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SUMMARY 
 

Organ function requires coordinated activities of thousands of genes in distinct, spatially organized cell 
types. Understanding the basis of emergent tissue function requires approaches to dissect the genetic control 
of diverse cellular and tissue phenotypes in vivo. Here, we develop paired imaging and sequencing methods 
to construct large-scale, multi-modal genotype-phenotypes maps in tissue with pooled genetic 
perturbations. Using imaging, we identify genetic perturbations in individual cells while simultaneously 
measuring their gene expression and subcellular morphology. Using single-cell sequencing, we measure 
transcriptomic responses to the same genetic perturbations. We apply this approach to study hundreds of 
genetic perturbations in the mouse liver. Our study reveals regulators of hepatocyte zonation and liver 
unfolded protein response, as well as distinct pathways that cause hepatocyte steatosis. Our approach 
enables new ways of interrogating the genetic basis of complex cellular and organismal physiology and 
provides crucial training data for emerging machine-learning models of cellular function. 

INTRODUCTION 
 
A central goal of metazoan biology is to understand how coordinated activities of thousands of genes 
expressed in diverse cell types enables the physiological functions of organs and tissues. Recent large-scale 
atlases have characterized the molecular composition of a multitude of distinct cell types across the organs 
1–3; ongoing work is mapping the spatial organization of these cell types across tissues 4–9. Although these 
efforts provide a foundational resource, a major challenge for the field is to causally understand how cell 
types, cell states, and multicellular networks are produced and regulated by the actions of specific genes 
and molecular pathways. Addressing this gap in our knowledge will require cellular and spatial functional 
genomics approaches that enable a systematic and comprehensive understanding of how specific genes 
control diverse cellular and tissue phenotypes in living animals across physiological states. 
 
Cellular and tissue state manifests across multiple dimensions, ranging from gene expression and post-
translational modifications to cellular structures, signaling pathways, and the organization of cells in niches 
and neighborhoods 10. Imaging has historically provided a leading, highly interpretable approach for 
understanding how genes regulate cellular and tissue state. High resolution imaging of cellular structures 
in multiple systems has been crucial to innumerable discoveries, ranging from regulators of embryonic 
development 11 to the mechanisms of autophagy 12, through the visual identification of phenotypically 
abnormal cells and organisms. Recent advances in machine learning methods to automate the analysis of 
complex images has further expanded the power of these approaches 13. In parallel, next-generation 
sequencing has enabled new developments in genome-wide molecular profiling, which provides 
complementary pictures of cellular state (such as epigenetic, transcriptional, and translational states), in a 
manner amenable to high-throughput single-cell characterization in tissues.  
 
Coupling these imaging and sequencing tools for deep cell phenotyping to advances in targeted genetic 
perturbations is markedly expanding our ability to genetically dissect cellular processes at a large scale. In 
cultured cells, Perturb-seq – the combination of CRISPR screening and single-cell RNA-seq (scRNA-seq) 
– has enabled the dissection of molecular regulators of core cellular processes such as the unfolded protein 
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response 14, hematopoietic development 15,16, and alternative polyadenylation 17. When applied at the 
genome-wide scale, this approach has allowed the unsupervised classification of gene function and the 
principled discovery of cellular responses 18. In parallel, advances in highly multiplexed molecular 
measurements through imaging have enabled new forms of pooled optical screening, using either 
multiplexed FISH 19–22 or in situ sequencing 23–25 to read out genotypes (i.e., the perturbed gene), including 
at a genome-wide scale in cultured cells. Such pooled optical screening methods allow the dissection of 
genes important for phenotypes that require high-resolution imaging to measure. 
 
While in vitro studies with cultured cells can dissect many aspects of cellular function, certain aspects of 
cellular and tissue physiology require study in the context of an intact organism. Technological advances 
have enabled the generation of mosaic mice harboring a high diversity of perturbation, where individual 
cells carry distinct perturbations. Alternatively, it is possible to introduce pooled genetic perturbations into 
animals by transplantation of perturbed cells. The resulting xenograft models have multiple challenges, 
including clonal bottlenecks, and this approach represents a deviation from the standard animal life cycle. 
Viral transduction of native tissue has the proven ability to enable genome-scale screens 26,27. Using such 
perturbation delivery approaches, recent pioneering studies in the brain 28–30, skin 31, and immune system 
15,32 have used Perturb-seq to profile the effects of perturbing subsets (typically dozens to a few hundred) 
of disease-relevant genes. However, such sequencing-based approaches do not retain spatial and 
morphological information such as subcellular structures and tissue organization, which are crucial aspects 
of cellular and tissue physiology. 
 
A comprehensive understanding that links genes with physiological function will require an integrated 
approach, bridging multiple modalities of phenotype measurements to obtain a holistic picture of cellular 
and tissue state in living tissue. Ideally, transcriptionally-defined cellular states would be linked to 
morphological phenotypes measured through microscopy under different genotypes. By performing a high 
diversity of genetic perturbations in defined cell types in their native tissues, the function of different genes 
could be interrogated in their physiological context, under both homeostatic and pathological conditions. 
Recent imaging-based screening approaches have been expanded to include multi-modal measurements 
(immunofluorescence and RNA expression) of limited number of genes for cultured cells, or to profile the 
spatial location of perturbed xenografted cells 21,33–35. However, unlike Perturb-seq, these imaging methods 
have not provided genome-wide transcriptional phenotyping. 
 
Here, we report the development of an approach for performing large-scale pooled genetic screens in native 
tissue with rich, multimodal phenotypic readouts, as well as its application to map the function of hundreds 
of genes in the mouse liver under multiple physiological conditions. We are able to study the effects of 
many genetic perturbations on diverse cellular phenotypes, including transcriptional state, subcellular 
morphology, and tissue organization, in the liver. Developing this approach requires solving multiple 
technical challenges towards multimodal, in vivo phenotype mapping through both imaging and 
sequencing. Specifically, we develop new methods for fixed-cell Perturb-seq as well as imaging-based 
pooled genetic screening in heavily fixed tissue, enabling joint sequencing and imaging analysis of diverse 
perturbations in the same tissue. For the latter, we apply multiplexed protein and RNA imaging, using in 
situ enzymatic probe amplification followed by multiplexed error-robust FISH (MERFISH) 36 to read out 
both endogenous RNAs and short barcodes for genotyping 19,21. Through an integrated analysis of 
morphological and transcriptional phenotypes, we identify novel regulators of hepatocyte zonation, reveal 
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how proteostatic stress pathway activation can broadly affect the expression of secreted proteins, and show 
how diverse cellular pathways can produce convergent effects on steatosis. Beyond enabling new ways of 
interrogating the genetic basis of complex cellular and organismal physiology, this approach will provide 
crucial training data for emerging machine learning/AI efforts to create predictive models of “virtual” cells 
37,38.  

RESULTS 

Pooled in vivo genetic screens through imaging and sequencing 

Our goal was to develop an approach that would allow us to profile the effects of a large number of genetic 
perturbations at subcellular resolution in different cell types in the tissue of a living mouse under defined 
physiological conditions. For each perturbation, we aimed to measure multiple distinct dimensions of 
cellular state to capture a more comprehensive picture of gene function. Pioneering work has established 
the liver as an important system for performing large-scale in vivo pooled genetic screens, due to the 
effectiveness of viral delivery to hepatocytes in homeostasis 27, disease 39,40, and regeneration 41. These 
previous studies have focused on cellular survival/proliferation as a phenotype through barcode sequencing. 
We hypothesized that exploring complex, multimodal phenotypes would allow one to explore a far wider 
range of gene functions.  
 
To this end, building on recently established ability to deliver genome-wide in vivo CRISPR libraries to the 
mouse liver 27, we developed an approach where hepatocytes in a transgenic Cas9 mouse 42 were infected 
in a mosaic with a pool of lentiviruses, each delivering a different CRISPR guide RNAs (Figure 1A). After 
perfusion with paraformaldehyde to rapidly fix cellular phenotypes, perturbed cells were interrogated using 
Perturb-Multimodal (Perturb-Multi), a sequencing- and imaging-based assay that captures multiple aspects 
of cellular state while simultaneously identifying perturbed genes (Figure 1A). From single-cell sequencing, 
we measured the effects of perturbations on genome-scale transcriptional profiles to obtain rich insights 
into regulators of cell state in distinct cell type. From imaging, we measured a rich set of phenotypes, 
including the subcellular morphology and quantity of proteins and mRNAs, as well as the cellular 
organization of the tissue. By linking cellular properties measured through different modalities via their 
shared perturbation identity, we then performed integrated multimodal analyses to examine the multifarious 
effects of the same perturbation on different aspects of cellular function (Figure 1A). 
 
Measuring phenotypes through both sequencing and imaging required substantial innovation in readout 
modalities strategies and protocols. For sequencing-based phenotyping, we built on top of the 10X 
Genomics Flex technology, which uses microfluidic encapsulation of dissociated single cells that have been 
hybridized with a transcriptome-wide library of split probes against different RNA species for 
transcriptome-wide detection (Figure 1B, top). Pairs of split probes that hybridize adjacent to each other 
are then ligated in the droplet and given a cellular barcode for sequencing and expression quantification. 
We extended this approach to also measure CRISPR-based genetic perturbations through the inclusion of 
custom probes that directly target the sgRNA. 
 
Creating an imaging approach for genotyping and phenotyping intact tissue sections required extensive 
technical development. In developing this approach, we had several goals: 1) Create a multimodal protocol 
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that allows for the readout of both RNA and protein from tissue fixed in a manner that is standard for high 
resolution immunofluorescence, in a single sample preparation on an automated microscope. 2) Amplify 
RNA FISH signals, both in order to increase the throughput of data collection and to enable the readout of 
short barcode sequences associated with the sgRNAs. 3) Produce stable samples that could be stored and 
imaged later, such that many samples could be prepared in parallel and then imaged sequentially. 
 
We explored multiple different approaches, and the approach that we eventually chose and optimized – 
RCA-MERFISH – builds on several advances over the past several years in methods for spatial 
transcriptomics and proteomics. For reading out the molecular identity, we used MERFISH 36,43, and for 
signal amplification prior to MERFISH detection, we used rolling circle amplification (RCA) 44–47. 
Specifically, we targeted both endogenous mRNA and barcode RNA (for sgRNA identification) with 
padlock probes 48,49 that can be ligated upon binding to target RNA and amplified in situ (Figure 1B, bottom, 
and Figure S1). Each padlock probe served as an encoding probe and contained multiple readout sequences 
that together provide a MERFISH code for the target molecule, which can be detected over multiple rounds 
of hybridization by readout probes complementary to the readout sequences (Figure S1). Because heavy 
fixation is preferred for immunofluorescence imaging of proteins, to overcome limitations on performing 
in situ enzymatic reactions for RCA in heavily crosslinked tissue, we adopted the hydrogel-based RNA-
embedding and tissue clearing approach 43,45 and embedding of RCA-amplicons in a polyacrylamide gel 
45,50. Finally, we combined this approach with multiplexed immunolabeling of proteins with oligo-
conjugated antibodies 51–53, which were then detected with complementary readout probes using sequential 
rounds of hybridization. We also detected several abundant cellular RNAs through sequential FISH. 
 
The final protocol consists of a series tissue fixation, embedding, clearing, labeling and imaging steps 
(Figure 1B). Briefly, after perfusion and cryopreservation, we cut thin sections of tissue, decrosslinked the 
tissue, and stained it with a pool of oligo-conjugated antibodies targeting different subcellular organelles, 
membrane, and proteins. After antibody staining, we modified all RNA and DNA in the tissue with an 
alkylating agent containing an acrylamide moiety (MelphaX) 54, and embedded the sample in a thin 
acrylamide gel, such that these RNA and DNA, including cellular RNAs, sgRNAs with barcodes, and 
antibody-associated DNA oligonucleotides were covalently linked to the gel. We then digested the proteins 
and washed away lipids to both clear the tissue and make the remaining RNA and DNA accessible to 
enzymes and probes. After clearing, we hybridized a library of padlock probes targeting both endogenous 
RNA and perturbation barcodes. After stringent washing, we then ligated the RNA-hybridized padlock 
probes and performed rolling circle amplification. The final protocol was the result of extensive 
optimization of decrosslinking conditions, oligo modifications, additives, and digestion conditions to 
identify optimal conditions that allow for amplification while being compatible with immunostaining of 
proteins with oligo-conjugated antibodies in heavily fixed tissue (Figure S2; Methods). 
 
For the RCA-MERFISH detection, each RNA species was targeted by eight padlock probes tiling the 
transcript and each padlock probe consists of two binding arms that must hybridize adjacent to each other 
to be ligated, and 4-6 readout sequence for encoding the target RNA (Figures S1C, S1D and S3A). These 
probes are relatively long (~140-170 nt) and must be full-length in order to ligate properly. We developed 
a method to produce these probes from low-cost femtomolar pools of long oligos synthesized in array. After 
testing multiple different options, we settled on an approach that uses limited cycle PCR and then RCA to 
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amplify the initial array-synthesized oligo pool, followed by Type IIS restriction enzyme digestion to 
liberate the full length, phosphorylated probes (Figure S3B-E).  

Mapping hepatocyte transcriptional gradients through RCA-MERFISH 

As a proof of principle, we applied this imaging approach in combination with scRNA-seq to map the 
spatial organization of distinct cell types and cell states in the mouse liver. The liver is a classic system for 
studying cell biology and has enabled discoveries over the past century ranging from the isolation of 
different organelles to uncovering mechanisms of mTor signaling 55–58. For our purposes, the liver provided 
an excellent test system, as the principal cell type – hepatocytes – have a well-defined molecular 
composition and spatial organization 59,60, and are readily infected with virus for perturbation delivery. At 
the anatomical level, the liver has long been understood to consist of distinct cellular ‘zones’ radially 
organized with respect to the central and portal veins (Figure 1C, left) 61. Periportal and pericentral 
hepatocytes have distinct gene expression and correspondingly distinct physiological functions. For 
example, periportal hepatocytes specialize in oxidative metabolism, gluconeogenesis, and the urea cycle, 
whereas pericentral hepatocytes specialize in glycolysis and lipogenesis 61. This periportal to pericentral 
distinction is repeated in multiple units around different central veins in a crystalline manner throughout 
the organ (Figure 1C, right). 
 
After optimization, our multimodal approach allowed us to measure endogenous gene expression while 
imaging multiple subcellular structures simultaneously. In total, across 7 rounds of 3 color imaging, with a 
total of 21 bits (Table S1), we measured 209 genes (Table S2) using a Hamming Weight 4 (HW4), 
Hamming Distance 4 (MHD4) codebook, resolving hundreds of amplicons per cell (Figures 1D, left and 
1E). This gene panel was primarily focused on hepatocytes but also included markers for other cell types. 
In addition to combinatorial RNA imaging with RCA-MERFISH, we sequentially imaged 14 proteins 
labeling various subcellular organelles, lipid droplets, and signaling pathways and 4 abundant RNA species 
that exhibited specific patterns of subcellular localization (Figures 1D, middle and 1E). One of our protein 
targets, the membrane marker Na/K+ ATPase, was used for cell segmentation 13 (Figure 1D, right). 
 
Unsupervised clustering revealed a number of hepatocyte subtypes and non-hepatocyte cell types. We 
classified different cell types as well as subtypes of hepatocytes using an integrated analysis of RCA-
MERFISH and scRNA-seq data (Figure 1F). We focused our analysis on hepatocytes. We computed a 
periportal and pericentral gene expression score based on summing the expression of known marker genes 
such as G6pc, Aldh1b1, and Pck1 62 and found that the hepatocyte clusters fell onto a zonated continuum 
from Hep1 to Hep6, with Hep1 being the most pericentral and Hep6 being the most periportal (Figure 1G; 
see Methods). Visualizing these zonation scores and hepatocyte subtypes across the tissue revealed the 
expected patchwork localization of periportal and pericentral cells (Figures 1H, 1I, and S4), whereas non-
hepatocytes had less obvious spatial arrangement (Figure 1I). In addition, we identified one subtype of 
hepatocytes (Hep3) expressing multiple interferon signaling markers that were localized in small patches 
(Figure S4; markers include Isg15, Ifit3, Stat1, and Irf7). We imputed the expression of the full 
transcriptome for each cell measured with RCA-MERFISH from the integration with scRNA-seq data and 
observed the expected pattern of zonated gene expression for imputed genes (Figure 1J, compare with 
Figure 2 from Ref62). Finally, as expected, we found that a large fraction of the transcriptome in hepatocytes 
varied along the periportal to pericentral axis (Figure 1K). 
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Heterogeneity in subcellular morphology among hepatocytes 

To capture diverse aspects of cellular state through high-resolution microscopy, we devised a panel of 18 
different protein and RNA targets that covered a variety of subcellular organelles, morphological features 
such as plasma membrane, and phosphorylated states of proteins. Targeted proteins included both 
organellar and structural markers such as GAPDH (cytoplasm), Calreticulin (endoplasmic reticulum), 
Perilipin (lipid droplets), Na+/K+ ATPase (plasma membrane), CathB (lysosome), and Tomm20 
(mitochondria), as well as cell state-dependent markers such as the mTOR marker phospo-S6 ribosomal 
protein (pS6RP) (Table S3). In addition to proteins, we also imaged a few RNA species too abundant to be 
included in MERFISH imaging, including the highly abundant Albumin mRNA, pre-rRNA in the nucleolus, 
mitochondrial RNA (mtRNA), as well as total polyadenylated RNA (Figures 2A and 2B; Table S4).  
 
