Cell Reports, Volume 43

Supplemental information

An IL-2 mutein increases regulatory T cell

suppression of dendritic cells via IL-10

and CTLA-4 to promote T cell anergy

Braxton L. Jamison, Matthew Lawrance, Chun Jing Wang, Hannah A. DeBerg, Lauren J. Ziegler, David M. Sansom, Marc A. Gavin, Lucy S.K. Walker, and Daniel J. Campbell

Figure S1. Fc.Mut24 does not impact Foxp3⁺ **T**_R **cell clonal expansion, related to Figure 1.** Splenocytes from C57BL/6 Foxp3-mRFP treated with PBS, Fc.WT, or Fc.Mut24 were harvested 3 days later and sorted to obtain CD4⁺ Foxp3⁺ regulatory T (T_R) cells for single-cell RNA-seq (scRNA-seq). **A.** Heat map showing the mean expression (z-score) of representative transcription factor genes (rows) for each cluster (columns). **B&C.** Bar graphs showing the number of cells identified for each of the top twenty T_R clonotypes colored by cluster (**B**) or treatment group (**C**).

Β

Figure S2. Fc.Mut24-expanded cT_R , ceT_R and eT_R are highly suppressive, related to Figure 2. cT_R , ceT_R or eT_R were sorted from the spleens of B6.Foxp3-mRPF mice treated with Fc.Mut24 3 days previously (gated as in Figure 2), and their ability to suppress activation-induced proliferation and upregulation of CD44 by CFSE-labeled and sorted Foxp3-mRFP-negative T_{conv} was assessed. **A**. Representative flow cytometric analysis of cell proliferation (based on CFSE-dilution) and CD44 expression by gated Teff cells activated alone or mixed in a 1:4 $T_R:T_{conv}$ ratio with the indicated population of sorted T_R . **B**. Analysis of %Suppression of T_{conv} proliferation and CD44 upregulation by each of the sorted T_R populations as indicated. No statistical significance was observed in the ability of any of the T_R populations to suppress either proliferation or CD44 upregulation by one-way ANOVA with Tukey's multiple comparison test.

Figure S3. Fc.Mut24 increases the expression of genes involved in CTLA-4 trafficking and recycling in Foxp3⁺ T_R cells, related to Figure 3. Splenocytes from C57BL/6 Foxp3-mRFP treated with PBS, Fc.WT, or Fc.Mut24 were harvested 3 days later and sorted to obtain CD4⁺ Foxp3⁺ regulatory T (T_R) cells for single-cell RNA-seq (scRNA-seq). Violin plots showing normalized expression for the indicated genes involved in CTLA-4 trafficking to the cell surface (A) or endosomal recycling of CTLA-4 (B).

Figure S4. Fc.Mut24 increases CTLA-4-dependent transendocytosis by different Foxp3⁺ T_R cell populations, related to Figure 4. A. Capture of CD86-GFP by CD44^{lo} CD62L^{hi} central T_R (cT_R), CD44^{hi} CD62L^{hi} central effector T_R (ceT_R), and CD44^{hi} CD62L^{lo} effector T_R (eT_R) cells between different treatment groups. See Figure 4A for the experimental design schematic. Representative flow cytometry plots are shown. **B.** Graph shows mean \pm SD with individual data points (n = 7); *****P* ≤ 0.0001, multiple unpaired *t*-tests. Data are representative of 2-3 independent experiments.

Figure S5. Fc.Mut24 expands cDC1s in C57BL/6 mice, related to Figure 5. A. Representative gating strategy for CD11c⁺MHC II⁺33D1⁻ CD8 α^+ cDC1 and CD11c⁺MHC II⁺33D1⁺ cDC2. B. Percentage and number of cDC1 and cDC2 between different treatment groups. See Figure 5A for the experimental design schematic. Graphs show mean \pm SD with individual data points (n = 7 to 10); **P* ≤ 0.05, ***P* ≤ 0.01, ****P* ≤ 0.001, multiple unpaired *t*-tests. Ctrl, Control. Data are representative of 2-3 independent experiments.

Figure S6. Expression of known identity markers in dendritic cells after Fc.Mut24 treatment, related to Figure 5. Unstimulated (Ctrl) or LPS-stimulated splenocytes from C57BL/6 mice treated with PBS or Fc.Mut24 were harvested 4 days post-treatment and sorted to obtain cDC1 or cDC2 populations for bulk RNA-seq. See Figure 5A for the experimental design schematic. **A.** Heatmap showing the mean expression (z-score) of select genes differentially expressed between cDC1 and cDC2 for all treatment groups.

