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SUMMARY
Bonemarrow endothelial cells (BM-ECs) are the essential components of the BM niche and support the func-
tion of hematopoietic stem cells (HSCs). However, conditioning for HSC transplantation causes damage to
the recipients’ BM-ECs and may lead to transplantation-related morbidity. Here, we investigated the cellular
and clonal mechanisms of BM-EC regeneration after irradiative conditioning. Using single-cell RNA
sequencing, imaging, and flow cytometry, we revealed how the heterogeneous pool of BM-ECs changes dur-
ing regeneration from irradiation stress. Next, we developed a single-cell in vitro clonogenic assay and
demonstrated that all EC fractions hold a high potential to reenter the cell cycle and form vessel-like struc-
tures. Finally, we used Rainbow mice and a machine-learning-based model to show that the regeneration of
BM-ECs after irradiation is mostly polyclonal and driven by the broad fraction of BM-ECs; however, the cell
output among clones varies at later stages of regeneration.
INTRODUCTION

Endothelial cells are a key component of the bone marrow (BM)

microenvironment,1–3 particularly in providing a specialized

niche for hematopoietic stem cells (HSCs).4–7 BM endothelial

cells (BM-ECs) express adhesion molecules and produce fac-

tors necessary for the homing, differentiation, and self-renewal

of HSCs.8,9 Consequently, the proper function of HSCs depends

on BM-ECs, and disruption in BM-EC support leads to systemic

hematopoietic collapse.8,10,11

While the role of BM-ECs in steady-state hematopoiesis is

recognized, their function in post-hematopoietic cell transplan-

tation (HCT) is less understood. Conditioning prior to HCT,

involving chemotherapy and/or radiotherapy,12 negatively af-

fects BM-ECs,13–17 making their regeneration essential for suc-

cessful hematopoiesis reconstitution.

Some recent studies indicate the presence of local endothelial

stem/progenitor cells driving the regeneration in the BM17 and

other organs,18,19 while others suggest that BM-EC regeneration

may result from a stochastic process characterized by signifi-

cant EC plasticity.20–27

Understanding BM-EC regeneration may improve HCT out-

comes, with therapeutic strategies potentially targeting progen-

itor populations or the signals regulating BM-EC plasticity.28,29
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To investigate BM-EC regeneration post-irradiation, we

analyzed mouse BM-EC heterogeneity using single-cell RNA

sequencing (scRNA-seq) and identified candidate progenitor

fractions. We further explored regeneration mechanisms and

proposed a flow cytometry method to isolate key BM-EC frac-

tions for functional assays. Our findings indicate significant poly-

clonal regeneration of the vascular network, with a significant

subset of BM-ECs reentering the cell cycle.

RESULTS

Heterogeneity of mouse BM-ECs in homeostasis
To characterize the heterogeneity of mouse BM-ECs and identify

potential endothelial progenitor subpopulations, we conducted

plate-based scRNA-seq of sorted BM-ECs (CD45�Ter119�

CD144+). Considering the impact of isolation methods on gene

expression, we integrated our scRNA-seq data with previously

published datasets, combining three independent studies.30,31

This meta-analysis minimized biases from different protocols

and increased the number of analyzed cells, enhancing the res-

olution of BM-EC heterogeneity (Figures 1A–1C).

The analysis identified three main BM-EC types: sinusoidal,

arteriolar, and arterial (Figure 1D). Data integration (see STAR

Methods) ensured consistent cluster representation across all
ber 26, 2024 ª 2024 The Author(s). Published by Elsevier Inc. 1
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datasets, with no clustering by source (Figures 1D, 1E, and S1A).

Slightly more cells from Baryawno et al. were found among arte-

riolar and arterial ECs (Figure 1E), aligning with prior annota-

tions31 (Figure 1C).

Sinusoidal ECs were identified by high Stab2 and Fcgr2b

expression30–33 (Figures 1F and 1G).

The distinction between arterial ECs and arteriolar ECs was

based on the expression of genes such as Crip1, Cav1, Sparcl1,

Lmna, and Vim, which are typical for large arteries and arterial

ECs in other organs34 (Figures 1F and S1B). Genes expressed

in the arteriolar cluster, such as Sema3g, Gja4, and Sox17

(Figures 1F and S1B), were shown to be present in both arterial

and arteriolar capillaries in other organs34 and were consistently

identified in previous analyses that distinguish arteriolar and

arterial BM-ECs.31

The integration also revealed a ‘‘transitional’’ cluster, located

between sinusoidal and arteriolar clusters, expressing markers

from both (Fcgr2b, Ly6C) but lacking unique identifiers (Figures

1D–G, S1B, and S1C). However, Aplnr17,35–39 and Ramp334

were overexpressed in this cluster, suggesting a potential role

in angiogenesis (Figure 1G).

Additionally, cells enriched in genes linked to the cell cycle

clustered separately (Figures 1D and S1D). Finally, we identified

a small cluster of cells expressing endothelial markers, but their

gene expression profiles did not allow for unequivocal

annotation.

Identification of BM-EC fraction during aging and after
irradiation
We prospectively identified and isolated themain fractions indi-

cated by the scRNA-seq analysis. Using Ly6C and Fcgr2b (by

CD16/CD32 antibody recognizing both Fcgr3 and Fcrg2b), we

classified BM-ECs into arteriolar/arterial (Ly6C+CD16/32�), si-
nusoidal (Ly6C�CD16/32+), and transitional (Ly6C+CD16/32+)

populations by flow cytometry (Figure 2A). However, due to

Ly6C expression in abundant myeloid cells, we employed

Ly6A (Sca-1) for microscopic analysis of BM-ECs’ populations,

as it strongly correlates with Ly6C at both RNA (Figure S1E) and

protein levels (Figures 2B and S1F). Microscopy of mouse tibia

showed that transitional BM-ECs localize between arterioles

and sinusoids, linking distinct EC types within the vascular

network (Figures 2C, 2D, and S2). Transitional BM-ECs were

present in both young (Figure S2A) and old mice (Figure S2B).

Next, we analyzed changes in BM-EC composition during

aging and post-conditioning with 9.5 Gy irradiation and BM

transplantation. BM-EC frequency decreases with age (Fig-

ure 2E), with old mice showing fewer arterial/arteriolar ECs

(Ly6C+CD16/32�) but more sinusoids (Ly6C�CD16/32+) (Figures
2F and 2G). The frequency of transitional BM-ECs (Ly6C+CD16/

32+) remains unchanged during aging (Figure 2F), but CD16/32
Figure 1. Combined meta-analysis of scRNA-seq data reveals the hete

(A–C) UMAP representation of scRNA-seq frommouse BM-EC data generated in

(C). Expression of Ly6c1 distinguishes types of ECs in three different datasets. Fo

package (SCT) are shown. Data from Baryawno et al.31 constitute integrated dat

(D) Annotation of clusters identified within integrated data.

(E) Cluster distribution in each dataset.

(F and G) SCT-integrated expression of selected cluster markers in the integrate
expression on sinusoidal ECs significantly increases in old

mice (Figures 2G and 2H).

Finally, we assessed the impact of irradiation on the BM-EC

phenotype. Seven days after 9.5 Gy irradiation, the BM vascular

network appeared enlarged and diffused (Figure 2I). This was

associated with a marked increase in CD16/32 expression on si-

nusoids at days 4 and 8 post-irradiation (Figures 2J and 2K).

Thus, the expression of CD16/32 on sinusoids increases during

aging and stress conditions.

scRNA-seq reveals dynamic remodeling of BM-ECs after
irradiative conditioning
To uncover the mechanisms of BM-EC regeneration, we con-

ducted further scRNA-seq at 7, 21, and 60 days post-irradiation

with 9.5 Gy (Figure S1G). A non-irradiated group processed

alongside served as a control, ensuring high sensitivity in detect-

ing molecular changes (Figure S1G).

The identified clusters (Figure 3A) matched those under ho-

meostatic conditions (Figure 1D), including distinct arterial

and arteriolar clusters. Genes specific for arterial (Tcf15,

Meox2) and arteriolar (Gja4, Fbn1) cells aligned with previous

analyses31 (Figure S3A). However, we also found three addi-

tional subclusters within transitional cells and two within sinu-

soidal cells.

Among transitional cells, we identified an Apelin-positive

(Apln+) cluster, also characterized by Kit expression (Figures

3B and S3A). The Apln+ ECs were proposed as a population

with progenitor potential that drive EC regeneration in different

tissues.17,19 Based on scRNA-seq from Brulois et al.,19 we

created a gene signature of Apln+ lymph node capillary progen-

itors that includes Apln, Kit, Nes, Sox4, Cd276, Cxcr4, Esm1,

and Lxn genes (referred to as the ‘‘progenitor score’’). The pro-

genitor score signature was highly specific to the Apln+ cluster

identified in our study (Figure 3B).