To analyze this highly multiplexed cellular imaging data, we built on recent advances in self-supervised 
learning methods for dimensionality reduction 63,64. As part of a data processing pipeline we developed 
(Figures S5A, S5B), we reduced each image channel (i.e. each protein or abundant RNA target) in each cell 
from a high-resolution z-stack to a 128x128 pixel matrix and trained a VQ-VAE network 13 to reduce the 
dimensionality of that protein or RNA stain further, to a 512-dimensional vector (Figures 2C, S5C, S5D). 
The dimensionality reduction was constrained by an auxiliary task that sought to use the low-dimensional 
embedding to discriminate different transcriptionally-defined cell types or physiological conditions, in 
order to find an embedding that reflected true biological variation in the sample. We visualized these 
embeddings with UMAP and found that embeddings representing images of morphologically similar targets 
were indeed grouped together (Figure 2D); we also observed this through quantification of mutual 
information between protein/RNA targets (Figure 2E). Further analysis of these embeddings revealed that 
individual features within the embedding often reflected interpretable patterns (Figure S6; see figure legend 
and Methods). 
 
Quantifying the variations in subcellular morphology with single-cell resolution at the scale of entire tissues 
has been a challenging task. This machine-learning-based feature analysis provides a means to overcome 
this challenge. We took each 512-dimension embedding for a protein/RNA across all cells and visualized 
individual features from those embeddings. We found that many protein/RNA features exhibited zonal 
spatial patterns similar to those observed in hepatocyte gene expression (Figure 2F). For some proteins or 
abundant RNAs, such zonated patterns were expected, such as Albumin mRNA and Perilipin 62. Others that 
had zonated profiles to a greater or lesser extent (Rab7, CathB) were less expected. The zonated variation 
in subcellular morphology of these proteins may reflect differences in hepatic metabolism across different 
liver zones.  
 
To compare the relative information contained in protein embeddings versus transcriptome in more detail, 
we attempted to quantify the relative information that was contained in the single-cell transcriptional 
profiles versus the morphological feature embeddings in the same cells. To do so, we trained a classifier to 
predict the subtype identity of individual hepatocytes – from Hep1 to Hep6 – on held out cells, using either 
the 209 genes measured through RCA-MERFISH or the concatenated 18 x 512 dimensional feature 
embeddings. We found that the transcriptional profiles clearly discriminated all subtypes of hepatocytes 
(Figure 2G), whereas the morphological feature embeddings only clearly distinguished the most periportal 
and pericentral subtypes Hep1 and Hep6 (Figure 2H). By contrast, the other subtypes were less clearly 
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distinguished, suggesting that the transcriptionally-defined intermediate subtypes may exhibit a range of 
subcellular morphologies. 
 
To explore the differences in subcellular morphology between the most periportal and pericentral 
hepatocyte subtypes, we identified the morphological feature embeddings that best discriminated between 
Hep1 and Hep6 cells (Figure 2I). Albumin mRNA and Perilipin were the most dissimilar between these two 
hepatocyte subtypes, consistent with the previous understanding of zonated Albumin expression 62 and lipid 
storage and metabolism 61. We visualized anti-Perilipin embeddings with UMAP and found that 
embeddings representing cells with different hepatocyte subtype identity were separated (Figure 2J); we 
conducted unsupervised clustering of the embeddings and found that periportal Hep6 cells were most 
enriched in anti-Perilipin embedding cluster 2, which has very few lipid droplets, whereas pericentral Hep1 
cells were most enriched in anti-Perilipin embedding cluster 6, which has many lipid droplets (Figures 2J 
and 2K). 
 
To understand the features of liver cellular state that respond to changing physiological conditions and 
metabolic stress, we overnight-fasted mice or fed them a high-fat diet (HFD) for a month and fixed tissue 
samples for analysis by scRNA-seq and imaging (Figure 2L). These physiological perturbations caused 
large changes in gene expression, especially in hepatocytes (Figure S7A). We embedded the morphological 
images with our VQ-VAE model and looked for image channels whose embeddings best discriminated 
between these two physiological conditions. Phospho-S6 ribosomal protein (pS6RP) staining separated 
hepatocytes between the fasted and ad libitum (ad lib) samples best, consistent with S6 ribosomal protein 
phosphorylation by mTOR in response to nutritional status (Figures 2M, 2N). Perilipin differed in cells 
from the ad lib and HFD samples (Figures 2O, 2P). We note that stains such as anti-calreticulin and anti-
pS6RP were also quite different between the ad lib and HFD samples. This may in part reflect negative 
space caused by the exclusion of these stains by large lipid droplets, in addition to potential changes in the 
abundance of these targets caused by the altered dietary conditions (Figures S7B, S7C). 
 
In total, these experiments demonstrated that our multiplexed protein and RNA imaging, combined with 
deep learning analysis, was able to resolve significant heterogeneity in subcellular morphology, which 
could be further linked to distinctions in transcriptionally-defined cell types and the animal’s physiological 
state. These experiments create the first integrated transcriptional and subcellular morphological map of the 
liver, while validating the ability of protein and RNA readouts to provide complementary information on 
liver anatomy and physiology.  
 

Large-scale in vivo multimodal screening in CRISPR mosaic livers 

Having established an integrated sequencing and imaging methodology for studying the molecular and 
cellular organization of tissue at multiple scales, we combined this approach with large-scale pooled in vivo 
CRISPR screening to map the effect of genetic knockout perturbations on genome-wide transcriptional 
state as well as the intensity and morphology of the imaged proteins and RNAs. We targeted 202 genes 
(Table S6), each with two independent sgRNAs, and included 50 negative control sgRNAs. The genes 
chosen for perturbation were curated from the literature and were involved in diverse aspects of hepatocyte 
and liver physiology, including metabolism, intercellular and intracellular signaling, transcription and 
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translation, and protein trafficking and secretion. We also targeted genes selected for high or specific 
expression in hepatocytes, including genes with uncertain functions in hepatocytes. 
 
We introduced barcoded genetic perturbations that could be read out through either imaging or sequencing 
into the liver through lentiviral delivery. Building on the CROP-seq lentiviral vector design 65 to mitigate 
the effects of recombination during lentivirus production, we engineered a vector that expresses a 
fluorescent protein (mTurquoise) as well as a 185-mer barcode associated with a sgRNA for imaging from 
a hepatocyte-specific Pol II promoter while simultaneously expressing the sgRNA from a Pol III promoter 
(Figure 3A). Each sgRNA and its associated 185-mer barcode were synthesized on a single DNA fragment 
and then cloned into the vector in a pool. An intervening region composed of one of three alternative sgRNA 
constant regions was introduced between the barcode and sgRNA to reduce the effects of barcode swapping 
through recombination of the constant intervening sequence 14,66.  
 
We then used this vector to introduce a mosaic of genetic perturbations into the liver of Cas9 transgenic 
mice 42. We produced high-titer pools of CROP-seq lentivirus and introduced the virus systemically into 
transgenic Cre-inducible Cas9 mice at postnatal day 1 (P1) through injection into the temporal vein (Figure 
3B). We targeted a relatively low MOI (10-30%) such that most infected cells had a single perturbation. 
We then allowed the mice to grow to adulthood (>P30) and induced Cas9 expression in hepatocytes with 
systemically delivered AAV containing the Cre recombinase driven by a hepatocyte-specific TBG 
promoter. After waiting 10 days to allow Cas9 to express and perturb the targeted gene, the mice were 
perfused and the fixed livers were cryopreserved for analysis. Lentivirus introduced at P1 expressed 
mTurquoise in mosaic distribution throughout the liver of adult mice, whereas EGFP expressed with Cas9 
was uniformly expressed in presumptive hepatocytes following Cre recombination (Figure 3C). We then 
mapped the effects of these perturbations on hepatocytes using a combination of imaging and sequencing. 
 
For imaging-based phenotype and genotype measurement, we extended the RNA and morphological 
imaging approach described above with the inclusion of padlock probes targeting the perturbation-specific 
barcode sequences, which are orthogonal to the mouse genome. These perturbation-specific probes carry 
the readout sequences that encode the perturbations (i.e., in the present studies the sgRNA, but this could 
be extended to other genetically-encoded perturbations) with a HW6, HD4 MERFISH code, which were 
imaged by MERFISH alongside the endogenous mRNA imaging and sequential imaging of proteins and 
abundant RNAs on the same automated microscope (Figures 3D and 3E). 
 
As expected, sgRNA-associated barcodes were expressed only within a subset of cells. After establishing 
a count threshold to confidently identify cells with each perturbation, we found that most cells did not 
contain any perturbation and that most perturbed cells had only a single perturbation, consistent with the 
low infection MOI and approximately Poisson-distributed transduction of the lentivirus-accessible cells in 
the liver (Figure 3F). We observed relatively homogeneous infection throughout the tissue and within 
lobules. Altogether, we analyzed ~79,000 cells perturbed with single sgRNAs. 
 
In parallel, to measure genome-wide transcriptional responses to the genetic perturbations, we developed a 
fixed-cell Perturb-seq method. In addition to compatibility with imaging, we reasoned that a fixed cell 
protocol could overcome many of the challenges that have limited the scale and practicality of in vivo 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 21, 2024. ; https://doi.org/10.1101/2024.11.18.624217doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.18.624217
http://creativecommons.org/licenses/by/4.0/


10 

Perturb-seq studies, such as sample degradation during tissue dissociation and FACS enrichment 67,68, 
especially when processing many tissues in parallel or recovering millions of cells. 
 
Dissociation of fixed tissue from the same livers that we imaged yielded intact cells with morphologies 
similar to those observed in tissue (Figure 3G). Despite heavy fixation, the cells could be efficiently 
dissociated with high yield, obviating the need for nuclear RNA sequencing 69 or complex enzymatic 
dissociation approaches 70. We used FACS to enrich for sgRNA-transduced (mTurquoise+) and Cas9-active 
(GFP+) cells (Figure 3H) and then performed fixed-cell single-cell RNA-seq using the hybridization-based 
10X Flex approach. To determine the identity of expressed sgRNA alongside the mRNA transcriptome, we 
spike in a pool of custom probes that directly targeted the protospacers of the sgRNA library (right hand 
side probe) and the constant region of the sgRNA (left hand side probe). In most cells, one or two sgRNA 
probes had much higher UMI counts than other sgRNAs, most of which gave zero UMI counts (Figure 3I). 
We used this distribution to establish a threshold and confidently identify the sgRNAs present in each cell. 
Most perturbed cells had a single sgRNA above threshold, with only a small fraction of cells harboring two 
or more distinct sgRNAs (Figure 3J), again consistent with the low MOI. Altogether, we analyzed ~55,000 
cells perturbed with single sgRNAs. 

Validation of perturbation calling 

We confirmed the accuracy of our sgRNA calling using Perturb-seq and RCA-MERFISH by inspecting for 
depletion of sgRNA targets. Fortuitously, sgRNAs targeting Albumin (Alb), an abundant secreted protein 
whose mRNA provides ~10% of the mRNA UMIs in hepatocytes, caused strong depletion of Albumin 
mRNA relative to control sgRNAs, presumably due nonsense-mediated decay (NMD) of targeted mRNAs. 
With Perturb-seq, we quantified Albumin mRNA depletion directly (Figure 3K) and observed minimal 
overlap between the distributions of Albumin expression in cells expressing sgRNAs against Albumin and 
those expressing control sgRNA, indicating a low false positive rate of sgRNA calling. We also conducted 
a fixed-cell Perturb-seq experiment in cultured CRISPRi K562 cells, which allowed us to measure on-target 
knockdown without relying on NMD (median 87% knockdown across targets, Figure S8), confirming the 
accuracy and specificity of sgRNA calling with hybridization-based scRNA-seq. 
 
Because probes against Albumin mRNA were also included in our imaging-based screens, we quantified 
raw FISH signal for Albumin mRNA and observed lower intensity in cells expressing sgRNAs against 
Albumin as compared to cells expressing control sgRNA (Figures 3O and 3P). Likewise, our 
immunofluorescence imaging showed that anti-Gapdh signals were substantially lower in cells expressing 
sgRNAs against Gapdh than in cells expressing control sgRNA (Figures S9A and S9B). These results 
suggest that perturbation readout by RCA-MERFISH also had a low false positive rate.  
 
Next, we explored the broader phenotypic consequences of each genetic perturbation measured by Perturb-
seq and imaging. As a first-pass analysis of the imaging data, we quantified the mean intensity of each 14 
proteins or 4 abundant RNA targets in each cell. 
 
We used an energy-distance permutation test with stringent multiple testing correction 71 to determine 
whether perturbations caused a difference in the distribution of (1) global transcriptional states measured 
by Perturb-seq and (2) overall morphological states measured by imaging, relative to cells with control 
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sgRNAs. Such global analyses are crucial, as experiments perturbing hundreds of genes and measuring tens 
of thousands of phenotypes across a multitude of cells can be prone to statistical false discovery 71. We note 
that, although we designed our library to be enriched for targets with functions in liver biology, we do not 
have ground-truth knowledge of which sgRNAs can cause phenotype changes in our assays. In the Perturb-
seq experiment, 109/406 targeting sgRNAs had a statistically significant impact on the distribution of 
transcriptional states (measured as the first 20 PCs of mRNA expression) (Figure 3L); at that significance 
threshold (multiple-testing corrected p value < 0.05), 0/50 control sgRNAs had a significant transcriptional 
impact. In the imaging experiment, 84/406 targeting sgRNAs and 3/50 control sgRNAs had a significant 
impact on the distribution of morphological state (Figure S9C). Furthermore, we compared pairs of sgRNAs 
targeting the same gene. We generated pseudo-bulk sgRNA-phenotype maps by groups cells with identical 
sgRNAs and found that pairs of sgRNAs targeting the same gene caused both highly correlated 
transcriptional phenotypes and highly correlated morphological phenotypes, relative to random pairs of 
non-targeting sgRNAs (Figures 3M and 3Q). Together, these results support the accuracy of our sgRNA 
calling and specificity of the perturbations caused by these sgRNAs. 
 
We inspected the perturbations that had the largest impact on the distribution of global phenotypic states, 
reflected in energy distance from cells with control sgRNAs (Figures 3N and 3R). In the Perturb-seq 
experiment, many genes with functions essential for cellular growth and survival, such as Atp2a2, Aars, 
and Sf3b6 caused large impacts to global transcriptional state upon acute knockout (Figure 3N). The 
knockout of signaling genes such as Vhl also had large transcriptional impacts (Figure 3N). Many of the 
same genes also had large impacts on the global immunofluorescence state (Figure 3R; hypergeometric p 
< 10-13). Overall, we observed a positive correlation between the magnitude of the knockout phenotypes in 
the Perturb-seq and imaging assays (Figure S9D, Pearson’s R = 0.5). We note that since our Perturb-seq 
and imaging experiments measured different phenotypes—genome-wide transcription in the former and 14 
proteins and 4 abundant RNAs in the latter—we do not necessarily anticipate a high correlation between 
these two measurements. 
 
Next, we identified the differentially expressed genes associated with each sgRNA. Although most sgRNAs 
caused differential expression in a relatively small number genes, comparable to the effects of control 
sgRNA, some targeting sgRNAs caused hundreds to thousands of genes to be differentially expressed in 
the Perturb-seq measurements (Figure S9E), consistent with our earlier observation that ~25% of targeting 
sgRNAs had a significant impact on the transcriptional state (Figure 3L). We also identified the protein and 
abundant RNA channels that were significantly impacted by each perturbation in the imaging 
measurements. Most active targeting perturbations impacted a relatively small subset of imaged targets, but 
some perturbations such as the essential nuclear genes Sf3b6, Sbno1, Polr1a, and Kin had a significant 
impact on many channels (Figure S9F). These results presumably reflect the pleiotropic consequences of 
disrupted transcription and RNA processing.  

Multimodal in vivo screening with strong phenotypes 

Our imaging and sequencing experiments resulted in >100,000 total perturbed cells with either 18-plex 
imaging phenotypes (subcellular morphology and cell locations in tissue), or genome-wide transcriptional 
phenotypes. We visualized the spatial organization of perturbed cells in tissue and observed small clusters 
of cells sharing the same perturbation, distributed throughout the various zones that form liver tissue (Figure 
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4A); these clusters presumably reflect local proliferation of single infected hepatocytes during postnatal 
growth after lentiviral transduction. We visualized the Perturb-seq transcriptional phenotypes with 
dimensionality reduction. For example, a UMAP projection of transcriptional phenotypes clearly separated 
cells with control sgRNAs from cells with sgRNAs targeting the core hepatocyte transcription factor Hnf4a 
(Figure 4B). We noted that Hnf4a knockout was associated with lower expression of Apolipoprotein AI, 
consistent with the role of Hnf4a in promoting the expression of abundant secreted factors in hepatocytes 
72. 
  