Figure S7. Impact of Fc.Mut24 treatment of the LPS-mediated transcriptional response in dendritic cells, related to Figure 5. Unstimulated (Ctrl) or LPS-stimulated splenocytes from C57BL/6 mice treated with PBS or Fc.Mut24 were harvested 4 days post-treatment and sorted to obtain cDC1 or cDC2 populations for bulk RNA-seq. See Figure 5A for the experimental design schematic. A. Principal component analysis of global transcriptional signatures from indicated cell types and treatment groups. **B.** Heatmap showing the mean expression (z-score) of all genes differentially expressed between LPS and Ctrl samples in cDC1 and cDC2 (FDR < 0.01, Log₂ fold-change > 1). In cDC1s, a subset of genes (red rectangle) have diminished LPS-mediated upregulation in the presence of Fc.Mut24. **C.** Gene set enrichment analysis of cDC1s showing that the Hallmark TNFA Signaling via NFKB pathway is enriched in PBS/LPS relative to Fc.Mut24/LPS samples (FDR = 0.005). **D.** Volcano plot of cDC1s comparing Fc.Mut24 treatment versus PBS with the top ten differentially expressed genes by FDR (gray) and select NFkB-regulated genes (black) highlighted. **E.** Violin plots of cDC1s showing Log₂ normalized counts for select genes: *Cd80*, *Cd86*, *CD40*, *H2-Ab1* (I-A^b beta chain), and *H2-Aa* (I-A^b alpha chain).

Figure S8. The anti-CTLA-4 antibody 4F10 does not cause Foxp3⁺ T_R cell depletion during Fc.Mut24 treatment, related to Figure 5. Splenocytes from C57BL/6 mice treated with PBS or Fc.Mut24 followed by isotype or anti-CTLA-4 antibody and LPS stimulation were analyzed by flow cytometry. Gates were set on live, CD4⁺ cells. **A&B.** Graphs show mean \pm SD with individual data points (n = 7); **P* ≤ 0.05, ***P* ≤ 0.01, ****P* ≤ 0.001, *****P* ≤ 0.0001, multiple unpaired *t*-tests. Data are representative of 2-3 independent experiments. **B.** Gates were set on CD25⁺ Foxp3⁺ T_R for analysis of the expression of indicated T_R activation markers.

В

Figure S9. Fc.Mut24 treatment enhances PD-1 binding to splenic DCs, related to Figure 5. Splenic DCs (gated as in Fig. S5) from C57BL/6 mice treated with PBS, Fc.Mut24, or Fc.Mut24 + anti-CTLA-4 antibody followed by LPS were analyzed by flow cytometry. **A.** Representative flow cytometry plots showing CD80 expression and PD-1 binding by gated cDC1 and cDC2. **B.** Graphs show mean \pm SD with individual data points in each group as indicated (n = 3-5 mice/group); **P* ≤ 0.05, ***P* ≤ 0.01, ****P* ≤ 0.001, by one-way ANOVA with Tukey's multiple comparison test. Data are representative of 2 independent experiments.

Figure S10. Fc.Mut24 increases March1 gene expression in cDC1s from C57BL/6 mice, related to Figure 6. Unstimulated (Ctrl) or LPS-stimulated splenocytes from C57BL/6 mice treated with PBS or Fc.Mut24 were harvested 4 days post-treatment and sorted to obtain cDC1 or cDC2 populations for bulk RNA-seq. See Figure 5A for the experimental design schematic A. Violin plots showing Log₂ normalized counts for *March1* gene expression between treatment groups.

Figure S11. Fc.Mut24 promotes Foxp3⁺ T_R cell activation in NOD mice, related to Figure 7. The spleen, pancreatic lymph node (PancLN), and pancreas of 8-10-week-old female non-obese diabetic (NOD) mice treated with PBS or Fc.Mut24 were harvested 4 days later and analyzed by flow cytometry. Gates were set on live, CD45⁺, CD4⁺ cells. Percentage, number, and proliferation (Ki-67⁺) of Foxp3⁺ T_R cells (A) and expression of indicated T_R activation markers (B). A&B. All graphs show mean \pm SD with individual data points (n = 6 to 9); **P* ≤ 0.05, ***P* ≤ 0.01, ****P* ≤ 0.001, *****P* ≤ 0.0001, multiple unpaired *t*-tests. Data are representative of 2-3 independent experiments.

Figure S12. Fc.Mut24 expands cDC1s in NOD mice, related to Figure 7. The spleen, pancreas, and pancreatic lymph node (PancLN) of 8-10-week-old female non-obese diabetic (NOD) mice treated with PBS or Fc.Mut24 were harvested 4 days later and analyzed by flow cytometry. **A.** Representative gating strategy for the CD11c⁺ MHC II⁺ antigen-presenting cell subsets in different tissues. **B.** Percentage and number of different subsets of CD11c⁺ MHC II⁺ antigen-presenting cells. Graphs show mean \pm SD with individual data points (n = 6 to 8); **P* ≤ 0.05, ***P* ≤ 0.01, ****P* ≤ 0.001, *****P* ≤ 0.0001, multiple unpaired *t*-tests. Data are representative of 2-3 independent experiments.

Figure S13. CD73 expression is transiently upregulated by CD4⁺ and CD8⁺ effector T cells after Fc.Mut24 treatment of NOD mice, related to Figure 7. T cells from the pancLN of NOD mice treated with either PBS (black symbols) or Fc.Mut24 (red symbols) were analyzed by flow cytometry. **A.** Frequency of Foxp3⁺ T_R among total CD4⁺ T cells at the indicated times after treatment. **B.** Frequency of CD73⁺ cells among CD4⁺Foxp3⁺, CD4⁺Foxp3⁻CD44^{hi}, and CD8⁺CD44^{hi} populations at the indicated times after treatment. * $P \le 0.05$, ** $P \le 0.01$, *** $P \le 0.001$, **** $P \le 0.0001$, one-way ANOVA with Tukey's multiple comparison test. Data are from 1 experiment.