Supporting Information

Machine Learning-Assisted High-Throughput Screening of Transparent Organic Light-Emitting Diodes Anode Materials

Liying Cui[#], Qing Li[#], Yanchang Zhang, Jiao Zhang, Zhe Wang, Jiankang Chen, and Bing Zheng*

L. Y. Cui, Q. Li, Y. C. Zhang, J. Zhang, Z. Wang, J. K. Chen, Prof. B. Zheng
Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, P. R. China.
E-mail: zhengbing0106@163.com, zhengbing@hlju.edu.cn (B. Z.)

Contents of the Supporting Information:

S1 Calculation details

S1.1 Calculation details of materials in 2DMatPedia database

S1.2. Calculation details of Pearson correlation coefficient

S1.3 Calculation details of random.shuffle() function

S1.4 Calculation details of t-SNE algorithm

S1.5 Calculation details of work function

S2 Figures

Figure S1 The 2D spatial distribution visualization of dataset before and after data processing and feature engineering.

Figure S2. The results of 5-fold cross validation of CatBoost model.

Figure S3. The work function values predicted by ML and DFT.

Figure S4. The luminous mechanism of OLED devices and the energy level of common organic materials.

Figure S5. The decomposition energy of 59 experimentally obtained 2D materials.

Figure S6. Individual SHAP plots of the CatBoost model predictions for the structures with different space groups produced by high-throughput screening processes.

S3 Tables

Table 1. Properties computed by C2DB single-layer workflow and corresponding methods.

Table 2. The key variables (name, data type, and a short description.) of materials collection in

 2DMatPedia database.

Table 3. The 24 descriptors and their corresponding symbols after feature engineering and data processing.

Table 4. The parameter, parameter space, and the best parameter of CatBoost in the process of parameter optimization using random grid search method.

Table 5. The comprehensive list of 10 transparent OLED anode candidate materials.

Table 6. The deformation potential constant (*E*), elastic constant (*C*), band effective mass (m^*), and relaxation time (τ) of candidate materials at 300K.

S1 Calculation details

S1.1 Calculation details of materials in 2DMatPedia database

The DFT calculations of materials in 2DMatPedia database are performed using the Vienna Ab initio Simulation Package (VASP) with the frozen-core all-electron projector-augmented wave (PAW) method for the electron-ion interaction. All calculations are performed with spin polarization and high initial magnetic moments for magnetic ions. Calibrated Hubbard U values are applied for the transition metals ions in transition metal oxides and fluorides. The cutoff energy for the plane wave expansion of electron wavefunction is set to 520 eV.^[1] The interlayer dispersion interaction in layered materials is included via the dispersion-corrected vdW-optB88 exchange-correlation functional.

S1.2 Calculation details of Pearson correlation coefficient

In the process of feature engineering, we use Pearson correlation coefficient to measure the degree of linear correlation between every pair of features, with values between -1 and 1. A larger absolute value of the correlation coefficient indicates a stronger degree of correlation, whereas a smaller absolute value indicates a weaker degree of correlation. The formula be calculated using Equation (S1).

$$\rho(X,Y) = \frac{\sum (X - \overline{X})(Y - \overline{Y})}{\sqrt{\sum (X - \overline{X})^2 \sum (Y - \overline{Y})^2}}$$
(S1)

where X and Y are two features, \overline{X} and \overline{Y} are their average values.^[2]

S1.3 Calculation details of random.shuffle() function

The random.shuffle() is a function in the Python standard library used to randomly shuffle elements in a list or variable sequence. Its algorithm mechanism is based on the Fisher Yates shuffling algorithm (also known as the Knuth shuffling algorithm), which is a classic random permutation algorithm.

The principle of the Fisher Yates shuffling algorithm is as follows:

- 1. Traverse forward until the first element, starting from the last element in the list.
- 2. Randomly select a position (including the current position itself).
- 3. Swap the two elements in the current position and the randomly selected position.
- 4. Continue traversing forward and repeat steps 2 and 3 until the first element is reached.

