
Supplementary Material

1 DATA PREPROCESSING

1.1 Train and Test Data Split

For each combination of inlet velocity and packing configuration, we generate a simulation in Ansys
Fluent using a detailed two-phase reacting flow model (see Prosperetti and Tryggvason (2009); Brackbill
et al. (1992); Panagakos and Shah (2023)) for further details). We use three types of data representations
in our machine learning models: a 3-parameter representation (θ, H, d), an image-based representation
of the CO2-capture column, and a graph representation derived from the CFD mesh used to generate
the simulations in Ansys Fluent. Specifically, we consider the following values: θ ∈ [30, 45, 65], H ∈
[10, 13, 14.8], and d ∈ [1.78, 2.68, 3.56]. To assess the impact of turbulent data, we consider three dataset
variants based on the inlet velocity: one using data with an inlet velocity of 0.01 m/s only, another with
data at 0.05 m/s only, and a third combining data from both inlet velocities. We divide each dataset into
training and test splits by applying Latin hypercube sampling (Loh, 1996) with the pyDOE package to
ensure sufficient coverage of the 3-parameter space in the training set. In the combined velocity dataset, we
include the inlet velocity value as an additional input feature for the model.

1.2 Data Preparation for CNN Models

To generate images based on packing geometry information, we create both gray-scale and color
images, each serving different purposes. The color image, with a shape of 128 x 128 x 3 (right image in
Figure S1(a)), uses three channels to distinctly represent various physical components of the column, with
each component differentiated by unique colors: column walls, packing, inlet, gas outlet, and pressure
outlet. This multi-channel approach provides a detailed visual distinction between different structures,
aiding in the analysis of complex geometries. In contrast, the gray-scale image, with a shape of 128 x 128
x 1 (left image in Figure S1(a)), simplifies the representation by converting all features into shades of black
and white. This approach eliminates distinctions between different types of boundaries and structures,
streamlining the information into a single channel. We have experimented with different resolutions for
these images and found that the 128 x 128 resolution offers the optimal balance. This resolution is large
enough for the model to capture essential geometric features while being compact enough to reduce
memory consumption. The 128 x 128 resolution provides sufficient detail for effective model learning
without unnecessary computational overhead, making it the best choice for our purposes so far.

1.3 Data Preparation for GNN Models

We construct a graph by starting with the mesh representation of the packed columns used in the CFD
simulations. To generate a triangular mesh for CFD from a given 2D geometry (see Figure S1(a)), the
domain is first discretized into small, non-overlapping triangles. This process involves defining the boundary
of the geometry and then filling the interior space with triangles, ensuring that the mesh accurately captures
the geometry’s shape and features. The quality of the mesh is crucial, as it influences the accuracy and
stability of the CFD simulations. Key factors such as mesh density and triangle quality are adjusted based

1

Supplementary Material

on the complexity of the geometry and the desired level of detail. Once the triangular mesh is generated
(see Figure S1(b)), it can be converted into a graph structure (see Figure S1(c)). In this conversion, each
mesh node (or vertex) becomes a graph node, and edges are created between nodes corresponding to the
sides of the triangles. This graph representation captures the connectivity of the mesh, enabling the use of
graph-based algorithms to analyze or simulate physical phenomena. Nodes in the graph represent different
locations in the column. To incorporate geometric information, we include each node’s position and one-hot
encoded type (represents different physical component) as node features, and we include relative positions
and distances between nodes as edge features. This approach allows our GNN-based models to effectively
capture the spatial relationships and geometric characteristics of the column’s packing geometry, scale to
arbitrary mesh sizes, and infer on novel column designs.

(a) (b) (c)

Figure S1. Illustration of the conversion process from CFD simulations to a graph structure. (a) Packing
structure, (b) close-up view of the generated CFD mesh, and (c) close-up view of the triangular mesh
structure and its conversion to a graph structure, where solid blue dots represent graph nodes and blue lines
represent graph edges.

