in our case).250

Figure 2i compares modeled (red) and directly measured dTEC (black) from the251

GPS43 signal, revealing a nearly one-to-one phase correlation from 15:37 to 16:11 UT.252

This period of close correlation coincides with the conjunction of THEMIS-E, GPS43,253

and FAIR, where their relative distances were within ∼100 km (Figure 2j). Outside this254

conjugacy period and further away from the FAIR station, the correlation decreases. Ob-255

served peak-to-peak amplitudes of dTEC reached ∼0.5 TECU. Note that this particu-256

lar event occurred during quiet conditions; other events during storms may have much257

larger TEC modulation amplitudes (e.g., Watson et al., 2015), though more challeng-258

ing to have such reliable conjunction, especially given uncertainties in magnetic field map-259

ping during storms (e.g., C.-L. Huang et al., 2008).260

Figure 3 underscores the critical role of observation geometry and timing in detect-261

ing phase correlations between modeled and measured dTEC across three GPS satellites.262

Despite all three satellites having raypath elevation angles >40◦—reducing the likelihood263

of multi-path effects (e.g., Kintner et al., 2007)—only the GPS43 elevation reached 80◦264

above the FAIR station zenith (Figure 3a). During the conjugacy period, the IPPs of265

GPS40 and GPS60 were distanced from FAIR by more than 200 km, while GPS43’s IPPs266

remained within 100 km, coming within 20 km at its closest point (Figure 3b). Figures 3c267

and 3d reveal that the modeled dTEC (red curve) aligns poorly with GPS40 and GPS60268

dTEC (blue and magenta curves), but a significant cross-correlation (∼0.8) emerges with269
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Figure 3. (a) Raypath elevation angles of GPS40 (green curve), GPS43 (black curve), and

GPS60 (magenta curve). (b) Distances between THEMIS-E footpath and GPS satellite IPPs

relative to FAIR, displayed in the same format as Figure 1j. (c) Comparison between whistler-

driven model dTEC and observed dTEC from GPS40 and GPS60, which were not in good con-

junction with THEMIS or FAIR. (d) Comparison between whistler-driven model dTEC and

GPS43-observed dTEC. The cross-correlation coefficients are -0.15, 0.76, and 0.68 during inter-

vals before, during, and after conjunction, respectively.
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GPS43 dTEC (black) during the conjugacy period. Before and after the conjunction, TEC270

phase shifts reduce the cross-correlation to -0.15 and 0.68, respectively. Given the near-271

parallel longitudinal alignment of GPS43 IPPs and THEMIS-E footprints (Figure 2a),272

the measured dTEC (black) potentially reflects both temporal and spatial/longitudinal273

modulations. These findings suggest that to reliably identify the electron precipitation274

responsible for TEC perturbations requires precise spacecraft spatial alignment, opti-275

mal timing, and high raypath elevations.276

The modulation of TEC perturbations, electron precipitation, and whistler-mode277

wave amplitudes was linked to ULF wave activities in the Pc3-5 band (1.7 mHz to 100278

mHz). Figure 4a display the magnetic field perturbations measured by THEMIS-E in279

the mean field-aligned (MFA) coordinates, in which the parallel direction (||, the com-280

pressional component) is determined by 15-minute sliding averages of the magnetic field,281

the azimuthal direction (ϕ, the toroidal component) is along the cross product of z and282

the spacecraft geocentric position vector, and the radial direction (r, the poloidal com-283

ponent) completes the triad. Magnetic perturbations are obtained by subtracting the284

15-minute mean field. During the conjunction, THEMIS-E detected both compressional285

Pc5 waves (red curve) and poloidal Pc3-4 waves (blue curve). Figure 4b indicates that286

peaks in whistler-mode wave amplitudes approximately align with troughs of compres-287

sional ULF waves, with fine-scale whistler amplitudes primarily modulated by poloidal288

