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Exploring Different Deep Learning Architectures in Simulation Studies

To explore the impact of the architectures of deep learning (DL) models, we implemented fully-connected

deep neural networks (NN), long short-term memory (LSTM [1, 2, 3]), gated recurrent units (GRU [4, 5]),

and convolutional neural network (CNN)-GRU. The hidden states of LSTM and GRU were set to (256,

256). For CNN-GRU, the number of filters and the kernel size the of CNN were set to 32 and 2, respectively,

followed by two layers of GRU with hidden states set to (256, 128). Between each layer, a dropout layer

with dropout rate 0.5 was included to avoid overfitting. The activation function was chosen as rectified

linear unit. We used Adam [6] as the optimizer with the learning rate set to 0.001. The prediction results

of those models are summarized in Supplementary Table 1, which exhibit minor improvement of using more

advanced strutures than simple NN. LP-Micro, in contrast, significantly improved the prediction accuracy

of all deep learning models. Specifically, LP-Micro NN and CNN-GRU outperformed other DL models.
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Pipelines p=100 p=200 p=500

MSE PCC MSE PCC MSE PCC

Benchmarks
NN 1.05 0.10 1.02 0.10 1.00 0.10
LSTM 1.10 0.02 1.09 0.02 1.09 0.03
GRU 1.25 0.15 1.22 0.12 1.11 0.10
CNN-GRU 1.04 0.22 1.02 0.21 1.01 0.15

LP-Micro
NN 0.61 0.64 0.64 0.61 0.73 0.52
LSTM 0.96 0.37 1.01 0.29 1.00 0.17
GRU 0.72 0.57 0.71 0.57 0.89 0.36
CNN-GRU 0.60 0.62 0.65 0.62 0.72 0.53

Supplementary Table 1: Performance of deep architectures in simulation.

Comparison between Hold-out Randomized Tests and Permutation Tests

In order to demonstrate the extra power using permutation test compared to other parametric tests, we

replace the permutation importance score in LP-Micro with hold-out randomized tests (HRTs, [7]), which

assume that the predictors (i.e., microbial abundance) are normally distributed. As shown by Supplementary

Figure 1, the performance of HRTs is inferior to the corresponding permuting methods in Figure 2a if the

data distribution is non-Gaussian. Specifically, although LP-Micro can still identify the temporal-microbial

patterns from the simulated data (i.e., one taxon is important at five time points, while the other four taxa

are important at the last two time points), the HRT importance scores of these important features are less

distant from the unimportant features than those of permutation importance scores that we utilized for real

data analysis.

Analysis of VicGen Cohort for Early Childhood Caries (ECC)

Supplementary Figure 2 demonstrates the sample similarities using the microbial abundance data either of

all taxa or of the significant taxa based on feature importance in the interpretation step of LP-Micro. This

tSNE figure suggests that the microbial abundance of children in VicGen cohort is highly time-varying, of

which the characteristic is preserved by features identified by LP-Micro.

Supplementary Figure 3 and 4 present the longitudinal distribution of microbial taxa identified by LP-

Micro. Considering the zero-inflated nature of microbial distributions, we performed differential prevalence
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Supplementary Figure 1: Feature importance in simulations using Hold-Out Randomized Tests
(HRT) and LP-Micro based on HRT. Microbial feature importance at each time point. The x-axis
represents five causal microbial taxa, and the y-axis represents each of five visits. Each grid represents the
feature importance of the microbial taxa during the corresponding visit row.

and abundance analysis of those identified taxa between children with and without cavities. Four microbial

taxa, including Lachnospiraceae [G-2] oral taxon 096, Megasphaera micronuciformis, Pedobacter oral taxon

321, and Streptococcus mutans, are more prevalent among children with cavities across ≥ 5 time points out of

all six time points. Additionally, despite the low prevalence of Scardovia wiggsiae in the cohort in most time

points, it is highly predictive of ECC at the last two visits, exhibiting a difference of > 10% in prevalence

between health and disease groups. Moreover, five identified microbial taxa with high prevalence in both

groups exhibit the same direction in their abundance effects across ≥ 5 out of all 6 time points, including

S. mutans, Porphyromonas pasteri, Streptococcus vestibularis, Lachnospiraceae [G-2] oral taxon 096, and

Haemophilus parainfluenzae. Interestingly, higher abundance of Lachnospiraceae [G-2] oral taxon 096 and

Porphyromonas pasteri seems to be inversely associated with ECC.

