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S1 . EIGENENERGIES AND EIGENSTATES OF THE NH THREE-MODE SYSTEM

The non-Hermitian (NH) model under consideration involves three modes with nearest-neighbor couplings. The
first mode has a non-negligible dissipation rate κ, while dissipation rates of the other two modes are negligible. The
system dynamics associated with the no-jump trajectory is governed by the NH Hamiltonian (hereafter setting ℏ = 1)

H = −1

2
iκa†1a1 +

(
λ1a

†
1a2 + λ2a

†
2a3 + H.c.

)
, (S1)

where a†j and aj (j = 1, ..., 3) denote the creation and annihilation operators of the jth mode, λj is the coupling
coefficient between the jth and (j + 1)th modes, and H.c. indicates the Hermitian conjugate.
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In the single-excitation subspace {|110203⟩ , |011203⟩ , |010213⟩}, H has three eigenenergies, given by

E1,2 = − iκ
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and

E3 = − iκ
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)
, (S3)

where

ξ = 3λ2
1 + 3λ2

2 −
κ2

4
,
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3

√
η +

√
η2 − ξ3,

(S4)

and

η = − iκ

4
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2 − 9λ2
1 +

κ2

2

)
. (S5)

Figure S1(a) illustrates either min |Im(En − Em)| or min ||En| − |Em|| versus λ1 and λ2 scaled in unit of κ. Outside
the colored region, min |Im(En − Em)| and min ||En| − |Em|| are both 0. Considering this in conjunction with Fig.
1b of the main text, it can be concluded that there are at least two eigenenergies with equal imaginary parts and
opposite real parts. Therefore, outside this colored region, the eigenenergy can be expressed as

E1 = iI1,

E2 = R+ iI,

E3 = −R+ iI,

(S6)

where R, I, and I1 are real parameters. Figure S1(b) shows the minimum of the scaled gaps min |En − Em| /κ
(n,m = 1 to 3, n ̸= m) among three complex eigenenergies versus λ1 and λ2. The curves with min |En − Em| = 0
correspond to lines of EP2s, where two of the three eigenenergies coalesce. The corresponding eigenstates are

|Φj⟩ = Nj

{[
Ej

(
Ej +

iκ

2

)]
|010213⟩+ λ2

(
Ej +

iκ

2

)
|011203⟩+ λ1λ2|110203⟩

}
(j = 1, 2, 3), (S7)

where Nj is the normalization factor.

a b min|En-Em|/κmin||En|-|Em||/κ

κ κ

κκ

min|Im(En-Em)|/κ，

FIG. S1: Characterization of eigenenergies. (a) The colored region is complementary to Fig. 1b in the main text. Outside this
region, there is min |Im(En − Em)| = min ||En| − |Em|| = 0, indicating that at least two eigenenergies have equal imaginary
parts and opposite real parts. (b) The lines of 2EPs are highlighted, which corresponds to min |En − Em| = 0.
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When λ1 ̸= 0 and λ2 ̸= 0, each of these eigenstates is a tripartite entangled state, for which each mode is entangled
with the other two modes. The system has four 3EPs at {±λc

1,±λc
2} with λc

1 =
√
2κ/3

√
3 and λc

2 = κ/6
√
3. For the

EP3 in the first quadrant, the three-fold degenerate eigenenergy is

EEP3 = − iκ

6
(S8)

with the corresponding eigenstate

|ΦEP3⟩ = −
√

1

6
|010213⟩+ i

√
1

2
|011203⟩+

√
1

3
|110203⟩. (S9)

This three-fold degenerate eigenstate is a genuine tripartite entangled state, manifested by the non-zero pairwise
concurrences C1,2 =

√
2
3 , C2,3 =

√
1
3 , and C1,3 =

√
2
9 .