Pc3-4 waves (See Supporting Information). Strong Pc5 ULF waves were also recorded289

in the H-component magnetic field perturbations from magnetometers located at CMO290

and FYKN (Figures 4g–4h), displaying a similar pattern but with greater amplitudes291

at FYKN, located slightly north of FAIR. The discrepancy between ground- and space-292

measured Pc5 waves potentially results from the localized nature of THEMIS-E obser-293

vations (X. Shi et al., 2022) and the screening/modification effects of ULF waves travers-294

ing the ionosphere (Hughes & Southwood, 1976; Lysak, 1991; Lessard & Knudsen, 2001;295

X. Shi et al., 2018). These observations imply that the ionospheric TEC perturbations296

were linked to ULF-modulated whistler-mode waves and the associated electron precip-297

itation (e.g., Coroniti & Kennel, 1970; W. Li, Thorne, et al., 2011; Xia et al., 2016; Zhang298

et al., 2020; L. Li et al., 2023).299

Figures 4b–4c compare small-scale/high-frequency fluctuations of whistler-mode300

wave amplitudes Bw and dTEC, which was bandpass-filtered within the frequency range301

of 5–200 mHz. The small-scale dTEC fluctuations exhibit similar wave periods to Bw302
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Figure 4. (a) THEMIS-E magnetic field perturbations in the mean-field-aligned (MFA) co-

ordinates, exhibiting primarily compressional- (red) and poloidal-mode (blue) variations. (b)

THEMIS-E whistler-mode wave amplitudes. The measured amplitudes are shown in black and

smoothed in red. (c) dTEC bandpass filtered within 5–200 mHz. (d) The rate of dTEC changes

(ROTI) from 200-s sliding window ensemble averaging. (e) Wavelet spectrogram of whistler-

mode waves. (f) Wavelet spectrogram of GPS43 dTEC. (g) Ground-based magnetic field H com-

ponent perturbations in 1.7–100 mHz from the Fort Yukon station (FYKN). (h) Ground-based

magnetic H component perturbations in 1.7–100 mHz from the College station (CMO). (i–k)

Comparisons of dTEC (orange curves) and whistler-mode wave amplitude fluctuation spectra

(gray curves) in 1–60 mHz measured before (k), during (j), and after (k) the conjugacy period.
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fluctuations, evidently intensifying during the conjugacy period, yet lacking a clear phase303

correlation seen with larger scale perturbations in Figure 3d. Assumed purely spatial,304

small-scale dTEC variations have wavelengths of ∼15–30 km at IPPs of 450 km altitude305

(or ∼5–10 km at IPPs of 150 km altitude), compared with the larger-scale dTEC wave-306

lengths of ∼80 km (or ∼25 km at IPPs of 150 km altitude). When mapped to the mag-307

netosphere, these small-scale dTEC modulations correspond to a magnetospheric source308

region of ∼100–700 km, while large-scale dTEC modulations suggest a source region of309

∼500–2000 km. These scales align with prior observations of the transverse scale sizes310

of chorus elements and their source regions (SantoĺıK et al., 2003; Agapitov et al., 2017,311

2018), and with the azimuthal wavelengths of high-m poloidal ULF waves (Yeoman et312

al., 2012; X. Shi et al., 2018; Zong et al., 2017). Figure 4d shows the rate of TEC index313

(ROTI), i.e., the standard deviation of the rate of TEC (ROT ) (Pi et al., 1997), where314

ROT = (dTEC(t+τ)−dTEC(t))/τ with τ =10 s, ROTI =
√

⟨ROT 2⟩ − ⟨ROT ⟩2 us-315

ing 200-s sliding averages. Significant increases in ROTI were observed within the re-316

gion of whistler-driven TEC perturbations. However, in our case the GPS signal fluc-317

tuations were predominantly refractive, as negligible fluctuations were detected at fre-318

quencies above 0.1 Hz (McCaffrey & Jayachandran, 2017, 2019; Nishimura et al., 2023).319