We performed unbiased clustering of the multimodal genotype-phenotype map to identify perturbations 
that cause similar multimodal phenotypes measured by Perturb-seq and multiplexed imaging (Figures 4C 
and 4D). The perturbation cluster map derived from joint analysis of both modalities recovered many 
interpretable blocks of perturbed gene function, including a large block of ribosomal proteins and ribosome 
biogenesis genes, a block of nuclear mRNA processing genes, and a block of genes whose disruption 
activates the integrated stress response 18 (Figure 4D). Broadly, the sequencing and imaging data identified 
related but complementary perturbation-perturbation relationships (Pearson’s R = 0.42 for correlation-of-
correlations). 
 
We identified mRNA and protein phenotypes that co-varied across perturbations. We visualized the mRNA 
co-expression data from sequencing by constructing a minimum distortion embedding that placed genes 
with correlated expression nearby (Figure 4E; Methods). We identified clusters of co-regulated genes with 
similar biological functions, such as a group of genes involved in the urea cycle and the transport and 
metabolism of basic amino acids. We also identified imaging stains whose intensity co-varied across 
perturbations (Figure 4F), such as the mitochondria proteins Tomm20 and Tomm70, the lysosomal protein 
mannose 6-phosphate receptors (M6PRs), and the ER chaperone calreticulin. 

Identifying genetic regulators of liver physiology 

We conducted targeted analyses to discover key regulators of diverse aspects of in vivo liver physiology. 
With the Perturb-seq data, we identified the drivers of gene expression modules with crucial functions in 
hepatocytes. For example, we ranked genetic perturbations by their impact on a core program of lipid 
biosynthesis genes defined by a previous large-scale Perturb-seq study 18 (Figure 5A; see methods). 
Knockout of the lipid biosynthesis inhibitor Insig1 had the strongest positive effect on lipid biosynthesis 
gene expression; knockout of the Ldl receptor (Ldlr) and Srebf1 also had strong positive impacts, possibly 
due to compensatory expression. 
 
We also identified perturbations that activated transcriptional stress response pathways such as the 
integrated stress response (ISR) 73 or the unfolded protein response (UPR) 74, in hepatocytes in an intact 
liver (Figure 5B). We found that these two pathways were activated by the knockouts of separate sets of 
genes, suggesting that the stress-specific and selective transcriptional responses that are observed in cell 
culture are also a feature of hepatocyte physiology 14,18,75. For example, knockout of aa-tRNA synthetase 
genes such as Nars and Aars activated the ISR, as was previously observed in a genome-wide Perturb-seq 
experiment in cultured cells 18. Knockout of translation initiation factors such as Eif2α (Eif2s1) and Eif2b 
(Eif2b4) also activated the ISR. These results were consistent with established mechanisms of ISR 
activation by uncharged tRNAs and delayed translation initiation 74. Knockout of ER import and quality 
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control genes such as Sec61a1, Dnajb9, and Sel1l activated the unfolded protein response. Knockout of the 
UPR effectors Xbp1 and Ire1 (Ern1) caused a decrease in UPR gene expression, suggesting some basal 
level of UPR activation in hepatocytes in ad libitum mice. Intriguingly, knockout of the ER calcium 
transport gene Atp2a2 caused uniquely strong activation of both the UPR and the ISR, suggesting that 
calcium homeostasis plays a central role in regulating both ER function and broader cellular stress responses 
in hepatocytes. 
 
For first-pass exploration of the imaging data, we ranked genetic perturbations by their impact on the 
intensity of each immunofluorescence or RNA FISH stain and identified perturbations that had a significant 
impact on the stain intensity. As a validation, we observed that sgRNAs targeting Gapdh had the strongest 
negative impact on anti-Gapdh staining intensity (Figure 5C) and sgRNAs targeting Albumin had the 
strongest negative impact on Albumin mRNA FISH staining intensity (Figure 5D). Targeting the RNA 
polymerase II machinery (Polr2l, Gpn1) or the core hepatocyte transcription factor Hnf1a, which directly 
binds the Albumin promoter, also had a strong negative impact on Albumin mRNA FISH, as did sgRNAs 
against the ER associated degradation (ERAD) factor Sel1l. 
 
Interestingly, the screens correctly identified genetic regulators of many highly essential processes, 
suggesting that the ten days that we waited between AAV-Cre infection and tissue perfusion captured the 
acute impacts of perturbations. For example, targeting the RNA polymerase I machinery (Polr1a) and Pol 
I transcription factors (Taf1a, Rrn3, Ubtf) had the strongest negative impact on pre-rRNA FISH intensity 
(Figure 5E). Unexpectedly, targeting the nuclear speckle component Sf3b6 caused an increase in pre-rRNA 
FISH intensity, suggesting a possible interplay between subnuclear structures (e.g. nuclear speckle and 
nucleolus) in hepatocytes in vivo. 
 
Our screens also identified the in vivo regulators of cellular signaling pathways that play important roles in 
liver physiology. Phosphorylation of ribosomal protein S6 is a core function of the mTor signaling pathway. 
Knockout of Mtor and the potential mTor complex co-chaperone Cdc37 caused the strongest decrease in 
anti-phospho S6 ribosomal protein intensity (Figure 5F) 76,77; knockout of the mTor inhibitors Tsc1 and 
Tsc2 and the growth inhibitor Pten caused the strongest increase in anti-phospho S6 ribosomal protein 
intensity 77. We note that imaging-based screening is uniquely powerful for probing genetic regulators of 
protein modification, which could not be measured by sequencing.  

Deep learning on the imaging-based perturbation data 
 
In addition to modification of signaling proteins, imaging is also uniquely capable of detecting 
morphological changes beyond simple assessment of protein expression levels. We thus explored deep-
learning-based approaches to explore more complex morphological phenotypes in the perturbation-imaging 
data. We used our autoencoder model to generate a lower-dimensional embedding for each image and then 
performed unbiased clustering on the embeddings. We illustrated these embeddings and the clustering with 
UMAP, using the imaging data of the lysosomal protein CathB as an example (Figure 5G). We then 
identified perturbations that shifted the representation of cells between the different clusters. For example, 
knockout of the lysosomal cholesterol transport gene Npc1 caused significant enrichment of CathB 
morphologies in clusters F and G, which have many distinct anti-CathB punctae, and depletion from clusters 
A and E, which have very few anti-CathB punctae (Figures 5H and 5I). Npc1 knockout also caused a 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 21, 2024. ; https://doi.org/10.1101/2024.11.18.624217doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.18.624217
http://creativecommons.org/licenses/by/4.0/


14 

significant increase in anti-CathB intensity (mean increase = 0.53 AUs, FDR-corrected p < 10-34). This is 
consistent with the accumulation of dysfunctional lysosomes that occurs when lysosomal cholesterol export 
is blocked, such as in Niemann–Pick disease type C with NPC1 or NPC2 mutations in humans 78. 

Investigating the impact of perturbations in altered physiological states 

 
A key ability of performing screens in vivo rather than in vitro is to identify perturbations that are sensitive 
to changes in organismal physiology and homeostasis. We fasted a mouse from the lenti-sgRNA infected 
cohort for 16 hours prior to perfusion and tissue preparation and conducted a parallel Perturb-seq 
experiment on both the fasted animal and ad lib animal (Figure 5J). We used an energy distance metric to 
quantify the impact of each gene knockout on the distribution of global transcriptional states. We measured 
the impact of each knockout relative to cells with control sgRNAs in the same animal. The overall 
magnitude of transcriptional phenotypic changes caused by each gene knockout was similar between fasted 
and ad libitum mice for most genes (Figure 5K, Pearson’s R = 0.77). However, we noticed that some genes 
involved in autophagy and the lysosome (Atp6v0c, Atp6ap1, Lamtor2) and the broader endomembrane 
system (Dnm2, Arfrp1, Jtb, Zw10) had especially strong phenotypes in fasted animals in comparison to ad 
libitum animals. Consistent with the energy distance analysis, knockout of these genes caused many more 
genes to be differentially expressed in fasted mice than in ad libitum mice, with Dnm2 knockout shown as 
an example (Figure 5L). This may be due to a higher dependence on lysosomal function during fasting 79; 
the failure of autophagy and endocytic function during fasting may cause severe cellular distress. 
 
We examined the transcriptional phenotypes associated with knockout of these lysosome and 
endomembrane genes in ad libitum and fasted mice. The transcriptional responses associated with these 
knockouts were much more similar in a fasted animal (mean Pearson’s R = 0.91, versus 0.19 in an ad libitum 
animal; Figure 5M), suggesting that these knockouts caused a convergent phenotype in some physiological 
states. More broadly this illustrates how the modular structure of in vivo genotype-phenotype maps can be 
re-wired by environmental conditions 80. 

Three case studies exploring liver physiology with multimodal screening 

Hepatocyte Zonation 
Zonated gene expression in hepatocytes contributes to the spatial division of liver function. This zonation 
is believed to be maintained by gradients of morphogens, oxygen, nutrients, and hormones, but the 
requirements for these different processes to maintain zonal gene expression in a hepatocyte in an adult 
mouse are unclear. We explored our multimodal screening to shed light on mechanisms underlying 
hepatocyte zonal identity maintenance and dynamics. 
 
Wnt signaling is an established driver of hepatocyte zonation. Wnt ligand secretion from central vein 
endothelial cells promotes pericentral gene expression in hepatocytes; low Wnt in the periportal region 
contributes to the periportal gene expression program 61,81. We scored all cells in the Perturb-seq dataset 
according to zonated gene expression and looked at the distribution of zonal expression in cells with 
knockouts of central Wnt effectors and inhibitors (Figure 6A; see Methods for the definition of zonal gene 
expression score). Knockout of the Wnt transducer Ctnnb1 (β-catenin) caused a major decrease in the 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 21, 2024. ; https://doi.org/10.1101/2024.11.18.624217doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.18.624217
http://creativecommons.org/licenses/by/4.0/


15 

fraction of cells with pericentral gene expression, consistent with the role of Wnt signaling in pericentral 
expression 82,83. Conversely, knockout of the Wnt inhibitor Apc caused a decrease in the population of 
hepatocytes with periportal gene expression 84. 
 
We then looked across all gene knockouts in our experiment to identify the other drivers of zonal gene 
expression (Figure 6B). We also assessed periportal and pericentral expression as two separate scores, since 
the knockout of some core essential genes caused a general loss of zonal identity rather than a shift in one 
direction or the other (Figure 6C). Apc knockout caused the strongest increase in pericentral expression, as 
well as a substantial decrease in periportal expression. Knockout of Vhl, which mediates the degradation of 
hypoxia-inducible factors (HIFs) under normoxic conditions 85, caused a major decrease in periportal 
expression and also increased pericentral expression, consistent with the idea that oxygen tension directly 
regulates zonal gene expression 61,86,87. Loss of Vhl activity in the oxygen-rich periportal region may cause 
the specific decrease in periportal expression. Knockout of Pten and the gene Zfp830, which has not been 
studied in the context of hepatocyte zonation, also caused a shift toward a more pericentral-like expression 
state. Knockout of the R-spondin receptor Lgr4 caused a strong increase in periportal gene expression, 
phenocopying Ctnnb1. Intriguingly, knockout of protein kinase a subunit Prkar1a also caused a substantial 
increase in periportal gene expression. Knockout of the heparan sulfate synthesis gene Hs6st1 and the 
proteoglycan synthesis enzyme B4galt7 also caused an increase in periportal expression and a decrease in 
pericentral expression, possibly by impacting the extracellular matrix in a manner that influences the 
interactions of signaling molecules such as Wnt ligands with their receptors 88,89.  
 
Although one- and two-dimensional zonal expression scores described above are useful for exploration and 
interpretation of knockout effects on zonation, they do not necessarily reflect the full complexity of 
transcriptional phenotypes. Interestingly, when we compared the transcriptome-wide phenotype caused by 
these zonation-modulating knockouts, we found that knockout of some pro-pericentral factors, such as 
Hs6st1 and B4galt7, closely phenocopied Lgr4 and Ctnnb1 knockout (Figure 6D), suggesting that their 
functions in hepatocytes are intertwined with Wnt signaling. However, knockout of the pro-pericentral 
factor Prkar1a caused a globally distinct transcriptional response despite its convergent impact on zonation-
associated gene expression. Knockout of the apparent pro-periportal factors Apc, Vhl, Pten, and Zfp830 all 
caused globally distinct transcriptional phenotypes despite their convergent impacts on zonal gene 
expression. These results emphasize the complexity of the relationship between cell state and metabolism 
in hepatocytes. 
 
Our initial lentiviral transduction appears to target cells in all zones of the lobule; cells with control sgRNAs 
exhibit a full range of zonated gene expression (Figure 6A). In Perturb-seq, we measure the endpoint 
distribution of gene expression, but we do not know what happened during the time course of the 
perturbation or where each cell was in the tissue, prior to dissociation. What happens when a periportal 
hepatocyte gets a knockout such as sgApc that drives pericentral expression, or when a pericentral 
hepatocyte gets a pro-periportal sgRNA? The shift in endpoint zonal gene expression that we observe could 
be due to (1) in situ trans-differentiation without cell migration to an expression-appropriate zone, (2) trans-
differentiation with migration, or (3) the death of cells in one zone and/or the proliferation of cells in the 
other zone. 
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To discriminate between these scenarios, we examined the perturbation-imaging data. We automatically 
segmented the tissue into two spatial zones (pericentral and periportal segmentations) and looked to see 
whether knockouts that impacted zonal gene expression also impacted the positions of cells with regard to 
the segmented pericentral and periportal zones (Figures 6E and 6F). Notably, the fraction of cells physically 
located in the pericentral and periportal zones did not change with any of the gene knockouts that 
significantly impacted zonal expression, even with potent knockouts such as Apc and Ctnnb1 (Figure 6G). 
These results suggest that, on the time scale of our experiment and with our statistical power, cells with 
zonation-impacting knockouts exhibit gene expression changes due to trans-differentiation without 
migration or changes to survival or proliferation. 

Stress Response 
One major function of hepatocytes is to secrete abundant plasma proteins, so we were especially attuned to 
perturbations that impacted the endoplasmic reticulum. We noticed that knockout of the gene Sel1l, an ER-
associated degradation (ERAD) co-factor that plays a crucial role in ER protein quality control 90, caused a 
strong increase in Calreticulin protein level (Figures 7A and 7C). This suggested that the transcriptional 
upregulation of UPR targets that we observed upon Sel1l knockout in the Perturb-seq experiment (Figure 
5B) led to a corresponding increase in the ER protein chaperone capacity. Sel1l knockout also caused a 
significant decrease in Albumin mRNA level, but had relatively small impacts on the other proteins and 
abundant RNAs that we imaged (Figures 7B and 7C).  
 
Leveraging our paired imaging and sequencing data, we investigated the genome-wide transcriptional 
changes associated with Sel1l knockout in hepatocytes. As expected for an ER quality control factor, Sel1l 
knockout caused the upregulation of many other ER chaperone mRNAs, such as Hspa5 and Dnajb9, as 
well as Calreticulin itself (Figure 7D). Sel1l knockout decreased Albumin mRNA by 50% (Figure 7E), as 
expected from our imaging data, but intriguingly it also caused the downregulation of other mRNAs that 
encode for a range of abundant secreted plasma proteins, such as Apolipoprotein AI (Apoa1; 38% decrease) 
and the GC Vitamin D Binding Protein (Gc, 36% decrease) (Figure 7E). Altogether, the mRNAs 
downregulated by Sel1l knockout reflected an ~40% decrease in the total quantity of abundant secreted 
protein mRNAs (Figure 7F). These results suggested that a major function of the unfolded protein response 
in hepatocytes in vivo is to decrease the burden of secreted protein mRNAs and therefore of nascent proteins 
on the ER translocon and folding machineries. This decrease in mRNA abundance could occur indirectly 
through transcriptional downregulation 91 or directly through post-transcriptional stress response pathways 
such as Regulated Ire1a-Dependent Decay (RIDD), where it was found that ER stress sensor Ire1 can 
directly cleave mRNAs of secreted proteins on the ER surface to lower the flux of proteins through the ER 
92,93.  
 

Lipid Accumulation 
Hepatic steatosis, characterized by the accumulation of lipids within hepatocytes, is linked to metabolic 
syndrome and can progress to serious diseases such as metabolic dysfunction-associated steatohepatitis 
(MASH) and fibrosis 94. We used our imaging screen to identify in vivo drivers of steatosis. Acute knockout 
of the lipid biosynthesis inhibitor Insig1, the growth inhibitor Pten 95, the integrated stress response inhibitor 
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Eif2α (Eif2s1), and the alanine-tRNA synthetase Aars all caused steatosis, as measured by enlargement and 
increase in signal from lipid droplets, marked by anti-Perilipin (Figures 7G and 7H). 
 