S1.4 Calculation details of t-SNE algorithm

The t-distributed stochastic neighbor embedding (t-SNE) algorithm, is a powerful technique for reducing and visualizing high-dimensional data, which was first proposed by Maaten and Hinton in 2008. The main contribution of the t-SNE algorithm is the ability to preserve the similarities between any two data points, both in high- and low-dimensional spaces, through a probabilistic approach.^[2, 3] It uses the t-distribution to efficiently handle outliers in highdimensional data and generates better clustering in low-dimensional spaces. The conditional probability ($P_{j|i}$) is used to represent the similarity based on the Euclidean distance, which is defined using Equation (S2).

$$P_{j|i} = \frac{\exp(-\|x_i - x_j\|^2 / 2\sigma_i^2)}{\exp(-\|x_i - x_k\|^2 / 2\sigma_i^2)}$$
(S2)

where x_i , x_j , and x_k represent one of the N high-dimensional data points. σ_i has different values for different points x_i and is usually the Gaussian mean square error centered at data point x_i .

 $q_{j|i}$ is the conditional probability of $P_{j|i}$ using the t-distribution, which is defined using Equation (S3).

$$q_{j|i} = \frac{(1 + \|y_i - y_j\|^2)^{-1}}{\sum_{k \neq i} (1 + \|y_i - y_k\|^2)^{-1}}$$
(S3)

where y_{i} , x_{j} , and y_{k} represent one of the N high-dimensional data points.

If the effect of dimensionality reduction is better and local features remain intact, then $q_{j|i=}$ $P_{j|i}$.

S1.5 Calculation details of work function

Work function is a fundamental and important physical quantity in surface science, defined in solid state physics as the minimum amount of energy required to move an electron from the interior of a solid to the surface. In theoretical calculations, this physical quantity is expressed using Equation (S4).

$$\phi = E_{\rm vac} - E_{\rm F} \tag{S4}$$

where ϕ represents the work function of the system, where E_{vac} and E_{F} denote the vacuum and Fermi level of the system, respectively.^[4] The work function depends not only on the electronic properties of the crystal but also on the features of the surface, such as Miller indices, surface functional group modifications,^[5] and surface dipole moments.^[6-11] In the absence of adsorbed atoms or molecules on the surface, the intrinsic internal polarity of the compound can also give rise to a dipole at the surface, thereby affecting the work function. Materials with both high and low work functions have important applications. Materials with low work functions can be applied to displays, electron guns, and catalysts, whereas materials with high work function can be used in electrodes, photovoltaic devices, and so on.^[12, 13]

S2 Figures

Figure S1. The visualization of 2D feature spatial distribution (a) before and (b) after data processing and feature engineering. Feature1 and Feature2 represent the values of the corresponding two features of the dataset after dimensionality reduction. The different material sample point colors represent the Feature1 values.

Figure S2. The results of 5-fold cross validation of CatBoost model with RMSE as a performance evaluation index.

Figure S3. The work function (ϕ) values of AB-type 2D nanomaterials predicted by machine learning (ML) and density functional theory (DFT).

Figure S4. (a) The luminous mechanism of OLED devices. Under the action of bias voltage, the holes and the electrons are injected into the HOMO level of the hole transport layer (HTL) from the anode, and the LUMO level of the electron transport layer (ETL) from the cathode, respectively. In the emulsion layer (EL), holes and electrons meet and recombine. Energy is then emitted in the form of photons. ϕ represents work function. (b) The energy level of common organic materials.

Figure S5. The decomposition energy of 59 experimentally obtained 2D materials. The blue open and the red solid blocks are the decomposition energies of 2D materials generated using top-down and bottom-up methods, respectively.

Figure S6. Individual SHAP plots of the CatBoost model predictions for (a) $BeI_2(P-3m1)$, (b) $AI_2Se_5(C2/m)$, (c) $TaTe_2(P-6m2)$, (d) $GeSe(Pmn2_1)$, (e) $Be_2Cd(P4/mmm)$ and (f) $TaI_5(P-1)$. The SHAP positive (red) and negative (blue) feature weights are given for the six materials. The bar size represents the SHAP value. The base value is the mean value of the work function in 2DMatPedia database during high throughput screening. The output value f(x) represents the predicted work function of the three materials.

S3 Tables

Table S1. Properties computed by C2DB single-layer workflow and corresponding methods. A '*' indicates that spin–orbit coupling (SOC) is included. All calculations are performed with the GPAW code using a plane wave basis except for the Raman calculations, which employ a double-zeta polarised basis of numerical atomic orbitals.^[14, 15]