S2 . SIMULATION OF CONDITIONAL DYNAMICS IN THE ISOFREQUENCY REGION

After some calculations, we find η2 − ξ3 > 0 in the isofrequency region. Therefore, we can rewrite the parameter α
in Eq. S4 as

α = (a+ ib)
1/3

, (S10)

where a =
√
η2 − ξ3 and b = −iη are real numbers. With this expression, it is easy to check

|α|2 =
(
a2 + b2

)1/3
= −

(
3λ2

1 + 3λ2
2 −

κ2

4

)
= −ξ.

(S11)

Then, we obtain ξ/|α|2 = −1. By using 1/α = α∗/|α|2, we can further obtain that ξ/α = −α∗. Substituting the
result into Eq. S2 and Eq. S3, we have

E1,2 = − iκ

6
− i

1

3

[
±
√
3Re(α)− Im(α)

]
(S12)

and

E3 = − iκ

6
− i

2

3
Im(α). (S13)

Obviously, the result shows that real parts of three eigenenergies vanish in the isofrequency region. Figure S2 shows
the simulated evolutions of corresponding eigenstates’ fidelities, pairwise concurrences, and the probability for the
no-jump trajectory of the initial state |010213⟩ in the region with λ1/κ = 0.2 and λ2/κ = 0.02 by using the NH
Hamiltonian of Eq. S1. In such a region each of the pairwise concurrences tends to a fixed value for the no-jump case
at the price of a progressively decreasing probability.

a b c
Ф Ф Ф

κt κt κt

FIG. S2: The fidelity (a), concurrence (b) and probability (c) evolution for the no-jump trajectory of the initial state |010213⟩
with λ1/κ = 0.2 and λ2/κ = 0.02. |Φ1⟩, |Φ2⟩ and |Φ3⟩ are the three eigenstates for which the coefficients of the components
|110203⟩, |011203⟩ and |010213⟩ have a maximum modulus.
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S3 . SYNTHESIS OF THE NH MODEL

The experiment is performed in a circuit quantum electrodynamics architecture involving five frequency-tunable
Xmon qubits, each individually coupled to a readout resonator, and all connected to a bus resonator (Rb) with a fixed
frequency ωb/2π = 5.58 GHz, as sketched in Fig. S3. Every Xmon qubit used in our experiment has a microwave line
(XY line) to drive its state transition and an individual flux line (Z line) to dynamically tune its frequency. The NH
three-mode system is synthesized with the bus resonator, one of the Xmon qubits (Q), and its readout resonator (Rr)
with a fixed frequency ωr/2π = 6.66 GHz. The Rb-Q and Q-Rr swapping interactions are realized by applying two
parametric modulations to Q, making its frequency depend on time as

ωq = ω0 + ε1 cos (ν1t) + ε2 cos (ν2t) , (S14)

where ω0 is the mean frequency, and εj and νj (j = 1, 2) are the corresponding modulation amplitude and angular
frequency of the jth modulation, respectively. In the experiment, εj and νj can be readily manipulated by a Z control
line.

Q is capacitively coupled to Rb and Rr (see Ref. [1] for details). The coherent Hamiltonian of the total system is
given by

H = H0 +HI , (S15)

where

H0 = ωba
†
bab + ωra

†
rar + ωq |e⟩ ⟨e| , (S16)

and

HI = |0q⟩ ⟨1q|
(
gba

†
b + gra

†
r

)
+ H.c., (S17)

where a†r (a†b) and ar (ab) denote the creation and annihilation operators for the photonic field stored in Rr (Rb),
|0q⟩ and |1q⟩ denote the ground and first excited states of Q, and gb (gr) is the on-resonance Rb-Q (Q-Rr) coupling
strength.

Rr Q

Rb

XY control

Z control

Q1

Q2

FIG. S3: Circuit micrography.