We then examined the Perturb-seq data from the same mice to identify the transcriptome-wide changes 
associated with each of these four perturbations (Figure 7I). Consistent with its function as an inhibitor of 
lipid biosynthesis gene transcription 96, Insig1 knockout caused the upregulation of mRNAs for cholesterol 
biosynthesis genes such as Hmgcr and Fdps and fatty acid biosynthesis genes such as Acaca and Fasn. On 
the other hand, knockout of Aars and Eif2s1 drove upregulation of ISR target genes such as Ddit4 and Atf5. 
Intriguingly, Aars and Eif2s1 knockout actually caused a decrease in most lipid biosynthesis mRNAs. 
Finally, knockout of Pten caused yet another distinct transcriptional response that could not be summarized 
either as the ISR or lipid biosynthesis. 
 
Thus, through integrated analysis of Perturb-seq and imaging, we found that knockouts of these four genes 
apparently drove three separate transcriptional responses but converged on the steatotic phenotype. 
Considering these results together, we propose that the knockouts cause steatosis through three separate 
mechanisms—(1) through the transcriptional activation of lipid biosynthesis genes in the case of Insig1 
knockout; (2) through the apparent sequestration of free lipids into lipid droplets in the case of Eif2s1/Aars 
knockout, possibly as a component of the ISR that may serve to protect the cytoplasm and other organelles 
in stressed cells from biophysically disruptive lipid molecules 97–99, and (3) a distinct Pten-associated 
mechanism, possibly including uptake from plasma, some synthesis increase, sequestration, and/or the 
repurposing of organellar stores 100–103 (Figure 7J). 
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DISCUSSION 
 
Massively parallel in vivo genetic screens provide a powerful approach to dissect regulators of cellular and 
tissue physiology in their native context 38. Here, through extensive technical development and integration 
of multiple single cell profiling methods, we establish Perturb-Multi, a general and scalable approach for 
multimodal, pooled genetic screens with Perturb-seq- and multiplexed-imaging-based phenotyping. This 
multimodal in vivo approach allows us to access and interrogate physiological processes that are difficult 
to study by other means. We conduct screens in hepatocytes in the mouse liver and demonstrate how the 
resulting data enables causal dissection of multifarious aspects of liver biology, from hepatocyte zonation 
to steatosis to the signaling of nutritional status. Our data also provide a rich resource for future studies of 
liver biology and development of computational methods. In particular, our multimodal imaging data 
should prove useful for developing new analytical and machine learning tools for dimensionality reduction, 
feature extraction, and cross-modal analysis. More generally, this approach will enable the creation of large-
scale training datasets for machine learning and AI efforts to build models of “virtual” cells, driving both 
new discoveries and new forms of understanding 37. 
 
We show that the combination of transcriptomic profiling and subcellular morphology imaging enables 
new analyses of cellular heterogeneity within tissue, under both homeostatic and perturbed physiological 
conditions. Tissue-scale spatial analysis of protein feature embeddings revealed zonal heterogeneity in 
several imaging targets, beyond the expected Albumin mRNA and Perilipin. Cross modal analysis of 
subcellular protein and abundant RNA morphology across transcriptionally-defined hepatocyte subtypes 
revealed a continuum of morphological types between different liver zones. More generally, the multimodal 
combination of spatial transcriptomics to define cell types and states with morphological features that can 
be linked to the extensive histopathology literature should enable studies of both healthy and diseased 
tissue. 
 
Our screening results demonstrate the value of multimodal phenotyping that combines both multiplexed 
protein and RNA imaging and transcriptome-wide mRNA sequencing to study genetic regulators of cellular 
state in vivo. Applying this approach to cells in native tissue allows us to obtain insights into three core 
aspects of liver physiology in a single experiment: hepatocyte zonation, dynamic stress responses, and lipid 
droplet accumulation. 
 
Zonation: Hepatocytes in different zones of the liver express different genes and have different functions 
61. The regulation of hepatocyte zonation has been challenging to study in vitro, as hepatocytes rapidly lose 
their zonal identity when isolated and introduced into cell culture. Even complex organ-on-a-chip and 
organoid models provide imperfect recapitulations of tissue architecture 104,105. Here, we directly probe the 
regulation of zonal gene expression in the mouse liver. In addition to confirming the known roles of oxygen 
sensing and Wnt signaling in regulating zonal identity 61, we show that even brief (<10 day) disruption of 
these pathways rewires hepatocyte zonal gene expression in adult mice, apparently in a cell autonomous 
manner. Remarkably, we further identify several novel candidate regulators of zonation such as Hs6st1 and 
B4galt7 that have an equal impact on zonation relative to perturbing the Wnt pathway, illustrating the value 
of systematic exploration. Notably, these factors are involved in the modification of secreted and 
extracellular matrix proteins and may point toward a unique capacity of in vivo screens to explore causal 
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relationships between the extracellular microenvironment and intercellular signaling. By analyzing the 
spatial location of the genetically perturbed cells, we show that upon deletion of these key regulatory genes, 
cells change their transcriptional zonal states without physical relocation across pericentral and periportal 
zones in the tissue. We anticipate future experiments with genome-scale perturbation libraries and multiplex 
perturbation vectors to comprehensively classify zonation regulators, and to identify epistatic relationships 
between the associated signaling pathways. 
 
Stress response: Hepatocytes are secretory cells that must produce Albumin, among other proteins, in 
massive quantities. As such, stress response pathways that monitor protein folding in the endoplasmic 
reticulum, such as unfolded protein response (UPR), play an important role in maintaining hepatocyte 
function. Notably the UPR is activated in several liver diseases, including viral hepatitis, alcohol-associated 
liver disease, and MASH 106,107. The secretion of proteins such as Albumin drops dramatically when the 
liver is dissociated and hepatocytes are introduced into an in vitro setting 108, indicating the importance of 
in vivo models for the investigation of hepatocyte secretion. In our imaging-based pooled genetic screening, 
we found that the knockout of Sel1l, an important ubiquitin ligase adaptor protein involved in ER-associated 
degradation, caused massive upregulation of the ER quality control protein Calreticulin, and 
downregulation of Albumin RNA. In subsequent analysis of the Perturb-seq data, we found that Sel1l 
knockout caused both transcriptional upregulation of UPR target genes and the 40% transcriptional 
downregulation of abundant secreted proteins. We thus hypothesize that a major function of the UPR in 
hepatocytes in the liver is to downregulate secretory protein genes, thereby reducing the burden on the ER 
folding machinery, either transcriptionally or through post-transcriptional mechanisms such as RIDD 93. 
The extent to which UPR-associated down-regulation of secreted proteins may contribute to 
hypoproteinemia seen in chronic liver disease remains an outstanding question. 
 
Lipid droplets: Lipid droplets play a crucial role in hepatocyte energy storage and lipid metabolism. 
Accumulation of lipid droplets is key to the pathology of metabolic dysfunction-associated steatotic liver 
disease (MASLD), whereby progress from steatosis to steatohepatitis is marked by distinct transcriptional 
states in humans 109. As an example of interrogating in vivo physiology, we find that genetic knockouts 
targeting Insig1, Eif2s1/Aars and Pten all caused a convergent morphological phenotype with the dramatic 
accumulation of lipid droplets, but entirely distinct transcriptional responses. While the highly interpretable 
imaging results indicate that the function of these genes impinges on lipid homeostasis, their distinct effects 
on the transcriptional states indicate they likely induce lipid accumulation through distinct mechanisms. 
Our paired imaging and sequencing approach was necessary to reach this conclusion. Imaging lipid droplet 
accumulation on its own would reveal the ultimate cellular consequences of the perturbations; measuring 
the transcriptional responses by Perturb-seq would show the complexity and distinctiveness of each 
perturbation, but mask their common functional impact on the cell.  
 
These insights into hepatocyte biology suggest that applying our approach to other organs will be of 
immediate value. The basic approach that we have developed here is applicable to dissociated cells or 
sections from any tissue. Similar genetic mosaics can be created in other organs using viral delivery, 
including the brain and skin 29–31, although there are currently technical challenges to achieving the same 
level of uniformity and precision of delivery as in the liver. In particular, AAV-based delivery will further 
expand the number of accessible organs to include heart, lung, brain, and skeletal muscle – potentially even 
spanning the majority of tissues in an animal. AAV-based approaches can also be applied in non-murine 
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species, including non-human primates. AAV delivery of sgRNAs has recently been used for Perturb-seq 
in the mouse brain 29,30; we anticipate that it can be adapted to our platform of paired imaging and fixed-
cell Perturb-seq. AAV delivery can suffer from problems of cell type tropism and uncontrolled viral 
multiplicity-of-infection (MOI), which may make pooled screens more challenging to interpret. Future 
multimodal mosaic screens will build on advances in technology for the delivery of perturbation reagents, 
such as engineered AAVs that target specific cell types with high efficiency 110, or methods to create 
controllable MOI. Tissues more complex than the liver will provide new challenges and opportunities for 
understanding gene function across a variety of cell types and states.  
 
Although our experiments demonstrate the power of multimodal functional interrogation of diverse genes 
in vivo at the scale of hundreds of genes, our approach is highly scalable in terms of the number of 
phenotypes, genotypes, and perturbed cells measured. In terms of phenotype, the number of genes imaged 
using MERFISH 36,111,112, as well as the number of proteins assayed through multiplexed 
immunofluorescence, could be readily increased in future experiments to obtain a more unbiased picture of 
the phenotypic states of cells. In terms of genotype, a clear future direction is to increase the number of 
perturbations, ultimately to the genome-wide scale, enabling truly unbiased and comprehensive mapping 
of gene function.  
 
Achieving genome-wide scale will require measurements of more individual cells. The number of cells is 
not limiting: each mouse liver contains 108 hepatocytes, enabling millions of perturbed cells per experiment. 
While the time and/or cost spent on an experiment scales linearly with the number of perturbations 
measured, the value of the information collected could scale superlinearly - this is especially true for 
investigating the interactions and relationships between different genotypes and phenotypes, allowing 
different genes to be grouped into pathways or complexes 18,24. Increasing the number of cells measured per 
perturbation will also allow us to resolve more subtle phenotypes, as well tackle more complex and 
heterogeneous tissues containing larger numbers of distinct cell types or cell states. Achieving larger scales 
through sequencing is currently primarily limited by cost, which could be reduced by superloading 
microfluidic droplets 113 or using scalable split-pool approaches 114,115. While imaging is already quite high-
throughput – scales of tens to hundreds of thousands of cells per day 116 and millions of cells per experiment 
are possible 117 – reaching genome-wide scale will require further improvements in microscopy 
instrumentation and analysis to increase the throughput (for example, ~20,000 perturbations x ~100 cells 
per perturbation = ~2 million perturbed cells, which requires ~20 million imaged cells when probed at a 
low MOI (~0.1) to ensure most perturbed cells harboring a single perturbation). For both imaging and 
sequencing, throughput could be further increased by infecting cells at higher MOI then deconvolving 
phenotypes, using ideas from compressed sensing 118. 
 
These large-scale, multimodal maps will enable both biological discovery as well as the training of 
sophisticated AI models that can capture the rich structure of genetic and cell function. In particular, these 
data will provide fuel for emerging large-scale “virtual cell” efforts that build on existing cell atlases to 
model cellular state across diverse cell types, tissues, and organisms 119–121. Such generative models promise 
to enable vastly better prediction of the effects of perturbations on cells, with applications ranging from 
reverting disease phenotypes to enabling entirely new functionalities 38. Genome-wide Perturb-seq data has 
already been successfully applied to build predictive models of the effects of perturbations on cells 122. Such 
models are currently constrained by the paucity of available perturbation data and the limited phenotype 
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modalities measured, requiring more perturbations and richer phenotypes in diverse cell types to generalize 
beyond cultured cells. Adding an understanding of causality to these models through training on large-scale 
perturbation data will dramatically increase their predictive power, enabling new approaches to discovery 
and hypothesis generation, cellular engineering, and therapeutic development.  
 
Limitations of the study 
 
Some aspects of our study limited the scope of our results. (1) We targeted only ~200 genes that are 
potentially important for liver physiology, limiting the number of pairwise comparisons that could be made 
between knockouts and the chance for serendipitous discoveries of novel gene functions, (2) we delivered 
perturbations only to hepatocytes and sampled a limited number of cells per perturbation, limiting our 
ability to understand how the phenotypic impacts of knockouts vary across cell types in the liver, as well 
as to study non-cell-autonomous effects, with high statistical power, and (3) our immunofluorescence panel 
covers only a subset of proteins, cellular structures, and cell signaling pathways, limiting the number of 
morphological phenotypes measured. 
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Data and Code Availability 
Sequencing data have been deposited with GEO (GSE275483). Cell images will be deposited to 
FigShare. Our codebase for the RCA-MERFISH pipeline and perturbation analysis will be available on 
GitHub: https://github.com/weallen/InVivoMultimodalPerturbation  
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Figure Legends 
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Figure 1: Perturb-Multi: pooled in vivo multimodal genetic screens through imaging and 
sequencing 

A. Multimodal mapping of genetic and physiological perturbations in vivo with Perturb-Multi. 
Pooled genetic perturbations are introduced into an animal’s liver by lentiviral infection, then 
animals are fixed with PFA and the liver tissue is subjected either to sequencing- or imaging-
based phenotype and genotype readout. Genotype-phenotype relationships on multiple aspects of 
cellular and tissue function are then interrogated in an integrated analysis.  

B. Multiple genotype and phenotype readout methods using hybridization-based sequencing and 
imaging. Top: Sequencing approach. Cells from fixed tissue are dissociated, then subjected to 
hybridization-based single-cell RNA-seq using 10X Genomics Flex. Bottom: Imaging approach: 
Tissue sections are stained with pools of oligo conjugated antibodies, then RNA and oligo-
antibodies are embedded into an polyacrylamide gel and digested. Probes targeting endogenous 
RNA and RNA barcodes are hybridized, then ligated and amplified by RCA before readout by 
MERFISH on an automated microscope. Antibody-associated oligos and abundant RNAs are then 
detected by sequential rounds of FISH. 

C. Diagram of liver organization at the lobule and tissue scale, showing major pericentral to 
periportal axis. Image courtesy of BioRender.  

D. Multimodal measurement of gene expression (left) and subcellular morphology (center), with 
machine learning-based segmentation of cells (right). The left panel shows a fluorescence 
micrograph of an RCA-MERFISH sample stained with DAPI and three fluorescent readout 
probes for detection of the first three bits. 18 additional bits will be imaged before the mRNA 
library is decoded. The middle panel shows 3 of the 18 morphological stains that we image in 
each sample, including two antibodies (anti-Calreticulin, anti-Na+/K+-ATPase) and FISH probe 
targeting an abundant RNA (pre-rRNA). 

E. Multimodal readout of RNA and protein through MERFISH (for mRNAs of 209 genes) and 
sequential rounds of multi-color FISH (for 14 proteins and 4 abundant RNAs). 

F. Left: Integrated UMAP plot of RCA-MERFISH and Flex single-cell scRNA-seq data, revealing 
liver cell types identified through unsupervised clustering. Right: same UMAP showing cells 
from either RCA-MERFISH (upper panel) or Flex scRNA-seq (lower panel). See Methods. 

G. Periportal vs pericentral gene expression score for hepatocyte subtypes. The periportal and 
pericentral scores sum the expression of a literature-curated set of periportal or pericentral marker 
genes, including Cyp2f2 and Hal for periportal score and Glul and Cyp2e1 for pericentral score. 

H. Spatial distribution of periportal and pericentral scores in hepatocytes. Points represent individual 
hepatocytes colored by their periportal (left) or pericentral (right) scores. 

I. Spatial organization of hepatocyte subtypes (left) and non-hepatocyte cell types (right). Points 
represent individual cells colored by their called cell type or subtype identity. 

J. Spatial organization of imputed hepatocyte zone markers radially organized around a central vein. 
Showing zoom from box in (I). The points represent individual cells colored either by their called 
cell type or subtype identities (top) or by the imputed expression of a gene not directly measured 
by RCA-MERFISH. The spatial expression patterns are similar to those shown in 62. PP: 
Periportal; PC: Pericentral. 

K. Genome-wide imputed gene expression of individual hepatocytes (colored by subtype on left). 
Cells are sorted by periportal gene score, and genes are sorted by correlation with periportal gene 
score across cells. PP: Periportal; PC: Pericentral. 
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Figure 2: Heterogeneity in subcellular morphology by cell type and state 

A. Example images of a single field of view imaged with the full subcellular morphology panel, 
comprising 4 abundant RNA species and 14 proteins. Proteins are labeled with oligo-conjugated 
antibodies and imaged together with RNAs through sequential rounds of multi-color FISH.  

B. Zoom-in images of a subset of subcellular morphologies. 
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C. Diagram of deep learning autoencoder to reduce dimensionality and featurize subcellular 
morphology images. Protein morphologies are reduced from images to a 512 dimensional 
embedding, using a VQ-VAE model. 

D. UMAP plot of individual subcellular morphology image embeddings, colored by channel (protein 
or RNA) identity. The text indicating the morphology channel identity is located at or near (to 
avoid overlapping text) the centroid of images of the channel in two-dimensional UMAP space. 
Points represent individual image channels in individual cells, colored by channel identities. 