Figures 4e–4f compare the wavelet spectrograms of whistler-mode wave Bw and dTEC,320

displaying concurrent increases in wave power for both in the frequency range of ∼3 mHz321

up to tens of mHz. Figures 4i–4k present a more detailed amplitude spectra compari-322

son before, during, and after conjunction. Notably, only during the conjunction, whistler-323

mode wave amplitudes and dTEC share similar power spectral density (PSD) distribu-324

tions in the 1–∼30 mHz range. The peaks in whistler spectra were slightly and consis-325

tently larger than those in dTEC spectra within 3–20 mHz by factors of 1.05–1.2, align-326

ing with expected Doppler shift effects on ionospheric TEC measurements. The Doppler327

shift results from relative motion of GPS raypath (or IPPs with velocities of ∼160 m/s328

in our case) and propagating TEC structures (typically with velocities of several hun-329

dred m/s) (Watson, Jayachandran, & MacDougall, 2016): fcor = fobs(1+
vipp·vstruct

|vstruct|2 ),330

where fcor is the frequency corrected for relative motion. Watson, Jayachandran, and331

MacDougall (2016) found that 89% of their statistical events required a correction fac-332

tor of 1.2 or less for the Doppler shift, consistent with our observations. The agreement333

between dTEC and whistler amplitude spectra supports that the observed dTEC resulted334

from electron precipitation induced by whistler-mode waves.335
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Figure 5. Ionization rate altitude profiles calculated at three time stamps of 15:38:00,

15:45:01, and 15:53:11 UT, corresponding to whistler-mode wave amplitudes of Bw= 24.5 pT

(red curve), 3.0 pT (gray curve), and 19.9 pT (orange curve). The dTEC were calculated by in-

tegrating ionization rates over altitude and time (8s). The dashed lines mark the peak deposition

altitudes of 100 eV, 500 eV, 1 keV, 10 keV, and 30 keV precipitating monoenergetic electrons.
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Figure 5 indicates that the electron precipitation, induced by ULF-modulated whistler-336

mode waves, can cause significant increases in ionospheric ionization rate or column den-337

sity, leading to TEC perturbations of ∼0.36 TECU with a moderate whistler amplitude338

of Bw ∼25 pT. Given that large-amplitude whistler-mode waves exceeding several hun-339

dred pT frequently occur in the inner magnetosphere (Cattell et al., 2008; Cully, Bon-340

nell, & Ergun, 2008; Agapitov et al., 2014; Hartley et al., 2016; R. Shi et al., 2019), we341

anticipate even larger TEC perturbations from such whistler activities. We defer a sta-342

tistical study including storm time events and the potential connection with scintilla-343

tion (e.g., McCaffrey & Jayachandran, 2019; Nishimura et al., 2023) for the future. In344

addition, the primary energy range of precipitation spans from ∼100 eV to ∼30 keV, con-345

tributing to density variations between ∼90–∼400 km (Fang et al., 2010; Katoh et al.,346

2023; Berland et al., 2023).347

4 Discussion348

Various mechanisms have been proposed that link ULF waves to TEC perturba-349

tions and ionospheric disturbances in general (Pilipenko et al., 2014). Although TEC per-350

turbations might arise from direct ULF wave effects through convective and divergent351

flows, MHD Alfvén-mode waves do not directly alter plasma density. Furthermore, mode-352

converted compressional waves, if present due to Hall currents, are evanescent in the iono-353

sphere (Lessard & Knudsen, 2001), resulting in minimal TEC perturbations (Pilipenko354

et al., 2014). A non-linear ”feedback instability” mechanism may modify ULF wave dy-355

namics, causing field-aligned current striations and significant bottom-side ionospheric356

density cavities and gradients (Lysak, 1991; Streltsov & Lotko, 2008). Additionally, elec-357

tron precipitation and Joule heating are important factors to consider in the auroral re-358

gion (e.g., Deng & Ridley, 2007; Sheng et al., 2020; Meng et al., 2022).359

Detecting one-to-one phase correlation between ground-based ULF waves and TEC360

perturbations may be challenging, largely due to ionospheric screening effects on ULF361

waves (Hughes & Southwood, 1976), with only a few exceptions noted during storm times362

(Pilipenko et al., 2014; Wang et al., 2020). However, this correlation has been frequently363

observed with spacecraft measurements of ULF waves (Watson et al., 2015; Watson, Jay-364

achandran, Singer, et al., 2016; Zhai et al., 2021), indicating that magnetospheric pro-365

cesses may play an important role in driving ionospheric TEC perturbations. Our find-366

ings support that magnetospheric whistler-mode waves, modulated by ULF waves in the367
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Pc3–5 band, are responsible for these periodic TEC perturbations through associated368

electron precipitation.369

These results enhance our understanding of TEC modulation by ULF waves, a topic370

widely discussed in the literature (Skone, 2009; Pilipenko et al., 2014; Watson et al., 2015;371