Another transitional cluster, termed transitional 2, expressed

both sinusoidal and arteriolar markers (Ly6C+Fcrg2b+ pheno-

type) but not Ramp3 (Figure S3A). These cells clustered more

closely with sinusoidal cells (Figure 3A). Transitional 1, resem-

bling the original transitional cluster, expressed Ramp3 and

high Cd34 levels (Figures 3A and S3A).

Finally, we also distinguished two clusters among sinusoidal

cells (referred to as sinusoidal 1 and sinusoidal 2; Figure 3A).

Although we did not find any unique markers for these subpop-

ulations, the upregulation of several genes, including Rbfox1,

Peak1, Adamts5, and Insr, distinguished the sinusoidal 2 cluster

(Figure S3A). Analysis of BM-ECs distribution during regenera-

tion (Figures 3C and 3D) revealed significant enrichment in sinu-

soidal 2 at day 21 and sinusoidal 1 at day 7 post-irradiation (Fig-

ure 3E). This indicates a transition in sinusoidal cells to a

sinusoidal 2 profile between days 7 and 21.
rogeneity of the mouse BM-ECs

this study (A) and in previous reports by Tikhonova et al. (B) and Baryawno et al.

r (A) and (B), log reads are shown, and for (C), data integrated with sctransform

a of ECs from 5 experiments.

d dataset.
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Gene set enrichment analysis (GSEA) on sinusoidal 2 markers

(200 genes with�log(p-adj) > 25) revealed the most upregulated

terms ‘‘regulation of endothelial cell migration’’ and ‘‘regulation

of cell migration’’ in the GO Biological Process database40,41

(Figure 3F) and the terms ‘‘focal adhesion’’ and ‘‘adherens junc-

tion’’ in the KEGG 2021 database42–44 (Figure S3B).

Moreover, GSEA based on differentially expressed (DE) genes

between the sinusoidal 2 and sinusoidal 1 clusters (144 genes,

with �log(p-adj) > 50) revealed high enrichment in terms indi-

cating enhanced translation, biosynthetic processes, and gene

expression in the GO Biological Process (Figure 3G) and Reac-

tome45 (Figure S3C) databases. Altogether, at day 21 post-irra-

diation, sinusoidal BM-ECs displayed a transcriptional profile

indicating active migration and high translation.

In contrast, both transitional 1 and 2 clusters were enriched in

non-irradiated controls (Figure 3E), suggesting that the fre-

quency of transitional BM-ECs is not fully restored post-irradia-

tion (Figure 3D). Notably, the Apln+ cluster expanded signifi-

cantly at day 21 (Figures 3D and 3E).

We then identified DE genes at days 7, 21, and 60 post-irradi-

ation vs. controls and found the highest number of DE genes

(with �log(p-adj) > 25) at days 21 (82 genes) and 7 (42 genes),

with fewer at day 60 (6 genes) (Figure S3D). GSEA highlighted

enrichment of the ‘‘p53 pathway,’’ ‘‘interferon gamma

response,’’ and ‘‘apoptosis’’ at days 7 and 21 (Figures S3E and

S3F) and interleukin (IL)-6/JAK/STAT3 signaling at day 60

(Figure S3G).

Next, using annotated cell cycle genes46 and cell cycle scoring

in the Seurat package,47 we set thresholds on the obtained S and

G2/M scores (Figure S3H) and estimated the number of cells in S

or G2/M state. The highest frequencies of cycling cells were at

days 7 and 21 post-irradiation (7.0% and 6.9%, respectively),

with fewer cycling cells in controls and at day 60 (2.9% and

2.5%, respectively) (Figure 3H), which was in line with the per-

centage of cells in the cycling cluster (Figure S3J).

The distinct cell cycle gene expression program clustered

cycling cells separately, obscuring their BM-EC origin (Fig-
Figure 2. Prospective identification of BM-EC subtypes

(A) Gating strategy of ECs in BM. ECs were stained by intravital injection of a

populations, annotated as CD16/32�Ly6C+ arteriolar/arterial BM-ECs (Arte), CD1

ECs (Sin).

(B) Flow cytometry analysis of Sca-1 (Ly6A) expression in BM-ECs. BM-ECs with

fluorescence intensity. n = 6. Data are shown as mean ± SEM. ****p < 0.0001, tw

(C) BM-ECs in mouse femur. CD16/32+ vessels are located mainly in the dia

expression characterizes the arteries and arterioles.

(D) Sca-1/Ly6Ahigh CD16/32� arterioles (*) turn into transitional double-positive

Ly6A�/low CD16/32+ sinusoids.

(E) Frequency of BM-ECs decreases with age. Three independent experiments

unpaired t test.

(F) Old animals have a lower frequency of CD16/32�Ly6C+ arteriolar/arterial BM-

BM-ECs. The fraction of transitional ECs does not change with age. Two ind

****p < 0.0001, two-tailed unpaired t test.

(G) Representative flow cytometry plots show higher CD16/32 expression and fr

(H) Flow cytometry analysis of CD16/32 expression in sinusoids in young and old

mean ± SEM. ***p < 0.001, two-tailed unpaired t test.

(I) Irradiation affects the structure of blood vessels within the BM. Stained with in

(J) Representative flow cytometry plots show higher CD16/32 expression in BM-

(K) Flow cytometry analysis of CD16/32 expression in BM-ECs after total body irra

unpaired t test.
ure 3A). To overcome this, we regressed out cell cycle-related

genes using the scTransform approach,48 followed by new

data scaling, dimension reduction, and uniformmanifold approx-

imation and projection (UMAP) representation (Figures 3I–3K).

The new UMAP representation resembles the original one,

including the clustering of Apln+ cells (Figures 3I and 3K).

Although the regression did not completely remove the separate

clustering of cycling cells, some were reclassified into sinusoidal

and transitional clusters (Figure 3K), indicating that these BM-EC

types can enter the cell cycle (Figure 3K).

BM-ECs exhibit high clonogenic potential in vitro

Irradiation causes significant damage to the vascular niche in

BM.13–17 To determine if any BM-EC subpopulation has clono-

genic potential for vascular regeneration, we developed an

in vitro clonogenic assay. We sorted sinusoidal, arteriolar/arte-

rial, or transitional BM-ECs from GFP-expressing mice over a

feeder layer of MS-5 mesenchymal cells (Figure 4A). After 5–

7 days, sorted cells formed GFP+ vessel-like structures (Fig-

ure 4B) with different morphologies. Arteriolar/arterial ECs devel-

oped into more elongated and spindle-like shapes, while

sinusoidal cells had higher circularity and roundness (Figure 4C),

resembling, at least partially, the morphological differences be-

tween arterioles and sinusoids in the BM niche. Transitional

BM-ECs resembled sinusoidal BM-ECs rather than arteriolar/

arterial BM-ECs (Figure 4C).

To quantify the clonogenicity of the three BM-EC fractions we

performed a limiting dilution assay49 (LDA) (Figure 4D). All BM-

EC fractions gave rise to colonies and had high clonogenic po-

tential (1 out of 4.3 arteriolar/arterial, 1 out of 5.06 sinusoidal,

and 1 out of 5.23 transitional sorted cells), with no significant dif-

ferences between groups (Figure 4D). This indicates that a sub-

stantial fraction of any of the main BM-EC types can reenter the

cell cycle.

We then counted the daughter cells from single-cell-sorted

BM-ECs. Cells divided until day 5, but numbers plateaued

from day 5 to day 10, followed by structural disintegration
nti-CD144 antibody. CD16/32 and Ly6C antibodies distinguished three sub-

6/32+Ly6C+ transitional BM-ECs (Trans), and CD16/32+Ly6C� sinusoidal BM-

high expression of Ly6C have also high expression of Sca-1 (Ly6A). MFI, mean

o-tailed unpaired t test.

physis region and reveal sinusoidal morphology. dp, diaphysis. High Sca-1

Sca-1/Ly6A+ CD16/32+ vessels (arrow), which gradually change to Sca-1/

, n = 19–21/group. Data are shown as mean ± SEM. ***p < 0.001, two-tailed

ECs but a higher frequency of CD16/32+Ly6C� sinusoidal BM-ECs among all

ependent experiments, n = 12–14/group. Data are shown as mean ± SEM.

equency among BM-ECs in older animals.

animals. MFI, mean fluorescence intensity. n = 6–7/group. Data are shown as

travital injection of anti-CD144 antibody.

ECs in irradiated animals (4 days after total body irradiation).

diation. n = 3–8/group. Data are shown asmean ± SEM. ***p < 0.001, two-tailed
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(Figure 4E). Sinusoidal and transitional cells produced more

daughter cells (8.6 ± 1.4, 6.8 ± 3.5) than arteriolar/arterial BM-

ECs (3.3 ± 0.8) (Figure 4F).

Polyclonal regeneration of BM-ECs after irradiation and
BM transplantation
We investigated whether the high clonogenic potential of BM-

ECs observed in vitro contributes to the regeneration of BM-

ECs after irradiation and BM transplantation. For this purpose,

we used Rainbow mice (Cdh5-CreER; Rosa26VT2/GK3), which

randomly express fluorescent proteins in ECs upon tamoxifen in-

duction. One week after induction, we performed irradiation (9.5

Gy), transplanted BM, and analyzed the distribution of fluores-

cent labeling among BM-ECs 7, 21, and 60 days post-irradiation

(Figure 5A).