E. Similarity of embeddings of subcellular morphological channels, quantified by Kullback Leibler 
(KL) divergence. Higher KL divergence values indicate a larger difference between the 
distribution of embeddings. 

F. Example tissue-scale spatial organizations of single features of morphological embeddings. Each 
cell in the liver section is colored by its value in the listed feature for a particular protein (for 
example, the left panel represents Albumin mRNA feature 431).  

G. Confusion matrix representing hepatocyte transcriptional subtype classification accuracy on held 
out test data, predicted using the transcriptomic data obtained from MERFISH imaging of 209 
genes. 

H. Confusion matrix representing hepatocyte transcriptional subtype classification accuracy on held 
out test data, predicted using the morphological feature embeddings obtained from imaging the 14 
proteins and 4 abundant RNAs. 

I. Heat map showing mutual information between each morphological channel at hepatocyte 
subtype identity (Hep1 vs Hep6). Channels with higher KL divergence values have larger 
differences in the embeddings between Hep1 and Hep6 cells. 

J. UMAP representation of anti-Perilipin morphological embeddings, colored by hepatocyte subtype 
identity (top) or embedding Leiden cluster (bottom). 

K. Unbiased sampling of hepatocytes from Perilipin embedding clusters 2 (enriched for Hep 6 
transcriptional subtype) and 6 (enriched for Hep 1 transcriptional subtype). 

L. Diagram of the diet experiment. 
M. Heat map showing the capacity of morphological channel embeddings to discriminate between 

hepatocytes from ad lib and fasted mice. Channels with higher KL divergence values have larger 
differences between the embeddings representing morphology in the ad lib and fasted conditions. 

N. Unbiased sampling of hepatocytes from anti-p-S6 RP embedding cluster 7 (from the ad lib 
condition) and cluster 0 (from the fasted condition). These two clusters have the most significant 
disparity in enrichment between the conditions and emphasize the difference between conditions. 

O. Heat map showing the capacity of morphological channel embeddings to discriminate between 
hepatocytes from ad lib and HFD mice. Channels with higher KL divergence values have larger 
differences between the embeddings representing morphology in the ad lib and HFD conditions. 

P. Unbiased sampling of hepatocytes from anti-perilipin embedding cluster 0 (from the ad lib 
condition) and cluster 10 (from the HFD condition). These two clusters have the most significant 
disparity in enrichment between the conditions and emphasize the difference between conditions. 
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Figure 3: Large-scale, multimodal in vivo screening in CRISPR mosaic livers 

A. Schematic of lentiviral vector used for dual-mode mosaic screens. The vector was derived from a 
CROP-seq vector and includes an mU6 promoter driving sgRNA expression and a hepatocyte 
promoter driving expression of an mTurquoise transcript that contains a perturbation-specific 
barcode sequence in the 3’ UTR. 
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B. Diagram of CRISPR perturbation experiment. LSL-Cas9 pups are injected with an sgRNA 
perturbation library. Cas9 is activated in young adults through the administration of AAV8 TBG-
CRE and livers are harvested with PFA perfusion and then analyzed with RCA-MERFISH or 
fixed cell Perturb-seq. 

C. Fluorescence micrograph of PFA-perfused, lentivirus- and AAV-transduced liver tissue. The 
micrograph shows cells expressing Cas9-EGFP (green) and sgRNA-mTurquoise (purple). 

D. Multimodal readout of RNA, protein, and perturbation barcode through sequential hybridization 
and imaging. 209 endogenous RNAs and 456 perturbation barcodes are imaged with two back-to-
back RCA-MERFISH runs on the same instrument, alongside the imaging of 14 proteins and 4 
abundant RNAs with sequential rounds of multicolor-FISH.  

E. Representative fluorescence micrograph of the first three bits (out of 21 bits total) of RCA-
MERFISH imaging of perturbations.  

F. Pie chart representing the number of sgRNA calls in each cell in the imaging experiment. 85.3% 
and 14.7% of imaged cells with at least one called perturbation barcode have exactly one and two 
called barcodes, respectively. In this study, we only analyzed cells with a single called 
perturbation. 

G. Fluorescence micrograph of a representative hepatocyte recovered after the dissociation of PFA-
perfused liver. The colors represent DAPI and phalloidin. 

H. Representative flow cytometry data from dissociated PFA-perfused, lentivirus- and AAV-
transduced liver tissue. Cells are sorted for mTurquoise+ and GFP+ signals to enrich for a 
population that received an sgRNA and has active Cas9. 

I. Histogram representing counts data from custom hybridization probes targeting one of the two 
Albumin sgRNAs, Alb_0. The y axis is semi-log. The inset shows a schematic of direct split 
probe hybridization to the variable and constant portions of an sgRNA. 

J. Pie chart representing the number of sgRNA calls in each cell in the Perturb-seq dataset. 85.7% 
and 14.3% of imaged cells with at least one called perturbation barcode over the threshold have 
exactly one and two called barcodes, respectively.  

K. Histogram comparing Albumin expression in called cells with a control sgRNA and called cells 
with Albumin-targeting sgRNAs, from the Perturb-seq dataset. The x axis represents the tp10k 
expression of Albumin. 

L. Pie charts showing the number of targeting (left) and non-targeting (right) sgRNAs that caused a 
significant transcriptional phenotype, as measured by a Holm-Sidak-corrected energy distance 
permutation test (p < 0.05), in the Perturb-seq dataset. 109/406 targeting sgRNAs (27%) and 0/50 
of non-targeting sgRNAs (0%) have significant transcriptional phenotypes. 

M. Histogram comparing the Pearson correlation of pseudo-bulk transcriptional changes associated 
with pairs of active targeting sgRNAs targeting the same gene, to pairs of control sgRNAs, in the 
Perturb-seq dataset. 

N. Ranking knockouts according to the energy distance vs control cells, in the Perturb-seq dataset. 
The energy distance is calculated using the top 20 PCs of Z-normalized gene expression. 

O. Unbiased sampling of cells with control sgRNAs and sgRNAs targeting Albumin. The 
fluorescence micrographs show Albumin mRNA and polyA FISH channels. 

P. Histogram comparing Albumin mRNA intensity in called cells with a control sgRNA and called 
cells with Albumin-targeting sgRNAs, from the imaging dataset. The x axis represents the 
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intensity of Albumin mRNA FISH across each individual cell, relative to the average intensity of 
Albumin FISH in cells with control sgRNAs. 

Q. Histogram comparing the Pearson correlation coefficients of pseudo-bulk transcriptional changes 
associated with pairs of active targeting sgRNAs targeting the same gene, to pairs of control 
sgRNAs, in the imaging dataset. 

R. Venn diagram of genes with significant knockout phenotypes in imaging and sequencing. 
Phenotype significance in the imaging and sequencing assays are measured by a Holm-Sidak-
corrected energy distance permutation tests (p < 0.05). There is significant overlap in the two sets 
of genes (hypergeometric p < 10-13).  
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Figure 4: Multimodal in vivo screening with strong phenotypes 

A. An example exploration of a spatial phenotype in the imaging dataset. The cells are colored by 
cell type (left; the colors are the same as in Fig. 1F) or by sgRNA barcode identity (right and 
zoom; cells with no called sgRNA are light gray). 

B. An example exploration of a transcriptional phenotype in the Perturb-seq dataset. A UMAP 
representing individual cells is generated from the single cell transcriptomes of cells with 
sgRNAs targeting Hnf4a and from a random sub-sampling of cells with control sgRNAs. The 
UMAP is colored by sgRNA identity (left) or by Apoa1 expression (right). 

C. Heat map representation of pseudobulk transcriptional changes (measured by sequencing, left) 
and staining protein and RNA level changes (measured by imaging, right) associated with each 
sgRNA, relative to cells with control sgRNAs. The colors represent perturbed gene-level log2-
fold RNA expression changes in cells with perturbed genes versus negative control cells 
(transcriptional sequencing data), or Z-normalized protein/RNA expression change in cells with 
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perturbed genes relative to negative control cells (staining intensity imaging data), and are clipped 
for visual emphasis. 

D. Heat map of the perturbation-perturbation correlation of RNA and protein changes associated 
with active sgRNAs, with zooms. The colors represent Pearson correlation of perturbed gene-
level pseudobulk phenotypes in the sequencing dataset (below diagonal) or the imaging dataset 
(above diagonal). The genetic perturbations are ordered by single linkage hierarchical clustering 
of joint phenotype vectors that represent both transcriptional changes measured by sequencing 
and protein and RNA changes measured by imaging. 

E. Minimal distortion embedding where each dot represents an mRNA expressed in hepatocytes. 
mRNAs that are co-varying in expression across the genetic perturbations are placed in 
proximity. 

F. Heat map of the correlation between the expression levels of indicated proteins/RNAs across 
perturbations, in the imaging dataset. The proteins/RNAs are ordered by single linkage 
hierarchical clustering of the correlation matrix. 
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Figure 5: Identifying genetic drivers of liver physiology 

A. Ranking of perturbed genes by their impact on a literature-defined set of lipid and cholesterol 
biosynthesis genes in the Perturb-seq experiment. The genes included in the lipid score include 
Hmgcs1, Sqle, and Fasn and the score reflects mean log2-fold change across this panel, relative to 
negative control cells. Red reflects FDR-corrected significance (corrected p < 0.05, Benjamini-
Yekutieli correction). 

B. Scatterplot showing the impact of perturbed genes on literature-defined sets of Unfolded Protein 
Response (UPR) and Integrated Stress Response (ISR) genes. The UPR score includes genes such 
as Hspa5 and Herpud1; the ISR score includes genes such as Atf4 and Ddit4. The scores are 
calculated relative to cells with control sgRNAs. 

C. Ranking of perturbed genes by their impact on anti-GAPDH intensity in the imaging experiment, 
relative to mean intensity in cells with control sgRNAs. Red reflects FDR-corrected significance 
(corrected p < 0.05, Benjamini-Yekutieli correction). 

D. Ranking of perturbed genes by their impact on Albumin mRNA FISH intensity in the imaging 
experiment, relative to mean intensity in cells with control sgRNAs. Red reflects FDR-corrected 
significance (corrected p < 0.05, Benjamini-Yekutieli correction). 

E. Ranking of perturbed genes by their impact on pre-rRNA FISH intensity in the imaging 
experiment, relative to mean intensity in cells with control sgRNAs. Red reflects FDR-corrected 
significance (corrected p < 0.05, Benjamini-Yekutieli correction). 

F. Ranking of perturbed genes by their impact on anti-Phospho S6 ribosomal protein intensity in the 
imaging experiment, relative to mean intensity in cells with control sgRNAs. Red reflects FDR-
corrected significance (corrected p < 0.05, Benjamini-Yekutieli correction). 

G. A Leiden-clustered UMAP representation of CathB embeddings from the imaging experiment. 
Every point represents an individual cell. Sampled cells from each cluster are shown as insets. 

H. Bar plot of enrichment in each of the clusters in Npc1 knockout cells, relative to cells with control 
sgRNA. 

I. A sampling of cells with control sgRNAs or Npc1 sgRNAs showing fluorescence micrographs 
the anti-CathB channel alongside polyA FISH. 

J. Schematic of the diet + genetic perturbation Perturb-seq experiment. Two diet conditions are 
tested, including food access (ad lib) and deprived (fasted) conditions. 

K. Scatterplot comparing the energy distance vs control cells for each knockout in the ad lib and 
fasted Perturb-seq datasets. The two distances are correlated (Pearson’s R = 0.77). 

L. Heatmap representing the number of differentially expressed genes between the indicated 
samples. Genes that are differentially expressed between the indicated conditions are defined with 
Benjamini-Hochberg-corrected, Mann-Whitney corrected p < 0.05. Cells are subsampled such 
that each of the comparisons includes the same number of cells. 

M. Heatmap representing Pearson correlations of pseudobulk transcriptional responses between the 
indicated knockouts, in the indicated condition. The knockout-specific transcriptional responses 
are calculated relative to cells with control sgRNAs from the same mouse. The phenotypes of 
these knockouts are more correlated in fasted tissue (mean Pearson’s R = 0.91, vs 0.19 in an ad 
libitum animal). 
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Figure 6: Multimodal investigation of the regulation of hepatocyte zonation 

A. Kernel density estimate plots showing the distribution of zonation gene expression in single cells 
with control sgRNAs, sgRNAs targeting Ctnnb1, and sgRNAs targeting APC. The single cell 
zonation scores reflect the expression of periportal marker genes such as Cyp2f2 and Hal and 
pericentral marker genes such Glul and Cyp2e1, with periportal expression contributing positively 
and pericentral expression contributing negatively to the score. The scores are defined relative to 
the mean expression in cells with control sgRNAs. 

B. Ranking of perturbed genes by their average impact on the zonal gene expression score. 
C. Heatmap summarizing the categories of genes whose perturbation has a large impact on zonated 

gene expression. Here, the periportal and pericentral expression scores are shown separately. 
D. Heat map of the perturbation-perturbation correlation of pseudobulk transcriptional changes 

associated with the indicated sgRNAs. The color represents the Pearson correlation coefficient of 
pseudobulk phenotypes between indicated perturbations in the Perturb-seq dataset. 

E. Diagram of data-driven zonal segmentation process. The proportion of each of the different 
hepatocyte subtypes is calculated in 50 µm x 50 µm bins. The bins are then grouped into two 
zones based on the local cell type distribution and the enrichment of cells with each perturbation 
in the two zones is quantified.  
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F. Representative tissue section showing cell types from the RCA-MERFISH experiment (left) and 
the resulting spatial segmentation of periportal and pericentral zones (right). 

G. Barplot of the fraction of cells in periportal and pericentral zones (as defined above), for the 
indicated genetic perturbations. The white line represents the fraction of cells with control 
sgRNAs. No perturbations have significantly altered spatial zonation. 
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Figure 7: Multimodal investigation of stress response and steatosis  

A. Ranking of perturbed genes by their impact on anti-Calreticulin intensity in the imaging 
experiment, relative to mean intensity in cells with control sgRNAs. Red reflects FDR-corrected 
significance (corrected p < 0.05, Benjamini-Yekutieli correction). 

B. Volcano plot showing intensity change and significance of the imaged protein and RNA channels 
between cells with sgRNA targeting Sel1l vs cells with control sgRNAs. Dash line indicated 
corrected p value = 0.05. 

C. An unbiased sampling of cells with control sgRNAs and Sel1l sgRNAs, showing the anti-
Calreticulin channel (top) and the Albumin mRNA FISH channel (bottom) alongside polyA FISH. 

D. Heatmaps showing log2-fold change in the expression of UPR genes in the sequencing 
experiment. 

E. Stacked bar plot representing the proportion of the measured pseudobulk transcriptome composed 
of the ten most abundant secretory mRNAs, ranked according to their abundance in control cells. 

F. Violin plot representing the fraction of each measured single-cell transcriptome that is composed 
of mRNAs encoding the ten abundant secretory mRNAs, from cells with sgRNAs targeting Sel1l 
and cells with control sgRNA. 
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G. Ranking of perturbed genes by their impact on anti-Perilipin intensity in the imaging experiment, 
relative to mean intensity in cells with control sgRNAs. Red reflects FDR-corrected significance 
(corrected p < 0.05, Benjamini-Yekutieli correction). 

H. An unbiased sampling of cells with control sgRNAs and sgRNAs targeting the indicated gene, 
showing the anti-Perilipin channel alongside polyA FISH. 

I. A single-link hierarchically ordered heatmap showing log2 fold change in the expression of lipid 
biosynthesis genes and Integrated Stress Response genes, for the indicated genetic perturbations. 

J. Diagram illustrating convergent mechanisms that all cause lipid droplet accumulation. The 
knockouts may cause steatosis through three separate mechanisms: (1) through the activation of 
lipid biosynthesis in the case of Insig1 knockout; (2) through the sequestration of free lipids into 
lipid droplets alongside ISR activation, in the case of Eif2s1 and Aars knockout; and (3) a 
distinct, Pten-associated mechanism that may include update in plasma, lipid synthesis increase, 
and/or sequestration of free lipids. 
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Supplementary Figure Legends 

Figure S1: Workflow and optimizations for imaging-based screening 

A. Experimental procedure for tissue preservation by PFA fixation and cryoprotection. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 21, 2024. ; https://doi.org/10.1101/2024.11.18.624217doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.18.624217
http://creativecommons.org/licenses/by/4.0/


49 

B. Detailed experimental protocol for multimodal oligo-conjugated antibody staining and RCA-
MERFISH in fixed tissue. 

C. Different readout modalities by imaging or sequencing 
D. Diagram of padlock probe design for RCA-MERFISH with a Hamming Weight (HW) 6 code. 

The readout sequences (marked as bit 1 to bit 6), the presence of which determined the 
MERFISH code, are directly encoded in the padlock probe.  