Performing the transformation ei
∫ t
0
H0dt, we obtain the system Hamiltonian in the interaction picture,

H ′
I = e−iµ1 sin(ν1t)e−iµ2 sin(ν2t) |0q⟩ ⟨1q|

(
eiδbtgba

†
b + eiδrtgra

†
r

)
+ H.c., (S18)

where µj = εj/νj (j = 1, 2), δb = ωb − ω0, and δr = ωr − ω0. Using the Jacobi-Anger expansion
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e−iµj sin(νjt) =

∞∑
n=−∞

Jn(µj)e
−inνjt, (S19)

with Jn(µj) being the nth Bessel function of the first kind, H ′
I can be rewritten as

H ′
I =

∞∑
m,n=−∞

Jm(µ1)Jn(µ2)e
−imν1te−inν2t |0q⟩ ⟨1q|

(
eiδbtgba

†
b + eiδrtgra

†
r

)
+ H.c. (S20)

Under the conditions ν1 = δr and ν2 = −δb, Q is resonantly coupled to Rr (Rb) at the first upper (lower) sideband
with respect to the first (second) modulation. When gb, gr ≪ ν1, ν2, the fast-oscillating terms can be discarded, so
that H ′

I reduces to

H ′
I = |0q⟩ ⟨1q|

(
λ1a

†
b + λ2a

†
r

)
+ H.c., (S21)

where λ1 = grJ1(µ1)J0(µ2) and λ2 = gbJ0(µ1)J1(µ2), as depicted in Fig. 2a of the main text. In the single-excitation
subspace, a†b and a†r can be replaced by |1b⟩ ⟨0b| and |1r⟩ ⟨0r|, respectively. Then H ′

I is equivalent to the Hermitian
part of the Hamiltonian (1) of the main text with N = 3. In our system, the dissipation rates of Rb and Q are
respectively 0.08 MHz and 0.06 MHz, which are negligible compared with that of Rr. With the dissipation being
included, the NH Hamiltonian is given by Eq. S1, with Rr, Q, and Rb corresponding to the first, second, and last
qubits, respectively.

S4 . STATE READOUT

The readout of the output Rb-Q-Rr state is enabled with two ancilla qubits, denoted as Q1 and Q2. After the
NH Hamiltonian dynamics, the state of Rb is mapped to Q1 through a swapping gate, which is realized by tuning
the transition frequency of Q1 to ωb for a duration tsw = π/(2g1) ≃ 12.3 ns, with g1 = 2π × 20.3 MHz being the
Rb-Q photonic swapping rate. Then, the state of Q is transferred to Q2 by subsequently performing the Q-Rb and
Rb-Q2 swapping gates. Finally, Rr’s state is transferred to Q. As the maximum frequency of Q (2π × 6.01 GHz) is
smaller than ωr by an amount much lager than gr, it is necessary to use the parametric modulation to realize the
Rr-Q mapping. The corresponding gate duration is 150 ns. With a correction for the state distortion during the
state mapping, the resulting Q1-Q2-Q output state corresponds to the Rb-Q-Rr output state right before the state
mapping.

S5 . EXTRACTION OF EIGENENERGIES

In our experiment, we choose a square-shaped loop on the λ1-λ2 plane to extract the winding number. The four
vertices of the rectangle are (0, 0), (λm, 0), (0, λm), and (λm, λm) with λm ≃ 2π×1 MHz. Along the edge with λ1 = 0,
Rr is decoupled from the Q-Rb subsystem. In the interaction picture, the Q-Rb swapping coupling is described by
the Hamiltonian

H = λ2

(
a†b |0q⟩ ⟨1q|+ ab |1q⟩ ⟨0q|

)
, (S22)

where a†b and ab denote the creation and annihilation operators for the photonic mode stored in Rb, and |0q⟩ and |1q⟩
represent the ground and excited states of Q. In the single-excitation subspace, this Hamiltonian has two eigenenergies
E± = ±λ2. The corresponding eigenstates are

|Φ±⟩ =
1√
2
(|0b1q⟩ ± |1b0q⟩) . (S23)

