770 Supporting Information

771

Figure S1: Enhanced lysis of a *pgi* mutant. Overnight cultures of the indicated strains
were plated on agar containing glucose and the lysis indicator CPRG (see text for details)
and imaged after 18 hours of growth.

778

Figure S2: Ability of Δpgi to grow on various carbon sources. A) Growth curves with M9 minimal media and the indicated sole carbon sources. SEM plotted. B) Serial dilutions of overnight cultures grown in M9 + 0.2%CAA plated on M9 agar supplemented with the indicated carbon sources and grown for 18 hours at 37°C. C) Growth curves with M9 minimal media, designated carbon sources, and 0.2% glucose. SEM plotted. D) Serial dilutions of overnight cultures grown in M9 + 0.2%CAA plated on M9 agar supplemented with the designated carbon sources and 0.2% glucose.

Figure S3: *In vitro* biochemical abundance of specified metabolites. UDP-GlcNAc levels measured with 125mM G1P addition. SEM plotted with 3 replicates displayed.

Model	Polar interactions with Glucosamine-1-P	Length of bond (Å) – some residues form multiple bonds with Glucosamine-1-P	Predicted Template Modeling (pTM) score (confidence in structure)	Interface Predicted Template Modeling (ipTM) score (confidence in interface)
0	Arg 330 Lys 348 Tyr 363 Asn 374 Asn 383 – this does not bind N in glucosamine Lys 389	3.0 3.5 2.9, 3.6, 3.7 2.1 3.2, 3.3, 3.4 2.8, 3.0, 3.2, 3.3	0.9556	0.9387
1	Arg 330 Lys 348 Asn 359 Tyr 363 Asn 383 Lys 389	2.9 2.9 3.2 2.5 2.9 2.4, 3.5	0.9558	0.9389
2	Arg 330 Tyr 363 Asn 374 Asn 383 Lys 389	2.9 2.4, 3.3, 3.4 2.0 3.2, 3.5 2.8	0.9553	0.9385
3	Arg 330 Lys 348 Tyr 363 Asn 374 Asn 383 – this binds N in glucosamine Lys 389	3.0 3.5 2.7, 2.9, 3.6 2.1 3.2, 3.3, 3.4 2.8, 3.0, 3.2, 3.3	0.9556	0.9388
4	Arg 330 Lys 348 Tyr 363 Asn 374 Asn 383 Lys 389	2.9, 3.4 2.8 2.5 1.9 3.5 2.8, 3.5	0.9554	0.9384

<u>ــــــــــــــــــــــــــــــــــــ</u>					
Model	Polar interactions with Glucose-1-P	Length of bond (Å) – some residues form multiple bonds with Glucose-1-P	Predicted Template Modeling (pTM) score (confidence in structure)	Interface Predicted Template Modeling (ipTM) score (confidence in interface)	
0	Lys 12* Gly 13* Asp 102 Asn 224	2.9 3.1, 3.4 3.5 3.2	0.9553	0.9382	
1	Leu 8* Ala 10* Lys 12* Lys 22	3.3 3.5 3.5 2.7, 3.6	0.9555	0.9385	
2	Arg 330 His 360 Tyr 363 Asn 374 Asn 383 Lys 389	2.4, 3.4 3.4 2.0 2.8, 3.2 3.3, 3.3 2.7, 3.4	0.9548	0.9375	
3	Lys 12* Gly 13* Lys 22 Gln 76 Asp 102 Asn 224	2.6 3.0, 3.4 2.6, 3.5 3.3 2.9 3.0	0.9552	0.9382	
4	Arg 330 Lys 348 Asg 359 Tyr 363 Asn 374 Asn 383 Tyr 384* Lys 389	3.3 3.5 3.0 2.6, 3.1 3.0, 3.3 2.9, 3.3, 3.4 3.1 3.1, 3.5	0.9549	0.9376	

С					
•	Model	Polar interactions with G6P	Length of bond (Å) – some residues form multiple bonds with G6P	Predicted Template Modeling (pTM) score (confidence in structure)	Interface Predicted Template Modeling (ipTM) score (confidence in interface)
	0	Asn 374 Ala 377 * Asn 383 His 360 Asn 359 Arg 330 Lys 348 Tyr 363	3.1, 2.8 3.3 2.6, 2.9, 3.0 3.5, 3.4 3.5 2.3, 3.4 3.0 2.5	0.9332	0.9083
	1	Ala 377 * Asn 374 Ser 402 Asn 383 His 360 Tyr 363 Arg 330 Lys 348 Lys 389	3.3 2.9, 2.9 3.5 2.3, 3.0, 3.1 3.4 3.6, 2.7 3.4, 2.8 3.1 3.3	0.9342	0.9099
	2	Asn 374 Asn 359 His 360 Arg 330 Tyr 363 Lys 348 Lys 389 Ser 402	2.2, 3.2, 3.6 2.8 3.5 2.6 1.9 3.5, 3.5 3.0 3.2	0.9335	0.9080
	3	Asn 383 Tyr 363 Arg 330 Asn 374 Val 375 *	3.1 3.1, 3.4 2.3 2.4, 3.0 3.1	0.9336	0.9095
	4	Asn 383 Tyr 363 Arg 330 Lys 389 Asn 359 Asn 374 Ala 377 *	2.9, 3.2 2.3 2.3, 3.5 3.3 3.0 2.8, 2.9 3.4	0.9336	0.9095

793

*interaction with backbone, not side chain

794

795 Figure S4: Predicted molecular models of GImU. A) Predicted models of VCH GImU with glucosamine-1P with interacting residues denoted, length of bonds, pTM and ipTM 796 797 scores. Model #3 was the model used above. B) Predicted models of VCH GlmU with 798 glucose-1P with interacting residues denoted, length of bonds, pTM and ipTM scores. Model #4 was the model used above. Highlighted in green are the same interacting 799 residues as the substrate GlcN-1P. C) Predicted models of VCH GlmU with glucose-6P 800 with interacting residues denoted, length of bonds, pTM and ipTM scores. Model #1 was 801 802 the model used above. Highlighted in green are the same interacting residues as the 803 substrate GlcN-1P. D) Molecular modeling of GlmU binding glucose-6P (red) and the 804 associated polar interactions.