E. Diagram of RCA-MERFISH signal amplification process. Probes that have both arms hybridized 
to target RNA and adjacent to each other are ligated, and then the ligated probes are amplified 
through rolling circle amplification (RCA). After RCA, the individual bits in each amplicon are 
read out through fluorescent microscopy, over multiple rounds of staining with fluorescent 
readout probes, and then dehybridizing (‘stripping’) the probes off with a high formamide 
concentration wash.  
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Figure S2: Optimization of RCA-MERFISH protocol 

A. Phi29 used in RCA degrades ssDNA smFISH probes. Left: smFISH signal in U-2 OS cells 
without Phi29 treatment at 37oC for 1 hr. Center: smFISH signal in U-2 OS cells pre-treated with 
Phi29 at 37oC for 1 hr before FISH staining. Right: smFISH signal in U-2 OS cells treated with 
Phi29 at 37oC for 1 hr after FISH staining. 

B. Quantification of effect of Phi29 on ssDNA smFISH probes from (A), in spots/cell. 
C. Quantification of effect of Phi29 on ssDNA smFISH probes from (A), in intensity/spot. 
D. Dextran sulfate inclusion in hybridization buffer inhibits Phi29 enzymatic activity. Left: 

amplified RCA-MERFISH padlock probe against GFP in U-2 OS cells not expressing GFP, 
detected by readout probes complementary to readout sequences on the padlock. Center: 
amplified RCA-MERFISH probe against GFP in U-2 OS cells expressing GFP, with dextran 
sulfate in the hybridization buffer, detected by readout probes complementary to readout 
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sequences on the padlock. Right: amplified RCA-MERFISH probe again GFP in U-2 OS cells 
expressing GFP, without dextran sulfate in the hybridization buffer, detected by readout probes 
complementary to readout sequences on the padlock. 

E. Optimization of alternative crowding agents to dextran sulfate. Multiple additives to hybridization 
mixture, staining U-2 OS cells expressing either GFP or mCherry with a single probe against 
GFP, in terms of number of spots per cell, distinguishing GFP+ (signal) and mCherry+ 
(background) cells. Peg8k = Poly(ethylene glycol) average mol wt 8,000, Peg35k = Poly(ethylene 
glycol) average mol wt 35,000, Dex = unsulfonated dextran; all are added to the hybridization 
solution so the final w/v is at the indicated percent. 

F. Quantification of increase in efficiency of different additives to hybridization mix from (E), 
relative to control (no additive to hybridization mix).  

G. Optimization of RCA-MERFISH. Fresh-frozen (F) and PFA-fixed (P) tissue was tested with 
staining RNA after gel embedding (+ Post-gel stain) or before gel embedding (– Post-gel stain), 
with or without the addition of methacrylic acid NHS ester (MAA) along with MelphaX, with or 
without antigen retrieval, and varying the digestion temperature from 37oC to 60oC. Counts are 
number of amplicons per cell across the first two bits, detected in the Cy7 and Cy5 color channel, 
from a 120 gene RCA-MERFISH library. 

H. Optimization of RCA-MERFISH across different decrosslinking conditions, quantified by 
amplicon counts per cell for a single bit, using an RCA-MERFISH library at low concentration 
(~0.1 nM/probe), hence the lower counts per cell than (G) which used ~10X higher probe 
concentration. The conditions tested are (1) no decrosslinking, (2) decrosslinking at 47˚ for 30 
minutes, (3) decrosslinking at 60˚ for 30 minutes, (4) decrosslinking at 70˚ for 30 minutes, and 
(5) decrosslinking at 85˚ for 15 minutes. All decrosslinking was conducted in TE pH 9. 

I. Optimization of immunofluorescence across different decrosslinking conditions, measuring total 
intensity per field of view for a Tomm20 antibody. The decrosslinking conditions were the same 
as in Figure S2H. 

J. Correlation of 209 gene RCA-MERFISH (after optimization) with bulk RNA-seq from the liver.  
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Figure S3: RCA-MERFISH padlock probe production 

A. RCA-MERFISH padlock probe design for pooled oligonucleotide synthesis, prior to 
amplification and probe library synthesis.  

B. Testing different Type IIS restriction enzymes on single restriction digested, PAGE-purified 
probe against GFP made through phophoramidite synthesis.  

C. RCA amplicons of digested RCA-MERFISH probe against GFP in U-2 OS cells expressing either 
GFP or mCherry. There are many more GFP amplicons in GFP-expressing cells than there are in 
mCherry-expressing cells, indicating the specificity of RCA-MERFISH. 

D. Probe library preparation protocol using RCA followed by restriction digestion. Femtomolar 
pools of oligos synthesized in arrays are amplified by PCR with phosphorylated primers 
containing an Nt.BbvCI site. The PCR amplicons are then circularized and nicked with Nt.BbvCI. 
The nick site is used to initiate rolling circle amplification, and the RCA product is then digested 
with BccI and BciVI after annealing on primers.  

E. Comparison of digested single probes and concatenated probes produced through RCA synthesis, 
on a 4% agarose gel electrophoresis. 
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Figure S4: Hepatocyte transcriptional subtypes 

A. Spatial organization of different transcriptionally-defined hepatocyte subtypes, Hep1-6. 
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Figure S5: Data processing pipeline and deep learning model architecture  

A. Diagram of data processing pipeline. Each panel of barcodes, endogenous RNA or morphological 
data (protein or RNA) that is measured is collected back-to-back in the same experiment and then 
processed in parallel. The RCA-MERFISH data is processed by first registering to common 
fiducials across multiple rounds, then decoding the identity of individual molecules. The 
molecules are then filtered using machine learning on features of molecules (mean intensity, size, 
variance, difference between mean on- and off-bit intensity), to obtain a final 5% false positive 
rate that decode to a blank barcode. In parallel, the polyA and Na+/K+ ATPase channels of the 
morphological data are used to segment cells, which are then merged to eliminate duplicates of 
the same cells segmented in multiple fields of view. The cell segmentations are used to assign 
molecules to individual cells for quantification, and then the morphological channels are used 
with the segmentation mask to export the final images and per-gene quantification of expression 
for each cell.  

B. Diagram of final annotated data matrix combining all features.  
C. High-level diagram of VQ-VAE network across all channels. An input image is put into an 

artificial neural network that attempts to reconstruct the same image after passing the image 
through a low-dimensional bottleneck. In this case, two separate representations are created (top- 
and bottom-level) that attempt to capture different scales of features in the image. The bottom 
representation is formed first through one network, then further compressed to form a top 
representation with a separate autoencoder. The two representations are then concatenated and 
passed through a final network to reconstruct the original image. 

D. Detail of VQ-VAE network for each individual channel, trained simultaneously. A separate 
embedding is created for each morphological channel at the same time, using a mean squared 
error (MSE) loss to determine the accuracy of reconstruction. For each morphological channel, 
the embedding is used in a classification task to predict the identity of the protein or RNA being 
represented. The embeddings for each morphological channel are then concatenated and used to 
predict higher-level information about the type or state of each cell. When added to the overall 
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training loss, these auxiliary predictive tasks are intended to constrain the representations that are 
formed by the VQ-VAE networks to capture salient features that discriminate different 
morphological channels and cell types or states.  
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Figure S6: Analysis of image features from deep learning embedding 

A. Diagram of transformation of individual imaging channels into cell by feature representations. 
Each image channel for each cell is reduced to 512-dimensional vector. Here, we consider each 
dimension a feature. 

B. Examples of protein channel images that have high values for feature 266 (locally concentrated 
expression) from Class viii (as described below in (D)). This shows that the same protein/RNA 
feature measures the similar spatial patterns across different protein/RNA channels and cells.  

C. Heatmap of average feature weights across different imaging channels, with all features shown 
(left) or only features with high weight scores (high signals) shown (right). 

D. (Left) Heatmap of the pairwise correlation between high-signal features across cells. (Right) This 
heatmap is reordered through hierarchical clustering to reveal features that correlate strongly. 
Nine classes of features are manually identified and visualized. Each class of features captures 
similar spatial patterns. Cells with high weight scores of features from each class are displayed, 
including example classes (ii) cells with two Nuclei, (iii) signal enriched at cell membrane, (iv) 
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signals showing relatively diffuse expression, (viii) signals showing locally concentrated 
expression, and (ix) noise. 

E. The spatial distribution of feature 266 in the Perilipin protein channel is illustrated for samples 
under fasted, high fat diet (HFD), and ad lib conditions. Cells displaying high Perilipin 266 
values contain high amounts of concentrated perilipin clusters. Notably, pre-normalized values 
for the Perilipin 266 feature are considerably higher in the HFD sample. 
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Figure S7: Changes in gene expression and morphology with physiological state 

A. UMAP of individual cells measured by 10X Flex from mice either with ad lib diet, overnight 
fasting, or 1 month high fat diet (HFD), colored by condition (left) or cell-type and subtype 
identity (right). 

B. Examples of calreticulin morphology in cells under ad lib or HFD conditions. 
C. Examples of pS6RP morphology in cells under ad lib or HFD conditions.  
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Figure S8: Validation of fixed cell Perturb-seq with CRISPRi 

A. Diagram of K562-CRISPRi Perturb-seq validation experiment 
B. Pie chart of the number of called sgRNA per cell. 
C. Histogram representing ENO1 expression in cells with an sgRNA targeting ENO1 or in cells with 

control sgRNAs. 
D. Histogram representing on-target knockdown and off-target knockdown, averaged across all 

targets in the experiment. On-target knockdown is defined as the expression of the target gene in 
cells with each corresponding sgRNA, relative to cells with control sgRNAs. Off-target 
knockdown is defined as the expression of each of other genes targeted in the experiment (not 
targeted in that cell), relative to expression of those genes in cells with control sgRNAs. 

E. Heat map representation of average expression of each of the indicated genes in cells with each of 
the indicated sgRNAs, relative to expression of those genes in cells with control sgRNAs. 
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Figure S9: Additional analyses of perturbation data  

A. Unbiased sampling of cells with control sgRNAs and sgRNAs targeting Gapdh. The fluorescence 
micrographs show anti-GAPDH and polyA FISH channels. 

B. Histogram comparing anti-Gapdh intensity in called cells with a control sgRNA and called cells 
with Gapdh-targeting sgRNAs, from the imaging dataset. 

C. Pie charts showing the number of targeting (left) and control (right) sgRNAs that caused a 
significant transcriptional phenotype, as measured by a Holm-Sidak-corrected energy distance 
permutation test (p < 0.05), in the imaging dataset. 
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D. Scatterplot comparing the energy distance vs control cells for each knockout in the imaging and 
Perturb-seq datasets. 

E. Histogram representing the number of differentially expressed genes for each perturbation, from 
the sequencing experiment. Differential gene expression reflects Benjamini-Hochberg-corrected, 
Mann-Whitney p < 0.05, versus cells with control sgRNAs. 

F. Histogram representing the number of imaging channels (proteins or RNAs) exhibiting 
differentially intense signals foreach perturbation, from the imaging experiment. Differentially 
intense signal reflects Benjamini-Hochberg-corrected, Mann-Whitney p < 0.05, versus cells with 
control sgRNAs. 

 
 

Supplementary Tables: 
● Table S1: Fluorescent readout oligonucleotide bits used for RCA-MERFISH 

○ The sequences and colors of the fluorescent readout oligonucleotide bits used for all 
RCA-MERFISH imaging. 

● Table S2: RCA-MERFISH mRNA Library 
○ The targets and sequences of the padlock probes used for the mRNA measurements in 

RCA-MERFISH. 
● Table S3: RCA-MERFISH Oligo-Antibody + Abundant RNA Panel 

○ The antibodies used for multiplexed oligo-antibody immunofluorescence, as well as the 
abundant RNAs targeting with sequential FISH. 

● Table S4: RCA-MERFISH Abundant RNA Probes 
○ Sequences of the oligonucleotide probes used for FISH targeting abundant RNAs. 

● Table S5: RCA-MERFISH Imaging Experiment Rounds, WT Animals 
○ Description of the imaging rounds in the RCA-MERFISH experiments conducted in WT 

animals. 
● Table S6: Liver Perturbation Library 

○ Targets, sgRNA sequences, and barcode sequences used to generate the genetic mosaic 
livers that we analyzed with imaging and Perturb-seq. 

● Table S7: RCA-MERFISH Perturbation Barcode Library 
○ The targets and sequences of the padlock probes used for the perturbation barcode 

measurements in RCA-MERFISH. 
● Table S8: RCA-MERFISH Imaging Experiment Rounds, Mosaic Animals 

○ Description of the imaging rounds in the RCA-MERFISH experiments conducted in 
genetic mosaic animals. 

● Table S9: Fixed Cell Perturb-seq sgRNA Probes 
○ Sequences of sgRNA-targeting probes used in fixed-cell Perturb-seq. 
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Methods 

RESOURCE AVAILABILITY 

Lead Contact: Further information and requests for resources and reagents should be directed to and will 
be fulfilled by the lead contact.  

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS 

Animals 
Male and female wildtype and B6;129-Gt(ROSA)26Sortm1(CAG-cas9*,-EGFP)Fezh/J in a C57BL/6J 
background were used in this study. Mice were obtained from Jackson labs or bred at Harvard or MIT. 
Mice were maintained on a 12 hr light/ 12 hr dark cycle (14:200 to 02:00 dark period) at a temperature of 
22 ± 1oC, a humidity of 30-70%, with ad libitum access to food and water unless otherwise noted. Mice 
were fed ad libitum with a diet containing 60% kcal from fat (Research Diets, Inc. D12492i) or standard 
chow. Animal care and experiments were carried out in accordance with NIH guidelines and were 
approved by the Harvard University and Whitehead Institute Institutional Animal Care and Use 
Committees (IACUC). 
 
Cell lines 
HEK 293T/17 (ATCC CRL-11268) cells were cultured in DMEM supplemented with glutamax, HEPES, 
10% fetal bovine serum, 100 units/mL penicillin, and 100 mg/mL streptomycin (ThermoFisher 
Scientific). K562-CRISPRi cells (Gilbert et al, 2014) were cultured in RPMI supplemented with 
glutamine, HEPES, 10% fetal bovine serum, 100 units/mL penicillin, and 100 mg/mL streptomycin 
(ThermoFisher Scientific). AML12 cells (ATCC CRL-22540 were cultured in DMEM/F12 medium 
supplemented with 10% fetal bovine serum, 10 mg/mL insulin, 5.5 mg/mL transferrin, 5 ng/mL selenium, 
and 40 ng/mL dexamethasone (ThermoFisher Scientific). 

METHOD DETAILS 

Lentiviral Construct Cloning 
The parental mosaic screening vector (pVV1) was generated from a modified CROP-seq vector (pBA950; 
addgene 122239 123) and from a lentiviral vector used for CRISPR screens in the liver (pLentiCRISPRv2-
Stuffer-HepmTurquoise2; addgene 192826 27) using standard methods. First, the EF1a-BFP was replaced 
by mTurquoise driven by a hepatocyte-specific promoter. Then, the parental mU6 promoter was replaced 
by an mU6 promoter that did not contain a loxP site 124, yielding pVV1. 
 
CRISPR Guide Library Cloning 
The parental pVV1 vector was digested with BstXI and BamHI and purified by gel electrophoresis. 
Library elements containing both sgRNAs and their associated barcodes were ordered as eblocks and 
pooled before cloning. The library elements were synthesized with three different sgRNA constant 
regions, which decreases recombination between the sgRNA and the barcode during lentiviral packaging 
14. The library elements were also digested with BstXI and BamHI and purified by gel electrophoresis. 
The digested library was ligated into digested pVV1. The ligation was purified with a silica column 
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(Zymo) and electroporated into MegaX DH10B T1 R electrocompetent cells (ThermoFisher Scientific) 
according to the manufacturer’s protocol. The cells were recovered and then directly introduced into 
liquid culture and maxiprepped the next day. Samples were plated and used to confirm >1000x library 
coverage during cloning. Colonies were sequenced to confirm cloning fidelity. 
 
Lentiviral Preparation 
The lentivirus was generated according to standard methods by the transfection of 293T/17 cells with 
Fugene HD (Promega), our library vector, psPAX2, and pMD2.G. We used ViralBoost (Alstem) 
according to the manufacturer’s instructions. We harvested supernatant, filtered it through a 0.45 µm PES 
membrane, and conducted a 10x concentration with PEG and NaCl (Lenti-X Concentrator; Takara) 
according to the manufacturer’s instructions. We then pelleted this concentrate by centrifugation in a 
swinging bucket centrifuge (25,000g, 2 hours, 4˚, Beckman Coulter SW 32 Ti) and resuspended it in cold 
PBS + 4% glucose, leading to an additional 100x concentration. Lentivirus was flash frozen and titered 
approximately through the transduction of AML12 cells. 
 
Mosaic Liver Preparation 
The lentivirus was thawed on ice and up to 50ul was injected into the temporal vein of postnatal day one 
mice 27,125. We injected approximately 1 x 107 titer units of lentivirus per animal. We then allowed the 
mice to grow to adulthood (>P30) and induced Cas9 through the retro-orbital injection of AAV8 with Cre 
driven by a hepatocyte promoter (Addgene 107787-AAV8; ~5 x 1011 genome copies per animal). We 
maintained the mice for ten days, or alternatively maintained for nine days and then fasted for 16 hours. 
The mice were anesthetized and fixed by perfusion of PBS + 4% paraformaldehyde. Livers were removed 
and fixation was continued for 3 hours in PBS + 4% paraformaldehyde, followed by ~13 hours in PBS + 
4% paraformaldehyde + 30% sucrose. Fixed livers were then frozen in Optimal Cutting Temperature 
compound (OCT) and stored at -80˚. 
 