Property	Method
Bader charges	PBE
Energy above convex hull	PBE
Heat of formation	PBE
Orbital projected band structure	PBE
Out-of-plane dipole	PBE
Phonons (Γ and BZ corners)	PBE
Projected density of states	PBE
Stiffness tensor	PBE
Exchange couplings	PBE
Infrared polarisability	PBE
Second harmonic generation	PBE
Electronic band structure PBE	PBE*
Magnetic anisotropies	PBE*
Deformation potentials	PBE*
Effective masses	PBE*
Fermi surface	PBE*
Plasma frequency	PBE*
Work function	PBE*
Optical polarisability	RPA@PBE
Electronic band structure	HSE06@PBE*
Electronic band structure	G0W0@PB E*
Born charges	PBE, Berry phase
Raman spectrum	PBE, LCAO basis set
Piezoelectric tensor	PBE, Berry phase
Optical absorbance	$BSE@G_0W_0*$
Spontaneous polarisation	PBE, Berry phase
Topological invariants	PBE*, Berry phase

Table S2	. The key	variables	(name, dat	a type,	and a short	description	.) of materials	collection
in 2DMat	Pedia dat	abase.						

Key	Datatype	Description
material_id	string	IDs for entries in the 2Dmatpedia
relative_id	string	IDs for where a 2D material is obtained from
discovery_process	string	How a 2D materials is generated
structure	dictionary	Relaxed crystal structure represented in dictionary
formula	string	Chemical formula
nelements	string	Number of elements in this material
elements	list	List of elements in this material
Space group	string	Space group number defined by The International Union of Crystallography
point_group	string	Point group in Hermann-Mauguin notation
bandgap	float	Energy band gap of this material
is_gap_direct	Boolean	Is the material a direct gap
is_metal	Boolean	Is the material metallic
energy_per_atom	float	Energy per atom in eV without vdW correction
energy_vdw_per_atom	float	Energy per atom in eV with vdW correction
exfoliation_energy_per_atom	float	Exfoliation energy of the 2D material in eV/atom
decomposition_energy- per_atom	float	Decomposition energy of the 2D material in eV/atom
total magnetization	float	Total magnetic moment in $\mu_{\rm B}$

Table S3. The 24 descriptors and their corresponding symbols after feature engineering and data processing for the AB-type 2D nanomaterials. A and B represent the first and second elements in the formula, respectively.

Symbol	Feature		
S	Space group		
SN	Space group number		
AN/BN	Element amount of A or B		
AIP/BIP	Ionization energy of A or B		
ARi/BRi	Ionic radius of A or B		
AP/BP	Density of A or B		
AEA/BEA	Electron affinity energy of A or B		
ARC/BRC	Covalent radius of A or B		
AE	Elastic modulus of A		
Bq	Conductivity of B		
Ac/Bc	Specific heat capacity of A or B		
AH/BH	Heat of evaporation of A or B		
ATB	Boiling point of A		
ATM/BTM	Melting point of A or B		
AV	Atomic volume of A		

Table S4. The parameter, parameter space, and the best parameter of CatBoost in the process
 of parameter optimization using random grid search method.

Parameter	Parameter space	Best parameter of CatBoost
Iterations	200-3000	1313
Max_depth	5–12	9
Learning_rate	0.02-0.12	0.092

Table S5. The material_id, chemical formula, space group, band gap (E_g , eV), decomposition energy (E_D , eV/atom), exfoliation energy (E_{ex} , eV/atom), and work function values (ϕ , eV) of 10 transparent OLED anode candidate materials.

Material_id	Chemical formula	Space group	$E_{ m g}$	E_{D}	$E_{\rm ex}$	ϕ
2dm-4763	Bi_1F_4	P4/mmm	0.725	0.068	0.039	6.82
2dm-748	ClO_2	P2_1/c	0.266	0.058	0.044	6.48
2dm-1472	BS	P-3m1	2.902	0.000	0.044	6.28
2dm-1127	BiCl ₃	Pmmn	2.917	0.000	0.010	6.14
2dm-1126	BS	P-6m2	2.787	0.000	0.044	5.97
2dm-625	Bi_2S_3	P-3m1	1.104	0.005	0.059	5.95
2dm-298	BSe	P-6m2	2.577	0.000	0.047	5.53
2dm-2975	AlS	P-6m2	2.034	0.007	0.056	5.48
2dm-570	BrO ₃	P-1	1.654	0.041	-0.084	5.39
2dm-6204	PS	P2_1/c	1.921	0.035	_	5.11

Table S6. The deformation potential constant (*E*), elastic constant (*C*), band effective mass (m^*) , and relaxation time (τ) of candidate materials at 300K.