805

806

Figure S5: Structural alignments of GImU. A) Multiple amino-acid sequence alignments of *M.Tb, E.coli,* and *V. cholerae* with conserved residues denoted, using Clustal. B) GImU monomer structural alignment. GImU^{VC} is blue, GImU^{EC} is depicted in orange, and GImU^{Mtb} is in teal. RMSD, root mean squared deviation, is a measure of how closely two alignments match; RMSD < 2.5 is a reasonable alignment. C) Percent Identity Matrix, created by Clustal2.1 shows alignment similarity across species.

Strain	Description	Source or Reference
WT*	Wild-type V. cholerae N16961 El Tor	Heidelberg JF, et. al., 2000
MK1 [*]	Δ <i>pgi</i> (vc0374)	Keller MK <i>, et. al.,</i> 2023
MK4	Δpgi P _{tac} - pgi	Keller MK, <i>et. al.</i> , 2023
MK12	Δ <i>pgi</i> P _{tac} - <i>nagB</i> (vca1025)	This study
MK13*	Δ <i>pgi ΔpgcA</i> (vc2095)	This study
MK14	Δpgi P _{tac} - pgcA	This study
MK15	Δ <i>pgi</i> P _{tac} - <i>glmS</i> (vc0487)	This study
MK16	Δ <i>pgi</i> pHL: <i>glmU</i> (vc2762)	This study
MK110	<i>E. coli</i> SM10 λpir conjugation strain	Ferrières L, <i>et. al.,</i> 2010
MK120	E. coli MFD pir conjugation strain	Ferrières L, <i>et. al.</i> , 2010
MK130	E. coli BL21 protein purification strain	Novagen

* = checked via whole genome sequencing

814

Table S1: Strain list used in this study. * = checked via whole genome sequencing

Plasmid	Description	Source or reference
p1D101	chromosomal lacz insertion with IPIG induction	Obando MA, et. al., 2024
pTOX5	gene deletion construct	Lazarus JE, et. al., 2019
pET28a	6xHIS-SUMO tagged protein purification vector	Obando MA, et. al., 2024
pHL100mob	Non-integrative, high copy number plasmid with IPTG induction.	Mett H, <i>et. al.</i> , 1980
pTD101 Ptac - <i>nagB</i>	nagB overexpression with whole gene amplification using primers 7 and 8	This study
pTD101 P ^{tac} - <i>pgcA</i>	<i>pgcA</i> overexpression with whole gene amplification using primers 9 and 10	This study
pTD101 Ptac - <i>glmS</i>	<i>glmS</i> overexpression with whole gene amplification using primers 11 and 12	This study
pHL100mob <i>: glmU</i>	<i>glmU</i> overexpression with whole gene amplification using primers 13 and 14	This study
pET28a glmU	GlmU protein purification strain	This study
pTOX pgcA	<i>pgcA</i> deletion by amplifying 500bp up and down stream of the gene using primers 15-18	This study

Primer description	Sequence (5'-3')	Number
pTD101fwd	ggcaaatattctgaaatgagctgt	1
pTD1010rev	cCAGATCTTAATTAAGGtgcgttct	2
pTOXfwd	tcgctcgcaaacctg	3
pTOXrev	gatcgagctcgagacg	4
pHL100fwd	cggataacaatttcacacagga	5
pHL100rev	gctgaaaatcttctctcatccgc	6
nagB pTD101fwd	aacagaccatggaattcgagctcggtacccAGGAGGctgactgaATGAGACTTATCC	7
nagB pTD101rev	atgcctgcaggtcgactctagaggatccccTTAGAAGCCTAC	8
pgcA pTD101fwd	aacagaccatggaattcgagctcggtacccAGGAGGctgactgaATGGCTATGCACCCT	9
pgcA pTD101rev	CGTG	10
glmS pTD101fwd	atgcctgcaggtcgactctagaggatccccTTATAAACCCGCGTCTTTAAACACTTGGT	11
glmS pTD101rev	TTACG	12
glmU pHL100fwd	aacagaccatggaattcgagctcggtacccAGGAGGctgactgaATGTGTGGAATTGTT	13
glmU pHL100rev	GGTGC	14
pgcA up500fwd	atgcctgcaggtcgactctagaggatccccTTACTCGACAGTTACCGCTTTAG	15
pgcA up500rv	aacagaccatggaattcgagctcggtacccAGGAGGctgactgaATGAAATTCAGTACG	16
pgcA dwn500fwd	GTAATTCTCG	17
pgcA dwn500rev	atgcctgcaggtcgactctagaggatccccTTATTTCTTTTTCGCCGGACGCTGC	18
pgcA flankfwd	ggcggggttttttcgttgatcacgtacgatCGAAAGGGATAGTCGTAAGCAAAGATGC	19
pgcA flankrev	TCATCATTATTACTCGAGTGCGGCCGCATTAAGTGACATCCTTTCTTT	20
pgcA internalfwd	CACATAAAATAAAACC	21
pgcA internalrev	TAATGCGGCCGCACTCGAGTAATAATGATGATGTGATGAAATGAATCAGG	22
MK chromolacZfw	CTTGCCTGCCGAGTTTGAGT	23
MK chromolacZrev	CTGCCACTGGTAATGCGAGC	24

816

817 Table S2: Oligos used in this study.