Watson, Jayachandran, Singer, et al., 2016; Wang et al., 2020; Zhai et al., 2021), and fa-372

cilitates the integration of effects of magnetospheric whistler-mode waves into auroral373

TEC models. Statistical modeling of whistler-mode and ULF waves has been improv-374

ing for several decades (e.g., Tsurutani & Smith, 1974; McPherron, 1972; Takahashi &375

Anderson, 1992; W. Li, Bortnik, Thorne, & Angelopoulos, 2011; Agapitov et al., 2013;376

Artemyev et al., 2016; Tyler et al., 2019; Zong et al., 2017; Ma et al., 2020; Zhang et al.,377

2020; Sandhu et al., 2021; Hartinger et al., 2015, 2022, 2023). Leveraging these wave ef-378

fects and the associated electron precipitation can enhance understanding and physics-379

based modeling of high-latitude TEC (Ridley et al., 2006; Zettergren & Snively, 2015;380

Meng et al., 2016, 2020; Sheng et al., 2020; Verkhoglyadova et al., 2020; Huba & Drob,381

2017). Incorporating these magnetospheric phenomena is vital for improving the accu-382

racy of ionospheric TEC models during periods of elevated geomagnetic activities, po-383

tentially benefiting ionospheric science and GNSS-based applications.384

5 Conclusions385

We present a detailed case study of ionospheric TEC perturbations (dTEC), us-386

ing fortuitously timed and positioned conjugate observations from the THEMIS space-387

craft and the GPS receiver at Fairbanks, Alaska (FAIR). This conjunction setup allows388

us to identify the magnetospheric driver of the observed dTEC. Our key findings are sum-389

marized below:390

• Combining in-situ wave and electron observations and quasilinear theory, we have391

modeled the electron precipitation induced by observed whistler-mode waves and392

deduced ionospheric dTEC based on impact ionization predictions. The cross-correlation393

between the modeled and observed dTEC reached ∼0.8 during the conjugacy pe-394

riod of ∼30 min but decreased outside of it.395

• Observed peak-to-peak dTEC amplitudes reached ∼0.5 TECU, exhibiting mod-396

ulations spanning scales of ∼5–80 km. Within the modulated dTEC, enhancements397

in the rate of TEC index (ROTI) were measured to be ∼0.2 TECU/min.398
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• The whistler-mode waves and dTEC modulations were linked to ULF waves in the399

Pc3-5 band, featuring concurrent compressional and poloidal mode fluctuations.400

The amplitude spectra of whistler-mode waves and dTEC also agreed from 1 mHz401

to tens of mHz during the conjugacy period but diverged outside of it.402

Thus, our results provide direct evidence that ULF-modulated whistler-mode waves403

in the magnetosphere drive electron precipitation leading to ionospheric TEC pertur-404

bation modulations. Our observations also indicate that to reliably identify the electron405

precipitation responsible for TEC perturbations requires precise spacecraft spatial align-406

ment, optimal timing, and high raypath elevations. Our findings may help to augment407

physics-based high-latitude TEC modeling and forecasting by incorporating the effects408

of magnetospheric wave-driven precipitation.409
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Ridley, A. J., Deng, Y., & Tóth, G. (2006, May). The global ionosphere thermo-745

sphere model. Journal of Atmospheric and Solar-Terrestrial Physics, 68 (8),746

839-864. doi: 10.1016/j.jastp.2006.01.008747

Sandhu, J. K., Rae, I. J., Staples, F. A., Hartley, D. P., Walach, M. T., Elsden, T.,748

& Murphy, K. R. (2021, July). The Roles of the Magnetopause and Plasma-749

pause in Storm-Time ULF Wave Power Enhancements. Journal of Geophysical750

Research (Space Physics), 126 (7), e29337. doi: 10.1029/2021JA029337751
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