	Direction	Carrier type	E(eV)	$C (J/m^2)$	m*	τ (fs)
BiCl ₃	<i>x</i> -axis	Electrons	2.09	29.13	0.35	167.96
		Holes	2.09	29.13	2.88	7.09
PS	x-axis	Electrons	1.60	43.62	0.54	250.74
		Holes	1.60	43.62	0.53	253.58

References

- Zhou J., Shen L., Costa M. D., Persson K. A., Ong S. P., Huck P., Lu Y., Ma X., Chen Y., Tang H., Feng Y. P., 2DMatPedia, an Open Computational Database of Two-Dimensional Materials from Top-Down and Bottom-Up Approaches [J]. *Sci. Data*, 2019, *6*: 86.
- [2] Edelmann D., Móri T. F., Székely G. J., On Relationships Between the Pearson and the Distance Correlation Coefficients [J]. *Stat. Probab. Lett.*, 2021, *169*: 6.
- [3] Van L., Hinton G., Visualizing Data Using t-SNE [J]. J. Mach. Learn. Res., 2008, 9: 2579–2605.
- [4] Greiner M. T., Chai L., Helander M. G., Tang W. M., Lu Z. H., Transition Metal Oxide Work Functions: The Influence of Cation Oxidation State and Oxygen Vacancies [J]. Adv. Funct. Mater., 2012, 22: 4557–4568.
- [5] Khazaei M., Arai M., Sasaki T., Ranjbar A., Liang Y. Y., Yunoki S., OH-Terminated Two-Dimensional Transition Metal Carbides and Nitrides as Ultralow Work Function Materials [J]. *Phys. Rev. B*, 2015, 92: 10.
- [6] Kolb D., M., Przasnyski M., Gerischer H., Underpotential Deposition of Metals and Work Function Differences [J]. J. Electroanal. Chem. Interfacial Electrochem., 1974, 54: 25– 38.
- [7] Zhu J., Zhang H., Zhao L., Xiong W., Huang X., Wang B., Zhang Y. F., Properties of Two-Dimensional Insulators: A DFT Study of Bimetallic Oxide CrW₂O₉ Clusters Adsorption on MgO Ultrathin Films [J]. *Appl. Surf. Sci.*, 2016, 379: 213–222.
- [8] Huang J. S., Xu Z., Yang Y., Low-Work-Function Surface Formed by Solution-Processed and Thermally Deposited Nanoscale Layers of Cesium Carbonate [J]. *Adv. Funct. Mater.*, 2007, *17*: 1966–1973.
- [9] Prada S., Martinez U., Pacchioni G., Work Function Changes Induced by Deposition of Ultrathin Dielectric Films on Metals: A Theoretical Analysis [J]. *Phys. Rev. B*, 2008, 78: 8.
- [10] Martinez U., Jerratsch J. F., Nilius N., Giordano L., Pacchioni G., Freund H. J., Tailoring the Interaction Strength between Gold Particles and Silica Thin Films Via Work Function Control [J]. *Phys. Rev. Lett.*, 2009, *103*: 4.
- [11] Prada S., Giordano L., Pacchioni G., Li, Al, and Ni Substitutional Doping in MgO Ultrathin Films on Metals: Work Function Tuning via Charge Compensation [J]. J. Phys. Chem. C, 2012, 116: 5781–5786.

- [12] Stoessel M., Staudigel J., Steuber F., Simmerer J., Winnacker A., Impact of the Cathode Metal Work Function on the Performance of Vacuum-Deposited Organic Light Emitting-Devices [J]. *Appl. Phys. A*, 1999, 68: 387–390.
- [13] Tsiplakides, D., Work Function and Catalytic Activity Measurements of an IrO₂ Film Deposited on YSZ Subjected to in Situ Electrochemical Promotion [J]. *J. Electrochem. Soc.*, 1998, *145*: 905.
- [14] Haastrup S., Strange M., Pandey M., Deilmann T., Schmidt P. S., Hinsche N. F., Gjerding M. N., Torelli D., Larsen P. M., Riis-Jensen A. C., Gath J., Jacobsen K. W., Mortensen J. J., Olsen T., Thygesen K. S., The Computational 2D Materials Database: High-Throughput Modeling and Discovery of Atomically Thin Crystals [J]. 2D Mater., 2018, 5: 042002.
- [15] Gjerding M. N., Taghizadeh A., Rasmussen A., Ali S., Bertoldo F., Deilmann T., Knosgaard N. R., Kruse M., Larsen A. H., Manti S., Pedersen T. G., Petralanda U., Skovhus T., Svendsen M. K., Mortensen J. J., Olsen T., Thygesen K. S., Recent Progress of the Computational 2D Materials Database (C2DB) [J]. 2D Mater., 2021, 8: 044002.