In non-irradiated mice, recombination was induced specif-

ically in the ECs, showing random distribution of the three fluoro-

phores in diaphysis and metaphysis regions (Figures 5B, S4A,

and S4B). We did not observe single-color regions within BM-

ECs at day 7 or 21 after irradiation (Figures 5C, 5D, and S4C).

However, by day 60 post-irradiation, we detected regions of ves-

sels that appeared to be non-randomly formed by single-colored

BM-ECs (Figures 5E and S4C).

To quantify the color distribution and clonality, we developed a

method based on graph theory, local assortativity, and machine

learning (Figure 5F; STAR Methods). First, using U-Net convolu-

tional deep neural networks, we represented the BM-EC network

as a series of graphs, with the BM-ECs as the nodes (each graph

wasmodeled independently; Figure 5F), and trained themachine

learning algorithm through iterative simulations. We simulated

different percentages of BM-EC death during irradiation and,

among the surviving BM-ECs, different percentages undergoing

cell division and clonal expansion to compensate for BM-EC

loss.We used parameters of local assortativity distribution within

the graphs to represent color distribution—areas with the same

fluorochrome have high assortativity, while areas with random

fluorochrome expression have low assortativity. The trained

model, validated with simulated data, was then applied to exper-

imental data (STAR Methods).

The graph representation highlighted the impact of irradiation

on the BM-EC network and tracked its regeneration over time.

The model indicated increased average distances between

BM-EC centroids at days 7 and 21 post-irradiation (13.2 ± 1.8

and 14.1 ± 1.5 mm, respectively) compared to non-irradiated

mice (10.0 ± 0.1 mm, p < 0.05; Figure 5G), showing incomplete
Figure 3. Single-cell RNA sequencing analysis reveals cellular and mo

(A) UMAP representation and identified clusters among combined non-irradiated

(B) Expression of Fcrg2b, Ly6c1, and Apln. The ‘‘progenitor score’’ reveals the com

lymph nodes.19

(C) UMAP representation of control cells and at days 7, 21, and 60 post-irradiati

(D) Cell distribution between clusters in control and irradiated groups.

(E) Significant enrichment of cells from individual experimental group in identifie

parisons.

(F) GSEA on marker genes of the sinusoidal cluster using the GO Biological Proc

(G) GSEA on differentially expressed genes between sinusoidal 2 and sinusoidal

(H) Frequency of cells among given experimental groups with high cell-cycling s

(I–K) Novel UMAP projection after regressing the genes linked with S and G2M cel

cells classified as cycling before regression.
regeneration. By day 60, distances were similar to controls

(9.61 ± 0.32 mm), suggesting that the vascular network structure

had normalized (Figure 5G).

Next, we estimated the fraction of new BM-ECs, defined as

the percentage of BM-ECs at a given time point (day 7, 21, or

60 post-irradiation) that were generated from the time of tamox-

ifen induction. Compared to the non-irradiated group, the in-

crease in new cells at 7 days post-irradiation was not significant

(11.9% ± 1.9%, p = 0.35). However, by day 21, it rose to 20.0% ±

2.9% (p < 0.05 vs. day 7), reaching 41.2% at day 60 (p < 0.01 vs.

control and day 7; Figure 5G). This indicates that irradiation

significantly enforces BM-EC turnover, though regeneration

began after a delay, was still active at day 21, and continued

for up to 60 days.

Our model allowed us to estimate the fraction of surviving BM-

ECs that underwent cell division(s), which indicates the initial

frequency of BM-EC progenitors. 32.0% ± 5.5% of BM-ECs sur-

viving irradiation entered the cell cycle and contributed to new

BM-ECs by day 60 (p < 0.05; Figure 5G), indicating a highly poly-

clonal regeneration.

We also estimated the number of daughter cells produced by

each proliferating cell. On average, dividing cells produced 1.9 ±

0.3 daughter cells at day 7, 2.6 ± 1.0 at day 21, and 8.0 ± 1.8 by

day 60 (Figure 5H). At day 60, we observed a subset of high-

output cells generating 10–40 daughter cells, particularly in

vessel fragments with the highest fraction of new cells.

Finally, we tested our model’s sensitivity to detect clonal

expansion in potentially rare BM-EC progenitor fractions. We

analyzed exemplary graphs and overlaid the observed distribu-

tion of local assortativity with 500 simulations. The simulations

used the best-fitted values of dividing cells (Figure 5I, best-fitted

value, 13.6% for the graph) or assumed the presence of a rare

1% fraction of dividing progenitors (Figure 5J). If rare clonal

expansion existed, then we would see high local assortativity

peaks (red arrows, Figure 5J), but such patterns were not

observed and are not supported by the obtained data.

Overall, our model suggests that BM-EC regeneration after

irradiation is polyclonal, driven by a broad fraction of BM-ECs,

though cell output varies among clones in later regeneration

stages.

DISCUSSION

Our study revealed the cellular mechanism of BM-EC regenera-

tion. The data indicate that a broad fraction of BM-ECs can
lecular alterations after irradiation

and irradiated experimental groups.

bined signature score of selected genes typical for Apln+ EC progenitors in the

on.

d clusters. Hypergeometric test with Bonferroni correction for multiple com-

ess (GOBP) database.

1 clusters using GOBP database.

cores.

l cycle phases, showing the expression of Fcgr2b and Apln, and highlighting the

Cell Reports 43, 114779, November 26, 2024 7



C

A B

D

E F

Figure 4. Colony in vitro assay shows high clonogenicity of mouse BM-ECs

(A) Scheme of the single-cell colony assay designed to study clonogenic potential of BM-ECs.

(B) Morphology of the growing vessel-like structures 7 days after sorting different subpopulations of BM-ECs. Bars indicate 200 mm.

(C) Quantitative analysis revealed morphological differences of vessel-like structures derived from different subpopulations of BM-ECs. n = 26–49/group, two-

tailed unpaired t test, *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.

(legend continued on next page)
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reenter the cell cycle and provide polyclonal regeneration of BM

vasculature after irradiation. A prospective LDA assay showed

that both arterioles and sinusoids in the BM can proliferate and

undergo at least a few cell divisions (Figure 4). Using scRNA-

seq, we identified a transitional subpopulation of BM-ECs ex-

pressing both sinusoidal and arteriolar markers, including the

Apln receptor (Aplr), associated with angiogenic stalk ECs in

other organs (Figures 1D and 1G).35 Among this transitional

phenotype, some cells express Apln, which is proposed as a

marker of an endothelial progenitor population in lymph nodes

and BM17,19 (Figures 3A and 3B).

However, we did not observe enhanced clonogenic potential

in the transitional population compared to sinusoidal or arterial

cells in the LDA in vitro assay (Figure 4D). Analysis of BM-EC

clonality in vivo, after irradiation and BM transplantation, showed

that by 60 days post-irradiation, 32.0% of surviving BM-ECs re-

entered the cell cycle, producing an average of 8 daughter cells

(Figure 5G). This number closely matches the average number of

cells obtained in vitro from single sorted sinusoidal (8.6 ± 1.4) or

transitional (6.8 ± 3.5) cells (Figure 4F). Therefore, the data do not

support the contribution of a rare, clonally expanding endothelial

fraction in BM-EC regeneration after irradiation and BM trans-

plantation. Instead, regeneration appears polyclonal, driven by

a broad fraction of cells. However, we did observe fragments

of vessels (up to 40 cells) originating from a single cell, indicating

some BM-ECs have higher clonal expansion potential.

Our study provides a detailed characterization of the impact of

irradiation on BM-ECs and the course of their regeneration and

highlights underlying cellular and molecular mechanisms at the

single-cell level (Figures 3 and S3). At day 7 post-irradiation,

there is no regeneration of cell loss (Figure 5G), but cells begin

to proliferate (Figure 3H). Day 21 is the most active phase of

regeneration, with a significant shift in the transcriptional profile

of sinusoidal BM-ECs, suggesting active migration and

enhanced translation (Figures 3F and 3G). However, cell loss is

not yet compensated (Figure 5G). The vascular network struc-

ture is restored by day 60 (Figure 5G), though some transitional

clusters have not reached their initial frequency (Figures 3D

and 3E). The gene expression profile of BM-ECs at 60 days

post-irradiation resembles that of non-irradiated cells. Impor-

tantly, over 40%of BM-ECs at day 60 are newly generated, high-

lighting the impact of irradiation on BM-ECs.