Mosaic Liver Dissociation for Fixed Cell scRNA-seq 
100µm sections of liver were generated on a cryostat and stored at -80˚ for later processing. The sections 
were washed with cold 0.5x PBS to remove residual OCT and then resuspended in warm RPMI + 1 
mg/ml Liberase Th. The material was transferred to a gentleMACS C tube and dissociated on a 
gentleMACS Octo Dissociator with heaters (Miltenyi) with the program 37C_FFPE_1. The cells were 
strained through a 30µm pre-separation filters (Miltenyi) and singlets (diet experiment) or GFP+, 
mTurqiouse+ singlets (Perturb-seq experiment) were isolated by FACS (ARIA II, BD) and maintained at 
4˚ in 0.5x PBS until scRNA-seq. 
 
sgRNA probes for Fixed Cell scRNA-seq 
Probes for the sgRNAs were obtained from IDT as opools. Probe sequences are found in Table S9. The 
left-hand side probes targeted the sgRNA constant region; three variants of this probe were included in 
each hybridization, targeting each of the three constant regions included in the sgRNA library. The left-
hand side probes also had a sample barcode sequence. The right hand side probes were 5’ phosphorylated 
and targeted the protospacer sequence directly. The barcode spike in probes contained the appropriate 
TruSeq sequences such that they could be amplified separately from the transcriptome probes and 
sequenced independently. We included a variable number of N bases to ensure base diversity during 
sequencing. 
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Fixed Cell scRNA-seq Library Preparation and Sequencing 
scRNA-seq was conducted with the Single Cell Gene Expression Flex platform (10x Genomics). Spike-in 
probes for the sgRNAs were included to a final concentration of 2 nM. Cells were counted on a Countess 
II (ThermoFisher Scientific). We used four sample barcodes and recovered the cells across one (diet 
experiment) or eight (Perturb-seq experiment) of microfluidic channels. mRNA libraries were prepared 
according to the manufacturer’s instructions. sgRNA libraries were prepared with the Fixed RNA Feature 
Barcode Kit according to the manufacturer’s instructions. Libraries were sequenced using a NovaSeq 
6000 (Illumina). 
 
scRNA-seq Alignment and Calling 
The scRNA-seq mRNA data was aligned with CellRanger (10x Genomics). The sgRNA reads were 
aligned with a custom pipeline using the cell barcodes produced by CellRanger. Briefly, we used bowtie2 
(flags --very-sensitive --local) to align the reads to the sgRNA probe library. We then selected sgRNA 
reads with a cell barcode that was shared with a cellranger-called cell and identified the number of UMIs 
for each sgRNA in each cell. We tested several perturbation calling approaches including mixed model 
calling and identifying outliers in a Poisson distribution or zero-inflated Poisson distribution and found 
the best performance across sgRNAs with thresholding, choosing thresholds empirically to maximize on 
target knockdown of perturbation targets with apparent NMD. We identified all cells with exactly one 
sgRNA over the chosen threshold and excluded the rest from all analyses. 
 
Antibody Labeling 
Antibodies were obtained in >50 ug quantities and labeled with bifunctional 5' Acrydite - bit sequence - 
3’ DBCO oligos (IDT) by enzymatic modification and click chemistry (SiteClick Antibody Azido 
Modification Kit, ThermoFisher) according to the manufacturer’s instructions. Antibody-oligo conjugates 
were concentrated in PBS by ultrafiltration with a 100kDa membrane (Millipore), which also removed 
residual un-conjugated oligonucleotides. Antibody-oligo conjugates were aliquoted into tube strips and 
snap frozen in liquid nitrogen. 
 
RCA-MERFISH Readout Probe Synthesis 
Amine-modified 15mer oligonucleotides were obtained from IDT (standard desalting). Oligos were 
resuspended to 300 µm in 112 mM sodium bicarbonate solution (ThermoFisher). 300 mM Sulfo-Cy3-
NHS ester, Sulfo-Cy5-NHS ester, and Sulfo-Cy7-NHS ester (Lumiprobe) solutions were made in dry 
DMSO (Sigma Aldrich). The appropriate dye was added to each oligo to a final concentration of 10 mM 
and the dyes were allowed to react for 24 hours in the dark at room temperature. Sodium acetate pH 5.5 
was added to a final concentration of 500 mM and then ice cold ethanol was added to a final 
concentration of 80%. The oligos were incubated at -20˚ C for >24 hours, pelleted by centrifugation at 
>18,000g at 4˚ C for >20 minutes, washed 3x with ice cold 80% ethanol, dried in a vacufuge, and 
resuspended in TE pH 8 to a final concentration of 100 µm. Labeled oligos were stored at 4˚ C until use. 
 
RCA-MERFISH Encoding Probe Design and Construct 
For the 205 endogenous genes, we used a 21-bit, Hamming Weight 4, Hamming Distance 4 codebook for 
MERFISH imaging. For the 456 perturbation barcodes, we used an 18-bit, Hamming Weight 6, Hamming 
Distance 4 codebook for MERFISH imaging. For both the endogenous genes and perturbation barcodes, 
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individual genes/barcodes were randomly assigned to codewords in the codebook. For each gene/barcode, 
we designed a total of 8 (endogenous genes) or 3 (barcodes) encoding probes targeting the gene (Table 
S2) or barcode (Table S7) mRNA sequence. Following the guidelines for MERFISH probe design as 
previously described 126, we selected 60 mer regions that could be split into two 30 mers, where each half 
had GC content between 30 and 70%, melting temperature Tm within 60-80oC, isoform specificity index 
between 0.7 and 1, gene specificity index between 0.75 and 1, and no homology longer than 15 nt to 
rRNAs or tRNAs. Pairs of adjacent probes that had a ligation junction with a G or C at the donor (5’ 
phosphorylated) end of the probe were excluded. The two halves of the probes were then split, and 
between them was added an RCA primer sequence and the reverse complements of the 4 (endogenous) or 
6 (barcode) readout sequences that encoded the identity of that gene. PCR handles with BciVI (left hand 
side) and BccI (right hand side) restriction sites were then appended to either end of the probe. The 
readout sequences on the encoding probes are detected with dye-labeled readout probes with 
complementary sequences in order to decode the gene or barcode. 
 
RCA-MERFISH Encoding Probe Synthesis 
RCA-MERFISH encoding probe libraries were first synthesized at femtomolar scale in a pool by Twist 
Biosciences. Probe libraries were then amplified by limited-cycle PCR (Phusion Polymerase, New 
England Biolabs), purified using SPRI beads (Beckman Coulter), and then blunt-end ligated using T4 
DNA to circularize. Circularized DNA molecules were nicked using Nt.BbvCI (NEB), and then RCA 
amplified overnight at 30oC using Phi29 DNA polymerase from the nick site with T4 gene 32 single-
stranded binding protein (SSB) (New England Biolabs). RCA amplified DNA was ethanol precipitated 
and resuspended in CutSmart buffer. Oligos with degenerate ends containing restriction enzyme sites 
were annealed to the RCA product, and the mixture was digested overnight with BccI and BciVI (New 
England Biolabs). The final libraries were then purified using magnetic beads, eluting in Tris-EDTA (TE) 
(ThermoFisher) buffer to a final concentration of ~10 nM/probe. The resulting library was stored at –
20oC until use. 
 
RCA-MERFISH Sample Preparation 
Sample preparation occurred over several days. Blocking, antibody staining, MelphaX modification, 
probe hybridization, ligation, and RCA were conducted with the coverslips inverted onto small volumes 
of reaction mixture over parafilm, whereas decrosslinking, washing, and digestion were conducted with 
the coverslips upright in >5 ml of solution in 60 mm tissue culture dishes. Silanized, PDL-coated 
coverslips were prepared according to the method of 43. 
 
10um sections of liver were cut onto silanized, PDL-coated coverslips, warmed to room temperature for 
15 minutes, and attached to the surface by 15 minutes of postfixation in PBS + 4% paraformaldehyde. 
The sections were washed 3x with PBS and decrosslinked at 60˚ in TE pH 9 (Genemed) for an hour. The 
sections were then washed with PBS. 
 
The sections were blocked at RT for 20 minutes in blocking buffer (1x PBS, 10 mg/ml BSA (UltraPure, 
ThermoFisher), 0.3% Triton X-100, 0.5 mg/ml sheared salmon sperm DNA (ThermoFisher), and 0.1 
U/µL SUPERase·In RNase Inhibitor (ThermoFisher) 127. It was crucial that the blocking buffer did not 
contain dextran sulfate, as even trace amounts inhibited later ligation and/or RCA. 
 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 21, 2024. ; https://doi.org/10.1101/2024.11.18.624217doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.18.624217
http://creativecommons.org/licenses/by/4.0/


68 

The antibody-oligo conjugates were pooled and diluted into blocking buffer. The sections were then 
stained overnight at 4˚ with this mix. We estimate that we stained each coverslip with ~150 ng of each 
oligo-antibody, diluted into 150 ul of blocking buffer. The sections were then washed 3x with PBS and 
then incubated with PBS at RT for 15 minutes, then postfixed for 5 minutes in PBS + 4% 
paraformaldehyde. The sections were then washed 3x with PBS and fixed with 1.5 mM BS(PEG)9 in PBS 
for 20 minutes, inactivated in PBS + 100 mM Tris pH 8 for 5 minutes, washed 3x in PBS, and stored in 
tightly sealed tissue culture dishes at 4˚ in 70% ethanol for 24 hours to one month. 
 
After antibody staining, the samples were then modified with MelphaX 54 that was diluted 1:10 in 20 mM 
MOPS pH7.7 at 37oC for 1 hr. The samples were washed three times with PBS, then embedded in an 
acrylamide gel (4% v/v 19:1 acrylamide:bis-acrylamide (Bio-Rad), 300 mM NaCl, 60 mM Tris pH 8, 
0.2% v/v tetramethylethylenediamine [TEMED], and 0.2% w/v ammonium persulfate [APS]) for 1.5 hrs 
at room temperature. The samples were then digested at 42oC for 48 hours in digestion buffer (2% v/v 
sodium dodecyl sulfate [SDS] (Thermo Fisher), 1% v/v proteinase K (New England Biolabs), 50 mM Tris 
pH 8 (Ambion), 300 mM NaCl (Ambion), 0.25% Triton X-100 (Sigma), 0.5 mM 
ethylenediaminetetraacetic acid [EDTA] (Ambion)).  
 
After digestion, samples were washed three times with PBS + 0.1% Triton X-100 to remove residual 
SDS. Samples were then hybridized with a mixture containing 2×SSC, 30% v/v formamide (Ambion), 
1% v/v murine RNase inhibitor (New England Biolabs), 0.1% w/v yeast tRNA, 5% w/v PEG35000 
(Sigma), 1 uM of a polyA probe, a library of probes for imaging pre-rRNA, mtRNA, and Albumin at 1 
nM/probe, and each RCA-MERFISH encoding probe library at 1 nM/probe. The polyA probe had a 
mixture of DNA and LNA nucleotides 
(/5Acryd/TTGAGTGGATGGAGTGTAATT+TT+TT+TT+TT+TT+TT+TT+TT+TT+T) where T+ is a 
locked nucleic acid and /5Acryd/ is a 5’ acrydite modification. The samples were then hybridized for 36-
48 hours at 37oC in a humidified chamber.  
 
After hybridization, the samples were washed twice for 30 min in 2×SSC, 30% v/v formamide at 47oC. 
The samples were then washed three times with PBS + 0.1% v/v Tween 20, and once briefly with 
preligation buffer (50 mM Tris-HCl pH8, 10 mM MgCl2). The RCA-MERFISH probes were ligated with 
10% v/v (~1 uM) SplintR ligase (New England Biolabs), 1× SplintR ligase buffer, 1% v/v murine RNAse 
inhibitor, and 100 nM RCA primer (TCTTCACCCGGGGCAGCTGAA*G*T, where * is a 
phosphorothioate bond) at 37oC for 1 hr. Samples were then washed three times with PBS + 0.1% Tween 
20. Next, samples underwent rolling circle amplification using 1× Phi29 Buffer (Lucigen), 10% v/v Phi29 
enzyme (Lucigen), 0.2 mg/ml BSA, 250 µM dNTP (New England Biolabs), 25 µM aminoallyl-dUTP 
(ThermoFisher), and 1% v/v murine RNase inhibitor for 2 hrs at 37oC. Finally, the samples were washed 
three times in 1×PBS, and then crosslinked for 30 min with 1×PBS + 1 mM BS(PEG)9 at room 
temperature, before a final quick wash with 1×PBS. Samples were stored in 1×PBS with 1% v/v murine 
RNAse inhibitor at 4oC for up to one week.  
 
Multiplexed RNA and protein imaging by RCA-MERFISH and sequential hybridization 
RCA-MERFISH samples were imaged on a custom epifluorescent microscope with automated fluidics, as 
previously described for MERFISH imaging 126. Briefly, samples were mounted in a flow cell (Bioptechs) 
with a 0.75-mm-thick flow gasket on a Nikon epifluorescence microscope. 
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For each round of hybridization, mixtures of Cy7-, Cy5-, Cy3-labeled readout probes for each triplet of 
bits to be read out were diluted to a final concentration of 10 nM/probe in 5 mL of 2×SSC, 10% 
formamide, 0.1% Triton X-100. The samples were stained for 15 min, then washed with 2×SSC, 10% 
formamide, 0.1% Triton X-100. Finally, imaging buffer was flowed into the chamber. The imaging buffer 
consisted of 2×SSC, 10% w/v glucose (Sigma), 60 mM Tris-HCl pH8.0, ~0.5 mg/mL glucose oxidase 
(Sigma), 0.05 mg/mL catalase (Sigma), 50 µM trolox quinone (generated by UV irradiation of 6-hydroxy-
2,5,7,8-tetramethylchroman-2-carboxylic acid (Sigma)), 0.2% v/v murine RNAse inhibitor, and 0.1% v/v 
of Hoechst 33342 dye (ThermoFisher).  
 
After the readouts were hybridized and imaging buffer added, the samples were imaged with a high-
magnification, high-numerical aperture objective. For wildtype animals in Figs 1-2, a 60X 1.4NA oil 
immersion objective was used, with a pixel size of 108 nm/pixel. For genetically perturbed experiments in 
Figs 3-7, a 40X 1.3NA oil immersion was used, with a pixel size of 162 nm/pixel. We imaged each field 
of view (FOV) with a 10-plane z stack with 1.5 µm spacing between adjacent z planes, where each z-
plane was imaged in the 750-nm, 650-nm, 560-nm, and 405-nm channels. After each round of imaging, 
the readout probes were stripped off using 2×SSC, 80% formamide stripping buffer for 10 min, followed 
by two washes of readout buffer, and one wash of 2×SSC. The different panels (antibodies and structural 
RNAs, endogenous RNA, and barcode RNA) were imaged back-to-back on the same tissue sections, 
where protein (labeled with oligo-conjugated antibodies) and structural RNA were first imaged by with 
sequential rounds of multicolor FISH, followed by endogenous RNAs and barcode RNAs in two separate 
RCA-MERFISH runs. Each experiment took 36-48 hours depending on the number of fields of view, and 
whether the perturbation barcode library was imaged in addition to the endogenous RNA and protein 
panels.   
 
Data Processing Pipeline 
RCA-MERFISH gene expression was processed using a modified version of the MERlin pipeline, as 
previously described 126,128, with the addition of a machine learning filtering step that used XGBoost to 
train a classifier to discriminate incorrectly decoded molecules that were assigned to blank barcodes and 
putatively correctly decoded molecules that were assigned to coding barcodes on a subset of the data. 
This classifier was then applied to the remainder of the data, and only molecules that were classified as 
coding molecules with an adaptive 5% false-positive threshold were exported for assignment to individual 
cells. Each library (endogenous RNA or barcodes) were decoded separately.  
 
Cell segmentation was accomplished using a custom Cellpose model that was trained on images of polyA 
staining for cytoplasm + nucleus, and Na+/K+ ATPase staining for membrane. A separate model was 
trained for data collected using the 60X and 40X objectives, and applied to the respective datasets. Each 
cell was assigned a unique identifier and its position, shape, and z extent were recorded. The molecules 
that were exported from each field of view were then assigned to cells based on overlap between 
molecules and Cellpose-created mask for each cell in three dimensional space. The total number of 
molecules of each type for each cell was summed, and the result exported as an AnnData objective.  
 