The subsystem, starting from the initial state |0b1q⟩, evolves as

cos (λ2t) |0b1q⟩ − i sin (λ2t) |1b0q⟩ . (S24)

The value of λ2, which depends on the amplitude and frequency of the parametric modulation used to mediate the
sideband interaction, is inferred from the observed Rabi oscillation. The population evolutions for the state |0b1q⟩,
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a b

FIG. S4: The population (a) and concurrence (b) evolutions for different values of λ2 when λ1 = 0, i.e., the edge from (0, 0) to
(0, λm). From top to bottom, the values of λ2/2π are 0.04, 0.05, 0.14, 0.23, 0.33, 0.48, 0.68 and 0.97 MHz, respectively.

observed for different values of λ2, are presented in Fig. S4(a). The Q-Rb concurrences associated with the two
eigenstates |Φ±⟩, extracted at λ2 = λm, are 0.997 and 0.997, respectively.

For λ2 = 0, Rb is decoupled from the Q-Rr subsystem. In this case, the evolution of the Q-Rr subsystem associated
with the no-jump trajectory is described by the NH Hamiltonian

H′ = λ1

(
a†r |0q⟩ ⟨1q|+ ar |1q⟩ ⟨0q|

)
− i

2
κa†rar, (S25)

where a†r (ar) is the photonic creation (annihilation) operator for Rr. In the single-excitation subspace, the H′ has
two eigenenergies

E′
± = −iκ/4±

√
λ2
1 − κ2/16. (S26)

The corresponding eigenstates are

∣∣Φ′
±
⟩
= N±

(
|1q0r⟩+

E′
±

λ1
|0q1r⟩

)
, (S27)

where N± =
(
1 +

∣∣E′
±/λ1

∣∣2)−1/2

. Fig. S5(a) shows the measured population of the state |1q0r⟩ versus λ1 and t. This
population is obtained by discarding the outcome |0q0r⟩, and then renormalizing the probabilities for the outcomes
of |1q0r⟩ and |0q1r⟩. The gap of the two eigenenergies versus λ1, extracted from the population evolution, are shown
in Fig. S5(c).

a b c
Re(ΔE)
Im(ΔE)

ΔE

FIG. S5: The population (a) and concurrence (b) evolutions for different values of λ1 when λ2 = 0, i.e., the edge from (0, 0) to
(λm, 0). (c) Spectral gap ∆E. The solid and dashed lines denote the real and imaginary parts, respectively.

When λ1 ̸= 0 and λ2 ̸= 0, the evolution of the Rb-Q-Rr system associated with the no-jump trajectory is governed
by the Hamiltonian
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H = HH +HNH , (S28)

where

HH = |1q⟩ ⟨0q| (λ1ar + λ2ab) + H.c.,

HNH = −1

2
iκa†rar.

(S29)

Suppose that the loop on the λ1 −λ2 plane is a rectangle with four vertices (0, 0), (λm, 0), (0, λm), and (λm, λm). On
the edges from (0, 0) to (λm, 0) and to (0, λm), the system reduces to a two-mode system, so that the eigenspectra
can be extracted relatively easily. Without dissipation, the three eigenstates of HH on the other two edges are given
by

|Φ1⟩ = sin θ |1b0q0r⟩ − cos θ |0b0q1r⟩ ,

|Φ2⟩ =
1√
2
(cos θ |1b0q0r⟩+ sin θ |0b0q1r⟩+ |0b1q0r⟩),

|Φ3⟩ =
1√
2
(cos θ |1b0q0r⟩+ sin θ |0b0q1r⟩ − |0b1q0r⟩),

(S30)

where tan θ = λ1/λ2. The corresponding eigenenergies are EH
1 = 0 and EH

2 = −EH
3 = λ, with λ =

√
λ2
1 + λ2

2.
In the basis {|Φj⟩} (j = 1, 2, 3), HNH can be expressed as

HNH = Hdg +Hndg, (S31)

where Hdg and Hndg represent the diagonal and off-diagonal parts respectively, given by