Studies on ECs in other organs also highlight EC plasticity in

response to injury. Endothelial regeneration of the aorta is driven

by differentiated ECs reentering the cell cycle.22,23 Myocardial

infarction induces a proliferative state in myocardial ECs,26 and

stochastic phenotype switching is observed in many vascular

beds, supporting general EC plasticity.20

However, EC regeneration after injury may differ from new

blood vessel sprouting.22 Sprouting angiogenesis employs

distinct genetic programs from regeneration of ECs after

injury,22,50 with a well-documented role for Apln signaling.35

Neo-vascularization in lymph nodes during inflammation is
(D) Limiting dilution assay demonstrated high in vitro clonogenic potential of BM

beyond the scale of the graph. The dotted line and values in brackets reflect 95%

(E) Number of cells derived from single sorted cells from different subpopulation

(F) Mean value with SEM of cell output from single sorted cells from different sub
driven by Apln+ endothelial progenitors.19 Moreover, previous

study proposed that proliferating ECs in the BM after irradiation

represent an Apln-expressing population.17 We observed a cor-

responding Apln+ BM-EC cluster among transitional cells in one

of our datasets, which closely shares the marker gene signature

of lymph node Apln+ progenitors (Figure 3B). However, our data

suggest that BM-EC regeneration post-irradiation does not

solely depend on rare Apln+ progenitors (4% of BM-ECs in

non-irradiated mice; Figure 3D). Our model indicates a poly-

clonal regeneration, with over 30% of initial BM-ECs entering

the cell cycle. We also showed that sinusoids, themost common

BM-EC type, have a high potential to reenter the cell cycle

(Figure 4D). Additionally, our scRNA-seq data indirectly show

that cells with high cell-cycling scores are found among sinu-

soids and transitional cells. Previous histological studies

confirmed that some sinusoidal cells in the BM after irradiation

display cell-cycling markers.16

Nonetheless, we observed a few larger single-cell-derived

clones (up to 40 cells) forming small vessel fragments. These

could be derived from Apln+ progenitors, while broader BM-EC

loss is polyclonally regenerated by local sinusoidal cells. Howev-

er, since we induced Rainbow labeling before irradiation in all

BM-ECs, our model cannot address this question.

Our study introduces prospective and quantitative ap-

proaches to study BM-EC clonogenic potential. We developed

an assay showing that prospectively isolated sinusoidal, arteri-

olar, and transitional BM-ECs can reenter the cell cycle at the

single-cell level. Additionally, we propose a method to analyze

BM-EC regeneration using Rainbowmice. This approach avoids

the drawback of leakiness found in reporter gene-driven sys-

tems. Our method employs graph theory and a machine learning

model trained with various regeneration patterns, allowing us to

uncover clonality mechanisms quantitatively (available as an R

package; see STARMethods).We also describe the heterogene-

ity of mouse BM-ECs using our and two other scRNA-seq data-

sets, reducing the impact of isolation methods and sequencing

technology differences, representing a comprehensive single-

cell atlas of mouse BM-ECs (publicly available at https://

morys.shinyapps.io/complete_RNAseq/). Our scRNA-seq data-

set on BM-EC regeneration post-irradiation provides a unique

resource for identifying new molecular mechanisms and thera-

peutic targets (publicly available at https://bmecs-atlas.

szadelab.bio.edu.pl:3838/).

In conclusion, our study reveals a polyclonal contribution of

BM-ECs to BM niche vasculature regeneration post-irradiation.

Given the critical role of BM-EC regeneration in BM niche recov-

ery for successful HSC engraftment, further research should

focus on the molecular mechanisms that regulate BM-EC plas-

ticity and cell cycle reentry under stress conditions.

Limitations of the study
The limitation of this study is that our model does not account for

how the heterogeneity and function of regenerating ECs change
-ECs regardless of the analyzed subpopulation. Triangles show data points

confidence interval (CI).

s of BM-ECs.

populations of BM-ECs, total n = 14–45/group.
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Figure 5. Polyclonal regeneration of BM-ECs

after irradiative conditioning and BM trans-

plantation in mice

(A) Experimental scheme used to evaluate the

clonality of BM-EC regeneration in vivo.

(B–E) Expression pattern of Rainbow fluorescent

proteins in non-irradiated and irradiated BM.White:

VE-cadherin, blue: mCerulean, yellow: mOrange,

and red: mCherry. Bar indicates 100 mm.

(F) Scheme of the bioinformatic pipeline used to

quantify the regeneration.

(G) Estimated parameters describing the regener-

ation of the mouse BM-ECs. In the model, the total

number of 48,675 cells was included within 138

graphs derived from images from 20 mice, n = 3–6

mice per group. The error bars represent the error

propagated during each modeling step.*p < 0.05

vs. control (cntrl.); **p < 0.01 vs. cntrl.; p < 0.05 vs.

day 7; #p < 0.05 vs. day 60; and ##p < 0.01 vs. day

60.

(H) Estimated number of daughter cells derived

from the first dividing cell depending on the fraction

of new cells generated after irradiation.

(I and J) The observed distribution of local assor-

tativity of representative graph (dotted orange line)

overlayed over 500 simulations (shown as density).

In (I), the simulations were based on best-fitted

value of the fraction of dividing cells for each indi-

vidual graph (13.6%), while in (J), we assumed a 1%

fraction of dividing cells. The red arrow in (G) shows

that the potential presence of rare 1% progenitors

would be manifested within the high local assorta-

tive distribution values (here visible as the

discrepancy between simulations and observed

distribution).
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over time. It is possible that the regeneration of BM-ECs com-

prises different phases, each varying in clonality and contributing

differently to the final number of new BM-ECs. In our approach,

we label BM-ECs and their progeny before irradiation and end

the analysis at different time points, which provides us with

average information about the clonality parameters of the pro-

cess over a given period after irradiation. However, we cannot

exclude the possibility that during the analyzed time frame, there

were distinct phases of regeneration with differing clonality pa-

rameters. Future research could address this limitation using

in vivo barcoding-based lineage tracking methods coupled

with spatial single-cell transcriptomics.
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61. Picelli, S., Björklund, Å.K., Faridani, O.R., Sagasser, S., Winberg, G., and

Sandberg, R. (2013). Smart-seq2 for sensitive full-length transcriptome

profiling in single cells. Nat. Methods 10, 1096–1098. https://doi.org/10.

1038/nmeth.2639.

62. Abelson, S. (2010). FastQC: A Quality Control Tool for High Throughput

Sequence Data (Cambridge). http://www.bioinformatics.babraham.ac.

uk/projects/fastqc/.

63. Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S.,

Batut, P., Chaisson, M., and Gingeras, T.R. (2013). STAR: ultrafast univer-

sal RNA-seq aligner. Bioinforma. Oxf. Engl. 29, 15–21. https://doi.org/10.

1093/bioinformatics/bts635.

64. Satija, R., Farrell, J.A., Gennert, D., Schier, A.F., and Regev, A. (2015).

Spatial reconstruction of single-cell gene expression data. Nat. Bio-

technol. 33, 495–502. https://doi.org/10.1038/nbt.3192.

65. Chen, E.Y., Tan, C.M., Kou, Y., Duan, Q., Wang, Z., Meirelles, G.V., Clark,

N.R., andMa’ayan, A. (2013). Enrichr: interactive and collaborative HTML5

gene list enrichment analysis tool. BMC Bioinf. 14, 128. https://doi.org/10.

1186/1471-2105-14-128.

66. Ouyang, J.F., Kamaraj, U.S., Cao, E.Y., and Rackham, O.J.L. (2021). Shi-

nyCell: simple and sharable visualization of single-cell gene expression

data. Bioinformatics 37, 3374–3376. https://doi.org/10.1093/bioinformat-

ics/btab209.

67. Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalexi, E., Mauck,

W.M., Hao, Y., Stoeckius, M., Smibert, P., and Satija, R. (2019). Compre-

hensive Integration of Single-Cell Data. Cell 177, 1888–1902.e21. https://

doi.org/10.1016/j.cell.2019.05.031.

68. Ronneberger, O., Fischer, P., and Brox, T. (2015). U-Net: Convolutional

Networks for Biomedical Image Segmentation. In Medical Image

Computing and Computer-Assisted Intervention–MICCAI 2015: 18th In-

ternational Conference, Munich, Germany, October 5-9, 2015, Proceed-

ings, Part III 18 (Springer), pp. 234–241.

69. He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for

image recognition. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pp. 770–778.

70. Zhang, Z., Liu, Q., andWang, Y. (2018). Road Extraction by Deep Residual

U-Net. Geosci. Rem. Sens. Lett. IEEE 15, 749–753. https://doi.org/10.