After decoding and cell assignment, all RCA-MERFISH datasets were concatenated into a single dataset. 
This was done separately for the wildtype physiological perturbation data (Figures 1 and 2) and the 
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genetically perturbed data (Figures 3-7). Cells were filtered to remove all cells with less than 25 or greater 
than 1500 molecules per cell, and genes expressed in <3 cells were removed. Each cell’s gene expression 
values were scaled such that the sum of gene expression values per cell added to 10,000, then was log-
transformed. The area and number of molecules per cell were regressed out using linear regression, and 
the residuals were z-scored. The first 20 principal components were then computed and the data were 
integrated with log-transformed, z-scored Flex data using Harmony, using the top 40 principal 
components computed based on the subset of genes measured in RCA-MERFISH. The data were then 
jointly clustered using Leiden clustering with resolution = 0.4. Clusters with fewer than 10 differentially 
expressed genes were then greedily merged, and the final set of clusters were manually annotated based 
on marker gene expression. For perturbation data, the individual guide was called for each cell when there 
were > 3 molecules per cell for a given barcode.  
 
The labels assigned to clusters in the integrated Flex and RCA-MERFISH data from wildtype animals 
were transferred to the perturbed data through integration and label transfer. After pre-processing to filter 
out cells, normalize, log transform, and z-score the data as described above, the two datasets were 
integrated using Harmony. A K-nearest neighbors classifier was then trained to predict the clusters 
annotations of the wildtype RCA-MERFISH data from the top 20 principal components of the data, with 
K=10. This classifier was then applied to the perturbed RCA-MERFISH data to predict cluster identity.  
 
For morphological imaging, each channel used for morphological imaging was adaptively contrast 
adjusted. A single z-plane in the middle of each segmented cell was selected, and the image of each cell 
in each channel was cropped out of the larger field of view, in a 256 x 256 square, using the segmentation 
for that cell as a mask. The background around each cell outside of the mask within that 256 x 256 square 
was set to zero. The imaging data for each cell was then associated with the unique identifier for that cell, 
for integration with RCA-MERFISH data for endogenous RNA and perturbation barcodes.  
 
Deep autoencoder model 
We developed a deep autoencoder model to extract biologically relevant features from single-cell 
multiplexed protein and abundant RNA images based on the second generation of the vector quantized 
variational autoencoder (VQ-VAE) 64. The model takes advantage of the power of VQ-VAE to learn 
meaningful representations using self-supervised training. Inspired by the cytoself model 13, we used 
auxiliary classification tasks to guide the model to focus on features of biological importance. Each 
single-color protein image of a particular protein/RNA channel was concatenated to a fiducial channel to 
create a two-color image. We used the polyA FISH staining as the fiducial channel to provide information 
of the relative location of the stained proteins/RNAs to the nuclei. From the two-color image, the model 
used a ResNet with two residual blocks to generate a bottom level representation as described in the 
second generation VQ-VAE design. The bottom level representation was then used to generate a top level 
representation with another ResNet with two residual blocks. Both bottom and top representations were 
converted to discrete representations by vector quantization 64. The quantized bottom and top 
representations were concatenated and decoded by a ResNet with two residual blocks to regenerate the 
input image. The concatenated representation vectors were fed into a multi-layer perceptron (MLP) 
classifier with one hidden layer to predict the identity of the protein/RNA channels. The hidden 
representation of the MLP classifier had 512 dimensions, which was used as the representation vector of 
the input image. The representation vectors for different protein/RNA channels of one cell were 
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concatenated to generate the morphological representation of a cell. The cell representation was fed into 
another MLP classifier to predict the transcriptionally defined cell type and/or the diet condition of the 
cell. 
  
The loss function of the autoencoder model contained 4 terms, namely, the latent loss, the image 
reconstruction loss, the protein/RNA classification loss and the cell-type or diet-condition classification 
loss. We used the same latent loss definition as the VQ-VAE model 64, which measured the difference 
between the latent representations before and after quantization. The image reconstruction loss was 
defined as the mean squared error of the reconstructed image compared to the input image. The 
protein/RNA and cell-type/diet-condition classification losses were defined as the cross entropy loss of 
classification. 
  
Training the deep autoencoder 
Images of single-cells were cropped out from the fields of view as square boxes. We set all the pixels 
outside the target cells to zero using the cell segmentation masks, such that each cropped image only 
contained one cell. The cropped single-cell images were rescaled to 128x128 pixels and used as input for 
the autoencoder training. We optimized the autoencoder model with stochastic gradient descent using the 
Adam optimizer until the loss function converged. 
  
We trained a VQ-VAE model to embed cells under different diet conditions using both the protein 
classification auxiliary task and the cell classification auxiliary task that predicted transcriptionally 
defined cell types and diet conditions. For embedding the cells under CRISPR perturbations, because we 
only included hepatocytes, the autoencoder model was trained using only the protein classification 
auxiliary task. 
 
Tissue zone segmentation 
The zonal segmentation of tissue in Fig 6E-G was accomplished by computing for each replicate a 2D 
histograms at 50 µm resolution of the number of Hep1+Hep2 or Hep5+Hep6 cells in each bin. These 
histograms were then blurred with a Gaussian filter with sigma = 0.5 and normalized by dividing by the 
maximum across all bins. For each bin, the zone was determined as whether the normalized Hep1+Hep2 
or Hep5+Hep6 count was greater for that bin. 
 
 
 

QUANTIFICATION AND STATISTICAL ANALYSIS 

scRNA-seq Analyses 
Energy Distance Calculation and Permutation Testing 
Energy distances and permutation tests were calculated according to the method of 71. We used the first 
20 PCs generated from the tp10k-normalized, log1p-transformed data. We used the Holm-Šídák multiple 
testing correction for our permutation testing. For the fasted vs ad libitum comparisons, we compared the 
transcriptional states of perturbed cells to those of cells with control sgRNAs in the same mouse in the 
same condition. 
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Z-scoring relative to control 
For some purposes, we analyzed z-scored transcriptional data. We calculated the z-scores by tp10k-
normalizing the data, identifying the mean and standard deviation for each mRNA in control cells, and 
then used these values to identify the z-score for each gene in each cell, relative to control cells. We 
performed this calculation separately for each barcode in each GEM group and then concatenated the 
cells to form a final z-normalized expression matrix. This transformation emphasizes changes in mRNAs 
with low variance in control cells and may decrease batch effects between barcodes and GEM groups. 
 
Pseudobulk Correlation Calculations 
Correlations calculated between pseudobulk transcriptional responses are either Pearson correlations 
calculated from mean log-transformed transcriptional responses, with the expression in controls 
subtracted to a Perturbation-associated phenotype, or correlations of mean Z-scored transcriptional 
changes. We did not observe significant differences between the two. To decrease noise, we only included 
genes with high expression in control cells (highest 250 or highest 1000) in the calculations. In Figure 
4M, we show sgRNAs targeting genes that have two sgRNAs that have substantial transcriptional 
phenotypes. 
 
Differential Expression 
We used Benjamini-Hochberg-corrected Mann-Whitney testing to identify genes whose expression is 
significantly affected by perturbations (corrected p < 0.05). We used tp10k-normalized, log1p-
transformed data for these calculations. The heat map showing changes in expression (Figure 7D) 
represents log2-fold changes of pseudobulk expression versus cells with control perturbations. 
 
Scoring and significance testing 
The scores in Figures 5A and 5B are calculated using gene sets derived from a previous large-scale 
perturbation experiment in cell culture 18. The scores are calculated as the pseudobulk z-scored change 
relative to control cells, averaged for all genes in the gene set, for all cells with each perturbation. The 
scores in Figures 6A, 6B, and 7C are calculated with a literature-curated set of zonation markers and 
reflect the sum of pseudobulk or single cell z-scored changes relative to control cells. The periportal 
markers are Cyp2f2, Hal, Hsd17b13, Sds, Ctsc, Aldh1b1, and Pck1 and the pericentral markers are 
Cyp4a14, Cyp2d9, Gstm3, Cyp4a10, Mup17, Slc1a2, Slc22a1, Cyp1a2, Aldh1a1, Cyp2a5, Gulo, 
Cyp2c37, Lect2, Cyp2e1, Oat, Glul. Periportal expression contributes positively to the score and 
pericentral contributes negatively to the score, or alternatively they are shown separately. Significance is 
calculated relative to negative control cells by Mann-Whitney with Benjamini-Yekutieli correction for 
multiple testing (corrected p < 0.05). 
 
Clustering and genotype-phenotype mapping 
The perturbation heatmap in 4D is generated from the hierarchical clustering of a joint vector including 
Pearson correlations of pseudobulk log-transformed transcriptional responses measured by sequencing 
and pseudobulk z-scored staining intensity changes measured by imaging (Euclidean distance metric, 
UPGMA algorithm). The representation of gene co-regulation in Figure 4E is generated from correlations 
between z-scored pseudobulk expression levels of pairs of genes across perturbation (the transpose of the 
transcriptional component of the data used to generate the correlations in Figure 4D). The position of 
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spots derives from a two-dimensional minimal distortion embedding of these correlations that tries to 
place co-regulated genes in proximity. The color of spots derives from a density-based clustering of a 
separate twenty-dimensional minimal distortion embedding of co-expression, calculated according to the 
method used for mRNAs in Figure 4B of 18. 
 
Intensity Analysis 
Z-scoring relative to control 
When analyzing intensity, we z-scored each protein/RNA channel relative to the mean and standard 
deviation of that channel in control cells (cells with control sgRNAs), from that same imaging sample. 
We then concatenated the cells from the various imaging samples to form a final z-normalized intensity 
matrix. This transformation emphasizes changes in protein/RNA intensities with low variance in control 
cells and may decrease batch effects between imaging samples. 
 
Pseudobulk Correlation Calculations 
Correlations calculated between pseudobulk protein/RNA intensity responses are Pearson correlations 
calculated from mean z-scored intensity responses. In 3Q, we only show perturbations targeting genes 
that have two sgRNAs that are significant in a corrected energy distance permutation test. 
 
Number of Protein/RNA Channels Exhibiting Differentially Intense Signals 
To quantify the number of differentially intense protein/RNA channels (Figure S9F), we used Benjamini-
Hochberg-corrected Mann-Whitney testing (corrected p < 0.05) on the z-scored intensity data. 
 
Intensity Scoring and significance testing 
The scores in Figures 5C, 5D, 5E, 5F, 7A, 7B, and 7G are calculated as the mean z-scored change relative 
control cells for all cells with each perturbation. Significance is calculated relative to negative control 
cells by Mann-Whitney with Benjamini-Yekutieli correction for multiple testing, corrected p < 0.05. 
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KEY RESOURCES TABLE 

 

REAGENT or RESOURCE SOURCE IDENTIFIER 
Antibodies 

anti-Calreticulin Abcam ab271865 

anti-CathB CST D1C7YBF 

anti-Gapdh CST 14C10BF 

anti-LC3b CST 3868BF 

anti-M6pr Abcam ab226090 

anti-Na+/K+ Abcam ab167390 

anti-Perilipin Proteintech 15294-1-AP 

anti-pS6RP CST 2211BF 

anti-Rab7 Abcam ab214806 

anti-SNAP23 Abcam ab271890 

anti-SQSTM1 Abcam ab227992 

anti-Tomm20 Abcam ab232589 

anti-Tomm70 Proteintech 14528-1-AP 

anti-Vimentin Abcam ab193555 

   
Bacterial and virus strains 
 Stellar Competent Cells Takara Cat# 636766 
 MegaX Electrocompetent Cells ThermoFisher  Cat# C640003 
      
Chemicals, peptides, and recombinant proteins 

Formamide Ambion Cat# AM9342 

20xSSC Ambion Cat# AM9763 

Triton X-100 Sigma Cat# T8787 

Glucose oxidase Sigma Cat# G2133 

Phusion® Hot Start Flex 2X Master Mix New England Biolabs Cat# M0536 

Maxima H Minus Reverse Transcriptase ThermoFisher Cat# EP0752 

dNTP mix ThermoFisher Cat# R1121 

32% Paraformaldehyde 
Electron Microscopy 
Sciences Cat# 15714S 

RNase inhibitor, Murine New England Biolabs Cat# M0314 

1M Tris, pH 8 ThermoFisher Cat# 15568025 
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Catalase Sigma Cat# C3155 

6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic 
acid (Trolox) Sigma Cat# 238813 

Tris(2-carboxyethyl)phosphine (TCEP) HCl GoldBio Cat# TCEP1 

Hoescht 33,342, Trihydrochloride, Trihydrate ThermoFisher Cat# H3570 

Lipopolysaccharides from E. coli O 111:B4 Sigma Cat# L4391 

Yeast tRNA ThermoFisher Cat# AM7119 

Dextran sulfate Sigma Cat# S4030 

Ethanol Decon Labs Cat# V1016 

SDS ThermoFisher Cat# 15553027 

Proteinase K New England Biolabs Cat# P8107S 

Ethylene carbonate Sigma Cat# 676802-1L 

Glucose Sigma Cat# 49139 

Water Ambion Cat# AM9932 
T4 Ligase NEB Cat# M0202S 
T4 Ligase (High Concentration) NEB Cat# M0202T  
BstXI NEB Cat# R0113S 
BamHI NEB Cat# R0136S 
Fugene HD Promega Cat# E2311 
ViralBoost Alstem Cat# VB100 
Lenti-X™ Concentrator Takara Cat# 631232 
BSA Ambion Cat# AM2616 
Sheared Salmon Sperm DNA Ambion Cat# AM9680 
SUPERase·In RNase Inhibitor Ambion Cat# AM2694 
TE pH 9 GeneMed Cat# 10-0046 
BS(PEG)9  ThermoFisher Cat# 21582 
Melphalan SelleckChem Cat# S8266 
MOPS Sigma Cat# 69947 
40% Acrylamide/Bis Solution, 19:1 Bio-Rad Cat# 1610144 
TEMED Sigma Cat# T7024 
Ammonium persulfate Sigma Cat# A3678 
PEG35000 Sigma Cat# 94646 
Tween 20 Sigma Cat# P9416 
SplintR Ligase NEB Cat# M0375S 
NxGen phi29 DNA Polymerase  Lucigen Cat# 30221-3 
dNTP Mix NEB Cat# N0447S 
Aminoallyl-dUTP ThermoFisher Cat# R1101 
T4 gene 32 Protein NEB Cat# M0300L 
BccI NEB Cat# R0704S 
BciVI NEB Cat# R0596S 
NaCl Ambion Cat# AM9759 
MgCl2 Ambion Cat# AM9530G 
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TE Ambion Cat# AM9849 
Invitrogen™ SiteClick™ Antibody Azido 
Modification Kit 

ThermoFisher Cat# S10900 

sulfo-Cyanine3 NHS ester Lumiprobe Cat# 61320 
sulfo-Cyanine5 NHS ester Lumiprobe Cat# 63320 
sulfo-Cyanine7 NHS ester Lumiprobe Cat# 65320 

   
Critical commercial assays 
Chromium Fixed RNA Kit, Mouse Transcriptome, 
4rxns x 4 BC 

 
 

 10X Genomics  Cat#: 1000496 

   
Deposited data 
 Raw and analyzed scRNA-seq data This Study GEO: GSE275483 
 Cell Images This Study FigShare (available 

upon publication or 
request for review 
purposes) 

      
Experimental models: Cell lines 
 K562-CRISPRi Cells Previous Study  Gilbert et al, 2014 

 293T/17 ATCC  CRL-11268 
      
Experimental models: Organisms/strains 
B6J.129(B6N)-Gt(ROSA)26Sortm1(CAG-cas9*,-EGFP)Fezh/J JAX  Strain #: 026179 

 C57BL/6J JAX   Strain #: 000664 
      
Oligonucleotides 
 Readout Probes Integrated DNA 

Technologies 
See Table S1 

 Abundant RNA FISH Probes Integrated DNA 
Technologies 

See Table S4 

 RCA-MERFISH Padlock Probe Library (mRNA) Twist Bioscience See Table S2 
 RCA-MERFISH Padlock Probe Library (Perturbation 
Barcodes) 

Twist Bioscience See Table S7 

 RCA Primer: TCTTCACCCGGGGCAGCTGAA*G*T Integrated DNA 
Technologies 

N/A 

 polyA FISH Probe: 
/5Acryd/TTGAGTGGATGGAGTGTAATT+TT+TT + 
TT + TT + TT + TT + TT + TT + TT + T 

Integrated DNA 
Technologies 

N/A 

Liver Perturbation Library Integrated DNA 
Technologies 

See Table S6 

Perturb-seq sgRNA Probes Integrated DNA 
Technologies 

See Table S9 
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Recombinant DNA 
 pVV1  This study Deposit to Addgene in 

progress 
      
Software and algorithms 
 CellRanger  10X genomics https://www.10xgenomi

cs.com/software 
 Custom Analysis Software This Paper https://github.com/weal

len/InVivoMultimodalP
erturbation 

 Scanpy 129  https://github.com/scver
se/scanpy  

 Anndata 130 https://github.com/scver
se/anndata 

 scPerturb 71  https://github.com/sand
erlab/scPerturb  

MERlin 111 https://github.com/Zhua
ngLab/MERlin 

Harmony 131 https://github.com/slow
kow/harmonypy 

CellPose 132 https://github.com/Mou
seLand/cellpose 
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