Hdg =

−iκ2 cos2 θ 0 0
0 −iκ4 sin2 θ 0
0 0 −iκ4 sin2 θ

 , (S32)

and

Hndg =

 0 i κ
4
√
2
sin (2θ) i κ

4
√
2
sin(2θ)

i κ
4
√
2
sin (2θ) 0 iκ4 sin2 θ

i κ
4
√
2
sin (2θ) iκ4 sin2 θ 0

 . (S33)

In the basis {|Φj⟩}, we can rewrite the total Hamiltonian as

H = H0 +Hndg, (S34)

where

H0 = HH +Hdg

=

 −iκ2 cos2 θ 0 0
0 λ− iκ4 sin2 θ 0
0 0 −λ− iκ4 sin2 θ

 .
(S35)

We note Hndg can be treated as a perturbation, which is explained as follow. On the edge with λ1 = λm, θ

changes from π/2 to π/4. For θ = π/2, the non-zero off-diagonal elements are Hndg
2,3 and Hndg

3,2 , which have a
magnitude of

∣∣∣Hndg
2,3

∣∣∣ = κ/4. The ratio of this magnitude to the gap between the last two eigenvalues of H0 is∣∣∣Hndg
2,3

∣∣∣ / ∣∣H0
2,2 −H0

3,3

∣∣ = κ/8λ ≃ 0.099. When θ changes to π/4,
∣∣∣Hndg

2,3

∣∣∣ / ∣∣H0
2,2 −H0

3,3

∣∣ monotonously decreases to

0.070, while
∣∣∣Hndg

1,2

∣∣∣ / ∣∣H0
1,1 −H0

2,2

∣∣ approximately increases to κ/(4
√
2λ) ≃ 0.099. On the edge with λ2 = λm, θ

changes from 0 to π/4. For θ = 0, all the off-diagonal elements are 0. When θ increases to π/4,
∣∣∣Hndg

1,2

∣∣∣ / ∣∣H0
1,1 −H0

2,2

∣∣
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and
∣∣∣Hndg

2,3

∣∣∣ / ∣∣H0
2,2 −H0

3,3

∣∣ approximately increase to 0.098 and 0.099, respectively. These results imply that the
magnitude of each off-diagonal element is much smaller than the corresponding energy gap, which ensures the per-
turbation condition. To the first order correction, the three eigenenergies correspond to the diagonal elements of H0.
This indicates that the real part of the first eigenenergy E1 is approximately zero, and the other two eigenenergies E2

and E3 have the same imaginary part but opposite real parts. Therefore, the three eigenenergies can be approximately
expressed as

E1 ≃ −iI1,

E2 ≃ R− iI2,

E3 ≃ −R− iI2,

(S36)

where R, I1, and I2 are real parameters, with I1 = κ
2 cos2 θ and I2 = κ

4 sin2 θ. Consequently, the eigenenergies are
determined by these three parameters {R, I1, I2}, which can be extracted through observation of the population
evolutions.

a b c d

FIG. S6: The population (a) and concurrence (b),(c),(d) evolutions for different values of λ1 when λ2 = λm, i.e., the edge from
(0, λm) to (λm, λm). From top to bottom, the values of λ1/2π are 0, 0.49, 0.58, 0.77, 0.83 and 1.01 MHz, respectively.