1109/LGRS.2018.2802944.
Cell Reports 43, 114779, November 26, 2024 13

https://doi.org/10.1016/j.ydbio.2006.04.452
https://doi.org/10.1016/j.ydbio.2006.04.452
https://doi.org/10.1182/blood-2009-07-232306
https://doi.org/10.1038/sj.emboj.7601982
https://doi.org/10.1038/75556
https://doi.org/10.1093/genetics/iyad031
https://doi.org/10.1002/pro.3715
https://doi.org/10.1002/pro.3715
https://doi.org/10.1093/nar/28.1.27
https://doi.org/10.1093/nar/28.1.27
https://doi.org/10.1093/nar/gkac963
https://doi.org/10.1093/nar/gkac963
https://doi.org/10.1093/nar/gkz1031
https://doi.org/10.1093/nar/gkz1031
https://doi.org/10.1101/gr.192237.115
https://doi.org/10.1038/nbt.4096
https://doi.org/10.1038/nbt.4096
https://doi.org/10.1186/s13059-019-1874-1
https://doi.org/10.1186/s13059-019-1874-1
https://doi.org/10.1016/j.jim.2009.06.008
https://doi.org/10.1016/j.jim.2009.06.008
https://doi.org/10.1101/cshperspect.a006601
https://doi.org/10.1038/nmeth.2089
https://doi.org/10.1038/nmeth.2089
http://refhub.elsevier.com/S2211-1247(24)01130-6/sref52
http://refhub.elsevier.com/S2211-1247(24)01130-6/sref52
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.7717/peerj.453
https://doi.org/10.7717/peerj.453
http://refhub.elsevier.com/S2211-1247(24)01130-6/sref55
http://refhub.elsevier.com/S2211-1247(24)01130-6/sref55
http://refhub.elsevier.com/S2211-1247(24)01130-6/sref55
http://refhub.elsevier.com/S2211-1247(24)01130-6/sref55
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.21105/joss.01686
https://doi.org/10.21105/joss.01686
https://rstudio.github.io/reticulate/
http://refhub.elsevier.com/S2211-1247(24)01130-6/sref60
http://refhub.elsevier.com/S2211-1247(24)01130-6/sref60
https://doi.org/10.1038/nmeth.2639
https://doi.org/10.1038/nmeth.2639
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://doi.org/10.1093/bioinformatics/bts635
https://doi.org/10.1093/bioinformatics/bts635
https://doi.org/10.1038/nbt.3192
https://doi.org/10.1186/1471-2105-14-128
https://doi.org/10.1186/1471-2105-14-128
https://doi.org/10.1093/bioinformatics/btab209
https://doi.org/10.1093/bioinformatics/btab209
https://doi.org/10.1016/j.cell.2019.05.031
https://doi.org/10.1016/j.cell.2019.05.031
http://refhub.elsevier.com/S2211-1247(24)01130-6/sref68
http://refhub.elsevier.com/S2211-1247(24)01130-6/sref68
http://refhub.elsevier.com/S2211-1247(24)01130-6/sref68
http://refhub.elsevier.com/S2211-1247(24)01130-6/sref68
http://refhub.elsevier.com/S2211-1247(24)01130-6/sref68
http://refhub.elsevier.com/S2211-1247(24)01130-6/sref69
http://refhub.elsevier.com/S2211-1247(24)01130-6/sref69
http://refhub.elsevier.com/S2211-1247(24)01130-6/sref69
https://doi.org/10.1109/LGRS.2018.2802944
https://doi.org/10.1109/LGRS.2018.2802944


Report
ll

OPEN ACCESS
71. Oktay, O., Schlemper, J., Folgoc, L.L., Lee, M., Heinrich, M., Misawa, K.,

Mori, K., McDonagh, S., Hammerla, N.Y., Kainz, B., et al. (2018). Attention

U-Net: Learning Where to Look for the Pancreas. Preprint at arXiv. https://

doi.org/10.48550/arXiv.1804.03999.

72. Chevalier, G. Smoothly Blend Image Patches. https://github.com/

Vooban/Smoothly-Blend-Image-Patches.

73. Neven, D., De Brabandere, B., Proesmans, M., and Van Gool, L. (2019).

Instance Segmentation by Jointly Optimizing Spatial Embeddings and

Clustering Bandwidth. In Proceedings of the IEEE/cvf Conference on

Computer Vision and Pattern Recognition, pp. 8837–8845.

74. Zhao, M., Liu, Q., Jha, A., Deng, R., Yao, T., Mahadevan-Jansen, A., Ty-

ska, M.J., Millis, B.A., and Huo, Y. (2021). VoxelEmbed: 3D Instance Seg-

mentation and Tracking with Voxel Embedding based Deep Learning. In

Machine Learning in Medical Imaging: 12th International Workshop,

MLMI 2021, Held in Conjunction with MICCAI 2021, Strasbourg, France,

September 27, 2021, Proceedings 12 (Springer), pp. 437–446.

75. Lalit, M., Tomancak, P., and Jug, F. (2021). Embedding-based Instance

Segmentation in Microscopy. In Medical Imaging with Deep Learning

(PMLR), pp. 399–415.
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Antibodies

CD144 – Alexa Fluor 647 (clone BV13) BioLegend Cat# 138006; RRID: AB_10568319

CD45 – Brilliant Violet 786 (clone 30-F11) BD Biosciences Cat# 564225; RRID: AB_2716861

CD45 – APC-Cy7 (clone 30-F11) BioLegend Cat# 103116; RRID: AB_312981

Ter119 – APC-Cy7 (clone TER119) BD Biosciences Cat# 560509; RRID: AB_1645230

Ter119 – PE-Cy7 (clone TER119) BD Biosciences Cat# 557853; RRID: AB_396898

CD16/32 – PE (clone 2.4G2) BD Biosciences Cat# 561727; RRID: AB_10892816

CD16/32 – Brilliant Violet (clone 2.4G2) BD Biosciences Cat# 752948; RRID: AB_2917903

CD16/32 – BUV395 (clone 2.4G2) BD Biosciences Cat# 740217; RRID: AB_2739965

Ly6C – PerCP-Cy5.5 (clone HK.1.4) BioLegend Cat# 128012; RRID: AB_1659241

Ly6A/E (Sca-1) – PE-Cy7 (clone D7) BD Biosciences Cat# 558162; RRID: AB_647253

Ly6A/E (Sca-1) – unconjugated

(polyclonal goat IgG)

R&D Systems Cat# AF1226; RRID: AB_354679

Donkey anti-Goat IgG (H + L)

Cross-Adsorbed Secondary

Antibody – Alexa Fluor 594 (polyclonal)

Thermo Fisher Scientific Cat# A-11058; RRID: AB_2534105

Hashtag 1 - TotalSeq-B0301

(clone M1/42; 30-F11)

BioLegend Cat# 155831; RRID: AB_2750032AB_2814067

Hashtag 2 - TotalSeq-B0302

(clone M1/42; 30-F11)

BioLegend Cat# 155833; RRID: AB_2750033AB_2814068

Hashtag 5 – TotalSeq-B0305

(clone M1/42; 30-F11)

BioLegend Cat# 155839; RRID: AB_2750036AB_2814071

Hashtag 6 - TotalSeq-B0306

(clone M1/42; 30-F11)

BioLegend Cat# 155841; RRID:AB_2750037AB_2814072

Chemicals, peptides, and recombinant proteins

Tamoxifen Sigma-Aldrich Cat# T5648-1G

DAPI Sigma-Aldrich Cat# D9542-10MG

Collagenase, Type IV, powder Thermo Fisher Scientific Cat# 17104019

Collagenase, Type I, powder Thermo Fisher Scientific Cat# 17100017

Dispase II, powder Thermo Fisher Scientific Cat# 17105041

DNase I from bovine pancreas Merck Cat# 11284932001

Paraformaldehyde solution 4% in PBS Santa Cruz Biotechnology Cat# sc-281692

Iso-pentane (2-Methylbutane) VWR Chemicals Cat # 103616V

EDTA disodium salt dihydrate, powder POCH Cat# 879810112

Critical commercial assays

Live/dead Fixable Near-IR Dead Cell Stain Kit,

for 633 or 635 nm excitation

Thermo Fisher Scientific Cat# L34976

Live/deadTM Fixable Yellow Dead Cell Stain Kit,

for 405 nm excitation

Thermo Fisher Scientific Cat# L34967

Deposited data

Interactive web atlas of scRNA-seq data https://bmecs-atlas.

szadelab.bio.edu.pl:3838/

N/A

Raw scRNA-seq data ENA:PRJEB76309 N/A

Code for cell network analysis https://github.com/jmorys/RainbowGraph N/A

Experimental models: Cell lines

MS-5 (murine stromal cells) DSMZ Cat# ACC 441
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Experimental models: Organisms/strains

Mouse: C57BL6/J In house breeding N/A

Mouse: C57BL6-Rainbow(R26 VT2/GK3)/Ilw x

C57BL6(Cdh5-CreER)/Ilw

In house breeding Derived from RRID: MGI:5441200

Mouse: C57BL/6-Tg(UBC-GFP)30Sch/J In house breeding RRID:IMSR_JAX:004353

Software and algorithms

FACSDiva BD Biosciences https://www.bdbiosciences.com/en-ca/

products/software/instrument-software/

bd-facsdiva-software

FlowJo v 10.8.1 BD Biosciences https://www.flowjo.com/

Prism v 8 GraphPad https://www.graphpad.com/

scientific-software/prism/

Microsoft Excel Microsoft https://www.microsoft.com/en-gb/

ImageJ (FIJI) Schneider et al. 201251 https://imagej.nih.gov/ij/

Python Van Rossum et al. 200952 https://www.python.org/

NumPy Harris et al. 202053 https://numpy.org/

scikit-image Van der Walt et al.54 https://scikit-image.org/

Pytorch Paszke et al. 201955 https://pytorch.org/

Scipy Virtanen et al. 202056 https://scipy.org/

scikit-fmm N/A https://github.com/scikit-fmm/scikit-fmm

Matplotlib Hunter 200757 https://matplotlib.org/stable/

R (v 4.4.0) https://www.R-project.org/ https://www.R-project.org

Tidyverse Wickham et al. 201958 https://www.tidyverse.org/

Reticulate Ushey et al. 202459 https://rstudio.github.io/reticulate/

Igraph Csardi and Nepusz60 https://igraph.org/

Parallel N/A https://cran.r-project.org/web/

packages/foreach/index.html
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Animals
All animal procedures and experiments were performed in accordance with national and European legislations, after approvals (40/

2020, 150/2020, 325/2020, 229/2022,185/2023) by the Second Local Ethical Committee on Animal Testing in Krakow.