Analysis of the Weight Loss Study following Bariatric Surgery (BS)

Because the ability of baseline microbial profiles to predict weight loss after BS was limited in this study,

we also implemented LP-Micro without the baseline microbiome information (i.e., retaining microbiome

information only after surgery, see Supplementary Figures 5, 6, and 7). Here, LP-Micro still has superior

performance than the standard ML models using all taxa (as the baseline model) and the sPLS-based

prediction using sPLS selected features (Supplementary Figure 5), same as in Figure 4b. LP-Micro, as a
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Supplementary Figure 2: Temporal dynamics of oral microbial level for children in VicGen cohort
visualized by t-distributed Stochastic Neighbor Embedding (tSNE). (a) Dynamics of all microbial
taxa in the study. (b) Dynamics of important microbial taxa identified by LP-Micro. Each dot is for a
sample. Features used in (b) either have p-value of PermFit-RF LP-Micro or PermFIT-XGB in LP-Micro
< 0.1, i.e., the significant taxa in Figure 6b.

powerful approach for cumulative prediction, also strongly preserves superior performance when comparing to

the visit-wise and other cumulative prediction (Supplementary Figure 6a), same as in Figure 5c. Specifically,

without LP-Micro, incorporating longitudinal microbial information may not be beneficial for prediction. For

instance, the prediction PCC of SVM is higher than 0.4 with only low-dimensional demographic variables

collected prior to surgery, and the PCC drops to <0.2 when incorporating the high-dimensional microbial

features collected at 1 or 12 months post-surgery. Its performance becomes even worse when using cumulative

microbial information. For instance, SVM outperforms other models with microbial information in visit-wise

prediction at 6 months post-surgery. However, its prediction becomes worse than lasso and NN when adding

information at one month post-surgery, with a significant decrease in prediction PCC. In contrast, the

performances of SVM are more stable within our proposed framework, as indicated by the LP-Micro plot in

Supplementary Figure 6a.

Supplementary Figure 8 shows LP-Micro’s capability to discriminate BMI change using longitudinal

microbiome data. The observed more variation across multiple time points in Supplementary Figure 8b

than in Supplementary Figure 8a suggests that high capability to discriminate the BMI change across time

points in the significant taxa obtained from the third step of LP-Micro for interpretation, therefore LP-

Micro can select predictive microbial biomarkers for weight loss. Supplementary Figure 9 further presents
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Supplementary Figure 3: Prevalence of important taxa identified by LP-Micro in the VicGen
ECC cohort for children. The x-axis corresponds to the six study visits, while the y-axis indicates the
prevalence, defined as the proportion of samples where a taxon shows detectable abundance (i.e., nonzero
abundance) at each time point. The presented taxa correspond to those identified as significant in Figure
6b.

the association between LP-Micro selected features (based on p-values in the third step) and BMI change for

the 12-month period between pre-surgery and post-surgery. Despite the relatively linear trend between age

and BMI reduction, other biomarkers show non-linear associations with BMI change (Supplementary Figure

9).
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Supplementary Figure 4: The distribution of log-abundance of important taxa identified by LP-
Micro for children in VicGen ECC cohort. The x-axis represents the six visits of the study, and
the y-axis represents the log-abundance level at each visit time point in which natural logarithm was used.
Samples with zero abundance of the corresponding taxa are not included in the figure. Here the eight taxa
are selected among the 11 significant taxa in Figure 6b if they have relative less number of zeros and higher
non-zero abundance.
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Supplementary Figure 5: Prediction results of machine learning models in the weight loss study
using baseline features, sPLS features, and LP-Micro (group lasso) features on patients’ de-
mographics and microbial profiles one month post-surgery. The average mean squared error (MSE)
and Pearson correlation (PCC) between the body mass index (BMI) change in 12 months and the predicted
outcome.

b.

0

1

2

3

4

Clin
ica

l 1 6 12

Visit

−
lo

g(
p−

va
lu

e)

Method NN SVMa.

Visit−wise Cumulative LP−Micro

M
S

E
P

C
C

   Clinical        1 6 12  Clinical   1 6 12  Clinical   1 6 12

11

12

13

14

15

16

0.1

0.2

0.3

0.4

0.5

Visit

M
et

ric

Method Lasso NN SVM

Supplementary Figure 6: Results of visit-wise prediction, cumulative prediction, and LP-Micro
to investigate weight loss after bariatric surgery. To accomplish visit-wise prediction and cumulative
prediction, ML algorithms are trained using all microbial features. LP-Micro refines the cumulative prediction
by microbial feature pre-screening and model ensembling. The pre-surgery microbial profiles are removed
in all methods, while demographic variables are kept, labeled as ‘clinical’. (a) Prediction MSE and
PCC of BMI change at each visit in the weight loss cohort. (b) Visit-wise microbial p-values
of importance scores for BMI change prediction. Visit importance scores are calculated using the
LP-Micro models with microbial features up to 12 months after BS in (b).
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Supplementary Figure 7: Feature importance for the weight loss data (pre-surgery microbial
profiles removed). The y-axis consists of microbiome genera selected by LP-Micro, and p-values are
computed by PermFit. (a) Each grid represents the significance of the microbiome at each corresponding
visit. Darker colors indicates higher importance. (b) The x-axis represents the log10 p-values for each taxon
in terms of their longitudinal effects on BMI change.
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Supplementary Figure 8: Temporal dynamics of gut microbial level for patients in weight loss
cohort visualized by tSNE. The x-axis represents the tSNE score and the y-axis represents the BMI
change in 12 months. (a) Dynamics of all microbial taxa in the study. (b) Dynamics of important microbial
taxa identified by LP-Micro.
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Supplementary Figure 9: The association between BMI change after 12 months and levels of
important features identified by LP-Micro for the weight loss study. The x-axis represents the
feature levels, and the y-axis represents the log-abundance level at the visit time.
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