Figure S6(a) displays the measured population of the state |0b1q0r⟩ versus λ1 and t for the edge with λ2 = λm.
This population is obtained by discarding the outcome |0b0q0r⟩, and then renormalizing the probabilities of the three
single-excitation outcomes. The eigenenergies in terms of R and ∆I (= |I1 − I2|) versus λ1, extracted from this
population evolution, are displayed in Fig. S7(a). Figure S10(a) shows the measured |0b1q0r⟩-state population versus
λ2 and t for the edge with λ1 = λm. The extracted eigenenergies in terms of R and ∆I versus λ2 are displayed in
Fig. S7(b).

a b
R
ΔI

R,
 Δ

I

R
ΔI

R,
 Δ

I

FIG. S7: The extracted eigenenergies in terms of R and ∆I versus (a) λ1 and (b) λ2.
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S6 . CHARACTERIZATION OF THE NONCLASSICALITY

Along the edge with λ1 = 0, Rr remains in the ground state |0r⟩. The measured Q-Rb concurrence, versus λ2 and
t, is displayed in Fig. S4(b). The density matrices for the two eigenstates |Φ±⟩, extracted from the data measured
at λ2 = λm, are presented in Fig. S8. The concurrences corresponding to these two eigenstates are 0.997 and 0.997,
respectively. Fig. S5(b) shows the Q-Rr concurrence versus λ1 and t, measured for the edge λ2 = 0. The measured
density matrices, associated with the two eigenstates

∣∣Φ′
±
⟩

for λ1 = λm, are presented in Fig. S9, with the concurrences
0.971 and 0.971.

a b c d

FIG. S8: The density matrices ρ± for the two eigenstates |Φ±⟩. (a) The real parts of ρ−. (b) The imaginary parts of ρ−. (c)
The real parts of ρ+. (d) The imaginary parts of ρ+. The two numbers in each ket denote the excitation numbers of the qubit
and the bus resonator, respectively. The black frames denote the matrix elements of the ideal eigenstates.

a b c d

FIG. S9: The density matrices ρ′± for the two eigenstates |Φ′
±⟩. (a) The real parts of ρ′−. (b) The imaginary parts of ρ′−. (c)

The real parts of ρ′+. (d) The imaginary parts of ρ′+. The two numbers in each ket denote the excitation numbers of the qubit
and the readout resonator, respectively. The black frames denote the matrix elements of the ideal eigenstates.

Figures S6(b), (c), and (d) present the measured three pairwise concurrences Cb,q, Cq,r, and Cb,r versus λ1 and t
for the edge with λ2 = λm, where the subscript “b”, “q”, and “r” denote the bus resonator, Xmon qubit, and readout
resonator, respectively. Figure S10(b), (c), and (d) showcase the three pairwise concurrences versus λ2 and t for the
edge with λ1 = λm. These results show that the tripartite system evolves from the initial product state |0b1q0r⟩ to a
tripartite entangled state under the NH Hamiltonian when λ1 ̸= 0 and λ2 ̸= 0. For example, the three concurrences,
measured at the point with λ1 = λ2 = λm for the time 600 ns, are Cb,q = 0.50, Cq,r = 0.64, and Cb,r = 0.74,
respectively. These results imply that the corresponding eigenstates are highly-nonclassical states, featuring tripartite
quantum entanglement.

S7 . DERIVATION OF THE RESULTANT VECTOR

The resultant is a basic concept in algebra. It can be used to determine whether two polynomials have common
roots, defined as

RP1,P2
≡ detSP1,P2

, (S37)

where P1, P2 are two polynomials and SP1,P2
is their Sylvester matrix. Suppose

P1 = a0x
n + a1x

n−1 + ...+ an,

P2 = b0x
m + b1x

m−1 + ...+ bm,
(S38)
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a b c d

FIG. S10: The population (a) and concurrence (b),(c),(d) evolutions for different values of λ2 when λ1 = λm, i.e., the edge
from (λm, 0) to (λm, λm). From top to bottom, the values of λ2/2π are 1.04, 0.96, 0.88, 0.78, 0.62, 0.47, 0.39, 0.20, 0.15, 0.09,
0.03 and 0 MHz, respectively.

the corresponding resultant is a determinant of order m+ n,

RP1,P2
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1 a2 ... ... an 0 ... 0
0 a0 a1 ... ... an−1 an ... 0
...