The 2- and 23-month-old female C57BL6/Jmice were used for BM-ECs frequency analysis during aging. The 3- and 19-month-old

male C56BL6/J mice were used for IHC staining. The 3-month-old male and female C57BL6/J mice were used for studying BM-ECs

frequency after total body irradiation. The 2-month-old male C57BL6-Rainbow(R26 VT2/GK3)/Ilw x C57BL6(Cdh5-CreER)/Ilw mice

were used for bonemarrow vasculature regeneration analysis after BMT. In the limited dilution assay (LDA) the BM-ECs isolated from

2-month-old male C57BL/6-Tg(UBC-GFP)20SchJ mice were used. Both males and females were used in the study and we did not

find any influence of sex in experiments where females and males were directly compared.

METHOD DETAILS

Recombination induction
To induce Cre recombinase expression in endothelial cells mice were administered with tamoxifen (Sigma-Aldrich, dissolved in corn

oil at concentration of 20 mg/mL) by intraperitoneal injections at 75 mg/kg body weight for 5 consecutive days.

Irradiation and BM transplantation
The mice underwent whole-body irradiation using either Cesium-137 gamma-rays or X-rays, performed 7 days after the last dose of

tamoxifen. The mice were positioned in a mouse-pie cage and irradiated with a single dose of 9.5 Gy. After 24 h, mice were trans-

planted with 2 x 106mononuclear bonemarrow cells isolated from 3-month-old C57BL6/J donor. Transplantation was carried out via

retro-orbital injection. Mice were sacrificed at 7, 21, or 60 days post-irradiation.
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Isolation of BM-ECs
To stain BM-ECs with the anti-CD144 antibody, mice were anesthetized, and 12.5 mg of the antibody was injected into the retro-

orbital sinus. After 10 min, the mice were euthanized, and hindlimb bones were isolated. The bones were then cut into small frag-

ments and suspended in an enzyme mix containing 1.5 mg/mL Collagenase type I, 1.5 mg/mL Collagenase type IV, 3.0 mg/mL

Dispase II, and 25 mg/mL DNAse type I in PBS with calcium and magnesium. The digestion was carried out at 37�C for 15 min

and repeated three times with a fresh portion of the enzyme mix each time. Following digestion, red blood cells were lysed using

RBC Lysis Buffer (155 mM NH4Cl, 14 mM NaHCO3, 1 mM EDTA in ddH2O) for 5 min at room temperature. Subsequently, ex vivo

surface staining was performed.

Flow cytometry and FACS sorting
Flow cytometry analysis was done on LSRFortessa cytometer (BD Biosciences). Cell sorting was done on MoFlo XDP cells sorter

(Beckman Coulter) or Bigfoot Spectral Cell Sorter (Thermo Fisher Scientific). Fluorescently labeled antibodies used in this study

were purchased from BD Biosciences and BioLegend. All antibodies are listed in key resources table. The cells were stained in

FACS buffer (2% (v/v) FBS in PBS) for 30 min at 4�C in the dark. Prior to flow cytometry analysis or cell sorting the cells were filtered

via 40mm cell strainer. The populations used in studies were defined as follows: BM-ECs – CD45�Ter119�CD144+, S-ECs –

CD45�Ter119�CD144+CD16/32+Ly6C�, A-ECs - CD45�Ter119�CD144+CD16/32�Ly6C+, Transitional-ECs - CD45� Ter119�

CD144+ CD16/32+ Ly6C+.

Limited dilution assay
MS-5 cells were seeded 24 h before the assay at a density of 10,000 cells per well in MEM alpha medium (Gibco) supplemented with

10% (v/v) FBS and 1% (v/v) penicillin/streptomycin (Gibco). The following day, the medium was changed to endothelial growth me-

dium (EGM-2MVMicrovascular Endothelial Cell Growth Medium-2 BulletKit, Lonza) supplemented with 10% (v/v) FBS and 1% peni-

cillin/streptomycin. Next, BM-ECs were isolated from C57BL/6-Tg(UBC-GFP)20SchJ mice, which exhibit ubiquitous expression of

GFP, and 1–25 cells were sorted per well onto the MS-5 layer. Over the next 10 days, wells were screened for the presence of GFP+

vessel-like structures, withmedia changes performed every 3–4 days. Photographs of each vessel-like structurewere captured using

a fluorescencemicroscope (Nikon Eclipse Ti), and the cell shapeswere delineated using FIJI Software in blinded fashion. Quantitative

analysis of morphology was conducted using FIJI Software.

Immunohistochemistry
Tibias and femurs were fixed in fixation buffer (4% PFA with 10% EDTA and 0.25% Triton X-100, pH 7.2–7.4) for 8–20h on ice in 4�C
while rotating, followed by overnight incubation in 20% EDTA in 4�C (pH 7.2–7.4). Next, the bones were sequentially incubated in

sucrose solutions in PBS: 10%—1h, 20%—1h, and 30%—overnight in 4�C. After removing excess sucrose, the bones were

embedded in OCT Tissue Freezing Medium (Leica) and frozen in dry-ice-cooled isopentane (VWR Chemicals). 70-mm-thick longitu-

dinal section of bones were cut on cryostat (Leica), blocked with blocking medium (10% donkey serum, 1% BSA, 0.3M glycine,

0.05% Triton X-100) and stained overnight with anti-Sca-1 primary antibody (polyclonal goat, R&D Systems) at 4�C, followed by

2h staining with secondary antibody (donkey anti-goat AF594, Thermo Fisher Scientific) at room temperature. CD144 and CD16/

32 staining was performed in vivo as described before. Imaging of whole bone fragments was done on LSM780 confocal microscope

(Zeiss) across three different focal planes (within ±10 mm), using 103 or 203 objective, resulting in approximately 100–200 images in

five channels per bone. These images were stitched together, and maximum intensity projections were created to produce the final

image of the bone fragments. Images were analyzed using ImageJ software.

Single cell RNA-sequencing library preparation
Plate based single RNA sequencing libraries were prepared using Smart-Seq261 protocol with minor modification. Single BM-ECs

from 2-month-old C57BL6micewere sorted into 96-well plates containing lysis buffer (1 U/mLRNase inhibitor (Clontech), 0.1%Triton

(Thermo Fisher Scientific), 2.5 mM dNTP (Invitrogen), and 2.5 mM oligo dT30VN in nuclease free water). The plates were centrifuged

and frozen at �80�C. Reverse transcription was performed using SMARTScribe reverse transcriptase (Clontech) and a locked tem-

plate-switching oligonucleotide (TSO), followed by 25 cycles of PCR amplification with KAPA HiFi hotStart ReadyMix (Kapa Bio-

systems) and ISPCR primers. The concentration and size distribution for each cell were determined by a capillary-based electropho-

resis fragment analyzer (Advanced Analytical). The cDNA concentration was normalized to a range of 0.05–0.32 ng/mL using pipetting

stations (Mosquito, TTP Labtech). Tagmentation and barcoding were done using Nextera XT DNA Library Kit. The libraries were

pooled, purified with Agencourt AMPure XP beads, quantified using Bioanalyzer and HS-DNA Kit, and sequenced on NextSeq using

single-end 1x75 reads.

10X gene expression and surface protein expression scRNA-Seq library preparation was performed using Chromium Next GEM

Single Cell 30 Reagent Kit v3.1 (10x Genomics) according to manufacturer’s instructions. BM-ECs from 2-3-month-old tamoxifen-

induced C57BL6-Rainbow(R26 VT2/GK3)/Ilw x C57BL6(Cdh5-CreER)/Ilw mice (n = 6–8) were isolated and stained with live/dead

dye (Live/dead Fixable Near-IR Dead Cell Stain Kit, Thermo Fisher Scientfic) according to the protocol provided by manufacturer.