...
...

...
...

...
...

...
...

0 0 ... 0 a0 ... ... ... an
b0 b1 b2 ... ... ... bm ... 0
0 b0 b1 ... ... ... bm−1 bm ...
...

...
...

...
...

...
...

...
...

0 ... 0 b0 b1 ... ... ... bm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (S39)

If RP1,P2 = 0, the polynomials P1 and P2 have common roots.
For a three-dimensional system governed by the Hamiltonian H, the characteristic polynomial P is given by

P = −(E − E1)(E − E2)(E − E3), (S40)

where E1, E2 and E3 are the three eigenvalues of H. The first- and second-order derivatives of P (E) are

P ′ = −[(E − E1)(E − E2) + (E − E2)(E − E3) + (E − E3)(E − E1)], (S41)

and

P ′′ = −2[(E − E1) + (E − E2) + (E − E3)]. (S42)

The two components of the resultant vector are given by

R1 = −RP,P ′ = (E1 − E2)
2(E1 − E3)

2(E2 − E3)
2 (S43)

and

R2 = iRP,P ′′ = 8(E1 + E3 − 2E2)(E1 + E2 − 2E3)(E2 + E3 − 2E1). (S44)

Therefore, we can calculate R1 and R2 at each point (λ1, λ2) of the parameter space with the measured eigenenergies.
The results are presented in Fig. 3 of the main text.

S8 . EXTRACTION OF THE WINDING NUMBER

The winding number, associated with each EP3, is calculated along a loop enclosing the EP3,

W =
1

2π

∑
j=1,2

∮
Cλ

F (R1,R2)dλj , (S45)



11

where the integrand is given by

F (R1,R2) =
1

∥R∥2

(
R1

∂R2

∂λj
−R2

∂R1

∂λj

)
. (S46)

The square-shaped loop chosen in our experiment encloses the EP3 in the first quadrant. Only one control parameter
changes along each edge of the loop. Thus the integral can be rewritten as

W =
1

2π

∫ λm

0

F (R1,R2)dλ1|λ2=0

+
1

2π

∫ λm

0

F (R1,R2)dλ2|λ1=λm

+
1

2π

∫ 0

λm

F (R1,R2)dλ1|λ2=λm

+
1

2π

∫ 0

λm

F (R1,R2)dλ2|λ1=0,

(S47)

where F (R1,R2) along the four edges are displayed in Fig. S11.
For simplicity, the square-shaped trajectory can be represented by the parametric equation

λ1 =
1

2
(1− cos θ| cos θ|+ sin θ| sin θ|) ,

λ2 =
1

2
(1− cos θ| cos θ| − sin θ| sin θ|) ,

(S48)

where θ ranges from 0 to 2π. In this case, the winding number in terms of θ is given by

W =
1

2π

∫ 2π

0

1

∥R∥2

(
R1

∂R2

∂θ
−R2

∂R1

∂θ

)
dθ. (S49)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
/

0

2

4

6

8

F(
1,

2)

FIG. S11: F (R1,R2) along the four edges. Areas with different background colors correspond to the four edges.

S9 . WINDING NUMBERS FOR DPS AND EP2S

To confirm that the winding number, defined by Eq.3 of the main text, is indeed uniquely associated with the
topology for the three-order EPs, we here calculate this quantity for the DPs (diabolical points) in both the two-
dimensional (2D) and 3D Hermitian system, as well as for the EP2s in a 2D NH system.
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We first consider the 2D Hermitian system with the Hamiltonian H = ωxσx+ωyσy, where ωx (ωy) is a real number.
This model admits two real eigenenergies, and one could study the DP at ωx = ωy = 0. The characteristic polynomial
of H is

P (E) = E2 − (ω2
x + ω2

y), (S50)

and its first-order derivative is

P ′(E) = 2E. (S51)

The second-order derivative of P (E) is a constant, P ′′(E) = 2. In order to construct the Sylvester matrix of P (E)
and P ′′(E), we can take P ′′(E) as a polynomial of degree 1 with a zero coefficient,

P ′′(E) = 2 + 0E. (S52)

In this way, we have

SP,P ′ =

 1 0 −(ω2
x + ω2

y)
2 0 0
0 2 0

 and SP,P ′′ =

 1 0 −(ω2
x + ω2

y)
0 2 0
0 0 2

 . (S53)

The corresponding resultant R1 = RP,P ′ ≡ detSP,P ′ = 1− 4(ω2
x + ω2

y) is a real-valued function, while R2 = RP,P ′′ ≡
detSP,P ′′ = 4 is a constant. Therefore, along a closed loop around DP in a 2D space spanned by ωx and ωy, the
trajectory of resultant vector R in the R1 − R2 plane is a line segment instead of a closed curve, which means the
winding number is always 0. We further note that the spectrum of any 2D Hermitian system has a similar structure,
so that the corresponding winding number is zero.

We now turn to the 3D Hermitian system, whose dynamics is described by the three-mode Hamiltonian of Eq. S1
with κ = 0. In the single-excitation subspace, the Hamiltonian takes the form

H =

 0 λ2 0
λ2 0 λ1

0 λ1 0

 , (S54)

with a DP at λ1 = λ2 = 0. The characteristic polynomial reads

P (E) = −E3 + (λ2
1 + λ2

2)E (S55)

and its derivatives are

P ′(E) = −3E2 + (λ2
1 + λ2

2), (S56)

P ′′(E) = −6E. (S57)

We then have

SP,P ′ =


−1 0 λ2

1 + λ2
2 0 0

0 −1 0 λ2
1 + λ2

2 0
−3 0 λ2

1 + λ2
2 0 0

0 −3 0 λ2
1 + λ2

2 0
0 0 −3 0 λ2

1 + λ2
2

 (S58)

and

SP,P ′′ =

 −1 0 λ2
1 + λ2

2 0
−6 0 0 0
0 −6 0 0
0 0 −6 0

 . (S59)

The corresponding resultants are

R1 = RP,P ′ ≡ detSP,P ′

= 4λ6
2 + 12λ4

2λ
2
1 + 12λ2

2λ
4
1 + 4λ6

1

(S60)
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and

R2 = RP,P ′′ ≡ detSP,P ′′

= 0.
(S61)

Similar to Example 1, R1 is a real-valued function, while R2 is a constant. Therefore, we reach the same conclusion:
the winding number defined by Eq.3 of the main text for the third-order DP is 0.

Finally, we consider the 2D dissipative system, with the NH Hamiltonian

H =

(
0 Jx − iJy

Jx + iJy −iγ/2

)
, (S62)

where γ is the dissipation rate and |J | =
√
J2
x + J2

y is the coupling strength. This Hamiltonian has two EP2s at
J = ±γ/4. The characteristic polynomial is

P (E) = E2 + iγ/2E − |J |2, (S63)

and its derivatives read

P ′(E) = 2E + iγ/2, (S64)

P ′′(E) = 2. (S65)

From this, we can obtain the Sylvester matrices

SP,P ′ =

 1 iγ2 −|J |2
2 iγ2 0
0 2 iγ2

 and SP,P ′′ =

 1 iγ2 −|J |2
0 2 0
0 0 2

 . (S66)

Subsequently, two components of the resultant vector R are given by

R1 = γ2/4− 4|J |2, (S67)

and

R2 = 4. (S68)

Consistent with Example 1 and 2, R1 is a real-valued function, while R2 is a constant. As a result, along a closed
loop around each EP2 in the Jx − Jy parameter space, the corresponding winding number of R is 0.

These results confirm the claim of Ref. 12 of the main text that thus-defined winding number serves as a homotopy
invariant, which uniquely characterizes the topology of EP3s.
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