Next, the cells were stained with anti-CD144, anti-CD45 and anti-Ter119 antibodies as previously described, along with distinct

hashing antibodies for each experimental group (TotalSeq-B, BioLegend, 0.6 mg/antibody) for 30 min on ice. Following staining
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15 000 live CD45–Ter119–CD144+ BM-ECs were sorted per group (control, day 7, day 21 and day 60) into FACS buffer. Cells were

then pooled together (control + day7, day 21+ day 60), pelleted at 400g for 5 min and loaded onto the two wells of Chromium 30 Chip
(v3.1). All samples were then processed according to Chromium Next GEM Single Cell 30 Reagent Kits v3.1 (Dual Index) User Guide

(10X Genomics) to generate cDNA sequencing libraries.

Sequencing libraries were pooled at 80% cDNA, and 20% HTO ratio. Libraries were sequenced on an Illumina NextSeq 2000 in-

strument using 100 cycles.

Bioinformatics analysis
The integrated analysis incorporated data from three distinct sources, totaling 13037 endothelial cells: 1. The bone marrow micro-

environment at single-cell resolution by A. Tikhonowa et al. (GEO: GSE108892)30; 2. A Cellular Taxonomy of the BoneMarrow Stroma

in Homeostasis and Leukemia by N. Baryawno et al. (GEO: GSE108892)31; 3. our Smart-seq2 scRNA-seq data. The raw Smart-seq2

sequencing data was quality checked (FastQC62), trimmed, and mapped with STAR63 default parameters to mm10 reference. Whole

analysis was performed using Seurat package.64 Cells of low quality, defined by the detection of less than 200 genes, were excluded

from each dataset. The data was then normalized using the SCT algorithm. This algorithm uses regularized negative binomial regres-

sion, which allows for the preservation of biological heterogeneity of cells while minimizing the impact of technical factors.48 Dimen-

sionality reduction was then performed using principal component analysis (PCA) based on the expression of 5000 genes with the

highest expression variability. The first 30 principal components were selected to create a nearest neighbor (NN) graph, which was

used for clustering using the Louvain algorithm. To visualize the data, individual datasets were further reduced in dimensionality to

obtain their projections in a 2D space using the UMAP algorithm based on the 30 principal components. The GSEA was done using

Enrichr platform.65 The visualization of the data was prepared using ShinyCell package.66

In the study by Baryawno et al.31 and during our own research, sequencing of a mixture of all bone marrow cells, except for he-

matopoietic cells, was performed. Cells that belonged to clusters with an average expression of Cdh5 (VE-cadherin, a classical

marker of endothelial cells) below 0.4 were excluded from this data.

The data was then merged using the Seurat package’s data integration method based on SCT normalization to minimize batch

effects47,67 During the process, a common set of genes exhibiting high variability across all datasets was identified. From this set,

a subset comprising 5000 genes with the most pronounced variability was selected for further analysis. Canonical correlation anal-

ysis (CCA) was then performed based on these genes to identify sources of variability present in all datasets. Subspaces were then

overlaid based on the first 30 vectors of canonical correlation, and an "integrated" expression matrix was obtained, which contained

the expression of the 5000 genes with the highest variability.

Based on this matrix, PCA was performed again, and a nearest neighbor graph was created based on the 30 PCA dimensions.

Clustering was performed using the samemethod, and UMAP dimensionality reduction was performed. Since the data from the Bar-

yawno et al.31 study were contained in several different files, they were also integrated and analyzed using the method described

above.

The initial analysis of scRNA-seq of BM-ECs regeneration after irradiation was donewith CellRanger 7.1 (10x genomics, mapped to

the mm10 reference), and further processed with Seurat package.64 The samples were demultiplexed based on oligo Hash-tagged

antibodies using HTODemux function, with modification and custom thresholds for selected Hash-tags. The data were analyzed us-

ing standard log-normal Seurat normalization and scaling, using first 25 PCA components for UMAP representation and cluster

determination (with 0.5 resolution). Only cells with mitochondrial genes content below 15% and with more than 500 genes detected

were included in final analysis. The few CD45+, erythroblasts and mesenchymal cells contaminating the endothelial pool were

removed based on UMAP clustering and Cdh5 expression, before final analysis.

Image analysis
Model Accuracy Sensitivity Specificity Precision f1 score Jaccard similarity Dice coefficient

Vessels 0.847 0.819 0.834 0.816 0.758 0.666 0.758

Cells mCerulean 0.794 0.627 0.797 0.616 0.619 0.507 0.619

Cells mOrange 0.796 0.651 0.798 0.611 0.629 0.523 0.629

Cells mCherry 0.795 0.646 0.797 0.586 0.612 0.503 0.612
For image segmentation we used the Attention Residual U-Net,68–71 Convolutional Neural Network architecture. We used four

models in total, eachwith 5 layers. Onemodel was used to segment vessels, three other models were used to segment cells express-

ing each of the fluorescent proteins: mCerulean, mOrange and mCherry (see table above).

During training we used random rotations and reflections of the image data as augmentation. For both types of models input image

patches were Z score normalized jointly for all channels. To increase quality of segmentation, each tile was processed 4 times with

different rotations and reflections, as well as image patch blending with Hann window function – this approach was partially adapted

from.72
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Model used to segment vessels used only VE-Cadherin channel and was trained and used at half the original resolution. Base

depth of the network was 32 channels.

Cell segmentation models were fed with all mCerulean, mOrange and mCherry and VE-Cadherin channels. The models were

further modified to perform instance segmentation using a version of Spatial Embeddings73method. It is a widely used approach74–76

where single cells are segmented by predicting offset to the cell center for each pixel within a binary cell mask. Here we achieved

segmentation coordinates of cell pixels offset, iteratively refined this predicted information to aggregate them around cell centers

and then assigned individual cell identities using DBSCAN clustering algorithm.77 We used U-Net model modifications to facilitate

the segmentation. This involved addition additional residual block at maximum depth to increase receptive field of the network,

and addition of two fully connected layers to achieve smoother regression results. Base depth of networks was 40 channels and

each predicted binary segmentation and x,y offset to cell center.

Graph construction
Our goal in image processing was to extract graphs representing networks of endothelial cells, which constitute blood vessels. To do

that we first divided the vessels into domains corresponding to individual cells. Because fluorescent proteins in our images were

mostly concentrated in nuclei, these domains were also a more accurate representation of individual cells.

We calculated amap of geodesic distance from cells’ boundaries within the vessel mask, using fast marching algorithm,78 creating

low value basins around segmented instances. By running a watershed79 algorithm on this distance map, with segmented cells as

markers, we were able to obtain the aforementioned domains (Figure S3F).

We then constructed region adjacency graphs79 (Figure S3G) based on those domains for each image. Those graphs were saved

for later analysis, along with measured geodesic distances between adjacent cells, and colors and locations of each cell.

Predicting regeneration parameters
Local assortativity measurement

The key to decode the information about BM-ECs regeneration, which is contained within cell graphs, was the evaluation of cells’

preference for contacts with cells of the same color. The preferentiality of those contacts can be calculated as global assortativity

of a given labeled graph.80 Global assortativity (rglobal) formula for unweighted graph is:

rglobal =

P
gegg � ka2k
1 � ka2k

Where egh is a fraction of edges connecting nodes with label g to nodes with label h, and a is a matrix:

a =

2
4
e11 / e1n

« 1 «
en1 / enn

3
5

where n is a number unique of label. This metric was proved to be sufficient for very simple approximation of regenerative process;

however, it couldn’t reflect more realistic simulations. As such we used local assortativity, which instead of describing assortative

mixing in the whole graph, focuses on a neighborhood of a given node l.81 For this evaluation we assigned weights to edges that

reflect their locality to the node l. The modified variable egh is subsequently introduced, which considers locality of a given edge

to the node ( uði; lÞ ):

eghðlÞ =
X
i:yi = g

X
j:yj = h

uði; lÞ Aij

deg ðiÞ

Thus, local assortativity of the node l is defined as:

rlocalðlÞ =

P
geggðlÞ � ka2k
1 � ka2k

As evidenced by the formula for eghðlÞ the weight of an edge depends on the weight of the node it originates form (actual compu-

tation for undirected graph, treats each undirected edge as two directed edges in opposite directions). The weight of a node (i.e., its

locality to node l; uði; lÞ) is calculated using personalised page rank algorithm,82 with the point of return being node l. Damping factor

of pagerank algorithm controles range of locality, with low values limiting it only to immediate neighbors, and for values approaching 1

extending it to whole graph.

Through this calculation we obtained values of rlocal for each node in a given graph. By examining distribution of rlocal, we could

more accurately describe preferential connections within a graph.

Regeneration simulation
To create the model capable of predicting original graphs’ regeneration we first established a dataset of ground truth (GT) values. As

the structure of a graph impacts local assortativity values, we generated individual GT dataset for each graph, by simulating clonal
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expansion on existing network, in accordance with the regeneration parameters, while changing only color labels of the node. Our

parameters were progenitor fraction – the fraction of initial cells that started proliferation, and new cells fraction – the fraction of new

cells in observed network, which derive from the cells that started proliferation (actual prediction was 1-new cells fraction).

In our simulation we assumed that daughter can only be present in the immediate neighborhood of their mother cell. Given that

endothelial cells create continuous monolayer within the vessels, this simulation more accurately reflects the biological context

compared to a simulation where new cells can move to fill spaces distant from their mother cell. We also compared both types of

simulations, and the first produced graph colorings far more similar to our experimental dataset.

During the simulation, we first assigned each graph node a unique identity and randomly assigned them roles of either new cells,

progenitor cells, or passive cells (Figure S3H). We then calculated the optimal rearrangement of initial labels by moving new cells

closer to progenitor cells. This was done by calculating a gradient originating from progenitor cells using personalized page rank,

and iteratively swapping labels between passive cells and new cells, "pushing" passive cells away. This process continued until there

were no edges where the gradient pointed from a passive cell to a new cell, and all new cells were close to progenitors (Figure S3I).

Next, the graph was divided into unique domains to be reconstructed by each progenitor cell. The personalized page rank of each

progenitor cell node was calculated and nodes where each progenitor had the highest page rank value became their domain (Fig-

ure S3J, already assigned colors). New cell nodes were then stripped of their original identities and given the identity of the domain

they fell within. Each cell was randomly assigned a color based on its new identity, with new daughter cells gaining the color of their

progenitor cell (Figure S3K).

Predicting parameters
We predicted regeneration characteristics for each graph with more than 70 nodes, which corresponded to sufficiently large uncon-

nected vessel fragments in the image. For the model data, we utilized moments of the local assortativity distribution (mean, variance,

skewness and kurtosis), several quantiles and correlation between distributions of local assortativities computed using pagerank

with different damping factors. We used damping factors, 0.1 and 0.7, however we found, that our approach was largely insensitive

to the damping factor selection in the local assortativity equation. Parameters of local assortativity distributions were Z score normal-

ized and PCA was performed to reduce dimensionality of data (Figure S3N).

Because of the significant impact of graph’s shape and size on assortativity distributions, we used unique models for each graph,

instead of a general model. Our model of choice was a feedforward neural network (FNN) and we trained it to output predictions as

Gaussian distributions instead of single points with the mean-variance estimation (MVE) method.83 This method is based on

maximum-likelihood estimation and the model was trained with negative log likelihood loss to output both predictions and their

log variances. This allowed us to estimate confidence level of a given prediction based on width of a Gaussian distribution.

To keep the entirety of predicted distributions within the range 0–1 and avoid illogical predictions, as well as to improve accuracy of

predictions, FNN was predicting logits of target values. This resulted in predicted uncertainty distributions for target values being

logit-normal distributions, which was considered in the downstream analysis.

To further confirm validity of predictions for original graphs we calculated Bhattacharyya distance between empirical distributions

of their assortativities and those of simulated graphs. It allowed us to confirm that the model predictions fell within the most probable

values.

QUANTIFICATION AND STATISTICAL ANALYSIS

Flow cytometry data were analyzed using FlowJo, Microsoft Excel (Microsoft) and GraphPad Prism 8 software.

LDA data were analyzed with ELDA algorithm available at https://bioinf.wehi.edu.au/software/elda/ and as an R package.49

RNA sequencing data as well as ECs’ regeneration analyses are described in the single-cell RNA sequencing and Image analysis

sections. Details concerning statistical tests can be found in figures’ legends. The data are presented as mean ± SEM, unless other-

wise stated. All experiments were repeated as indicated; n indicates the number of independent biological repeats, unless otherwise

stated. Randomization and blinding were used in case of quantitative and qualitative analysis of in vitro vessel-like structure forma-

tion. No statistical method was used to predetermine sample size. To test statistical significance between two groups, a two-tailed

Student’s t-test was used, unless otherwise stated. For enrichment analysis in Figure 3E Hypergeometric test with Bonferroni correc-

tion for multiple comparisons was performed. The reported p-values in Figures 3F and 3G, S3B–S3G, are obtained using Enrichr

tool65,84 that applies Fisher exact test with assumed binominal distribution adjsuted by Benjamini-Hochberg method for multiply

testing.
20 Cell Reports 43, 114779, November 26, 2024
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Supplementary Figure 1  

Analysis of integrated sc-RNAseq data including mouse bone marrow endothelial cells under 

steady-state conditions.  

(A) UMAP projection showing the distribution of cells derived from different datasets. (B) Top 

differentially expressed genes for each cluster, identified with ROC analysis. UN. – undesrcibed 

(C) Expression of Fcgr2b and Ly6c1 in all cells. (D) S and G2/M scores for each cluster (E) 

Correlation of Ly6c1 and Ly6a in integrated scRNA-seq datasets (F) Correlation of CD16/32 and 

Sca-1 expression in BM-ECs evaluated by flow cytometry analysis. (G) Number of detected genes 

among datasets used and generated in the study.  
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Supplementary Figure 2 

Examples of transitional Sca-1/Ly6Ahigh CD16/32+ BM-ECs detected by 

immunohistochemistry. (A) Young mice. (B) Old mice. The transitional BM-ECs localized 

between arterioles Sca-1/Ly6Ahigh CD16/32- (*) that along the vessel gradually change into 

transitional double positive Sca-1/Ly6A+ CD16/32+ BM-ECs (arrow), before becoming wider Sca-

1/Ly6A-/low CD16/32+ sinusoids. 
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Supplementary Figure 3 

Transcriptional changes in bone marrow endothelial cells during regeneration revealed by 

sc-RNAseq data analysis.  

(A) Expression of selected cluster markers among the identified clusters (B) GSEA analysis on 

markers genes of Sinusoidal cluster using KEGG 2021database. (C) GSEA analysis on 

differentially expressed genes between Sinusoidal 2 and Sinusoidal 1 clusters using Reactome 

database. (D) Number of highly differentially expressed genes (-log(p-adj)>25) in different time 

points post-irradiation when compared to control cells. (E-G) GSEA analysis on differentially 

expressed genes at day 7 (E), day 21 (F), and day 60 (G) post-irradiation (MSigDB). (H) S and 

G2/M scores for different experimental groups and set threshold (red dashed line) for classification 

as cycling cells. (J) Frequency of cells in the Cycling cluster in different experimental groups.  
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Supplementary Figure 4 

Expression pattern of fluorescent proteins in non-irradiated and irradiated BM.  

White – VE-Cadherin, blue –  mCerulean, orange – mOrange, red –  mCherry. 

(A,B) The expression of random fluorescent markers upon induction was specific to ECs and 

labelled uniquely ECs in (A) diaphysis and (B) metaphysis region of the bone. Bars 100 µm and 

50 µm respectively.  

(C) We did not observe any regions with one color at 7 or 21 days after irradiation, however there 

were areas with single color visible 60 days post-irradiation (*). Bars 200 µm.  
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Supplementary Figure 5 

Strategy applied for image segmentation, graph constructions, and model training.  

(A) Overview of the proposed pipeline. U-Net for cells segmentation uses as an input an entire, 4 

channel, image (B), while U-Net for vessel segmentation uses only Ve-Cad channel. Cell semantic 

segmentation (C) and vessel segmentation (D) images are then used to perform instance 

segmentation of cells (E). Cell instance segmentation and vessels segmentation are used in 

watershed transformation, with the watershed energy being geodesic distance from segmented 

cells. Through this transformation we obtain map of segmented vessels with regions corresponding 

to cells (F), which we use to create region adjacency graph (G). Region adjacency graph is then 

used to identify neighbours of each cell and measure distance between to them. Finally, all data 

about cells and the neighbourhood is pooled to create a graph. 

(H-M) Simulation of vessel regeneration. 

(H) The first step of the simulation randomly chooses surviving and dividing (progenitor) cells 

among them, here respectively 30% and 6%.  

(I) Then the iterative “push” algorithm rearranges positions of passive cells, to create patches of 

new cells around progenitors, mimicking patches observed in experimental data.  

(J) Domains with empty nodes covered by daughter cells from given proliferating cells were 

defined through page rank algorithm (colors for clarity).  

(K) Random colors are then assigned to cells based on the identifier, completing the simulation. 

(L,M) Local assortativity can be used to examine preferential contacts of cell with other cells of 

the same colors, indicating clonal expansion. (L) Low values of damping factor in the page rank 

algorithm (implemented in the local assortativity equation) tune the algorithm to examine if the 

color of a given cell is the same as the color of cells in close neighborhood, (M) while larger values 



of the damping factor tune the algorithm to examine if the color of a given cell is the same as the 

color of cells within broader neighborhood area including more distant cells. Thus use of large 

dumping factor results in smoothing the local assortativity values over the graph. 

(N) Predicting parameters. Data describing assortativity distribution for a given graph labelling is 

already well correlated with input parameters, especially for new cell fraction prediction, however 

model can still improve the prediction, especially for the outliers. Majority of the prediction 

uncertainty is aleatoric stemming from randomness in color selection, and increases with survival 

rate.  
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