2 MODEL DETAILS

2.1 Convolutional Neural Networks (CNNs)

Figure S2(a) illustrates the detailed structure of CNN. Each convolutional block consists of a convolutional
layer, a sigmoid activation function, and an average pooling operation. The convolutional layers use a
kernel and a sigmoid activation function to map spatial inputs to 2D feature maps, typically increasing
the number of channels. The first convolutional layer outputs 6 channels, and the second outputs 16. Each
pooling operation reduces dimensionality by a factor of 4 through spatial downsampling. The convolutional
block emits an output with shape given by (batch size, number of channel, height, width). To pass this
output to the dense block, the four-dimensional input is flattened into a two-dimensional format suitable
for fully-connected layers, where the first dimension indexes the minibatch, and the second represents
each example as a flat vector. LeNet’s dense block has three fully-connected layers with 120, 84, and 2
outputs, respectively. When handling data with varying inlet velocities, we include the inlet velocity as an
input and use an additional linear layer to generate a 128-dimensional velocity embedding, which is then
concatenated with the image embeddings just before the final output layer. To train the model, we use an
Adam optimizer with a learning rate starting at 1e-4 over 3000 training steps. We use a batch size of 4 for
data with consistent inlet velocity and 8 for data with different inlet velocity.

2

Supplementary Material

Image (128 x 128 x 1)

32 x 32 Conv (6)

2 x 2 MaxPool

Inlet Velocity

32 x 32 Conv (16)

FC (120)

FC (84)

FC (2)

Image (128 x 128 x 3)

FC (128)

Color

Combine

Concat

YesNo

Yes2 x 2 MaxPool

FC (2)

FC (64)

MaxPool

GNN Layer x 8

Node Input
(183,844 x 8)

Edge Input
(1,090,258 x 3)

FC (64) FC (64)

Inlet Velocity

FC (64)

Combine

Concat

Yes

(a) (b)

Figure S2. Illustration of (a) CNN structure and (b) GNN structure used in this paper.

2.2 Graph Neural Networks (GNNs)

On average, the graph of each configuration of θ, H , and d consists of 183,844 nodes and 1,090,258
edges. GNNs come in various architectures, each with unique approaches to aggregating and processing
information across graph structures. In the paper we consider three commonly used models: Graph
Convolutional Networks (GCN), Graph Attention Networks (GAT), and Graph Isomorphism Networks
(GIN). GCN uses spectral convolution, aggregating neighbor features with equal weight, capturing
structural information. GAT improves on this by applying attention mechanisms, assigning different
importance to neighbors, which allows it to focus on key nodes. GIN maximizes expressive power,
using a sum aggregation function to uniquely capture graph structures, making it as powerful as the
Weisfeiler-Lehman test.

Figure S2(b) illustrates the detailed structure of GNN. To preprocess the mesh data for GNN, we encode
node and edge features using a linear layer to obtain 64-dimensional latent feature embedding vectors,
which are then passed through 8 GNN layers to perform message-passing and obtain node embeddings.
We obtain the final graph embedding by applying max pooling to the node embeddings. Our experiments
indicate that only considering nodes related to packing geometries during the pooling process yields better
performance compared to pooling over all nodes. To incorporate inlet velocity as an input, we use an
additional linear layer to generate a 64-dimensional velocity embedding. We then concatenate the graph
and velocity embeddings and feed them through a 2-layer MLP to obtain an output prediction. To train the
model, we use an Adam optimizer with a learning rate decayed from 1e-3 to 1e-5 over 1000 training steps
and a batch size of 4.

Frontiers 3

Supplementary Material

2.3 Computation Time

Table S1 compares the computational performance of three methods: CFD, CNN, and GNN. For the
CNN and GNN models, training and testing were conducted on a single NVIDIA V100 16 GB GPU. There
is a significant difference in inference time between the CFD and machine learning models. CFD relies
on iteratively solving complex fluid dynamics equations, which is computationally intensive and time-
consuming. In contrast, CNN and GNN models, once trained, can make predictions almost instantaneously
by leveraging pre-learned data patterns. The CNN model is approximately 2.44 million times faster than the
CFD model, while the GNN model, despite having slightly longer inference times due to graph operations,
is still 534,000 times faster than CFD. This dramatic reduction in computational time and resource demand
underscores the potential of machine learning models in the post-combustion CO2 capture process.

Table S1. Computation Time Analysis For CFD, CNN and GNN.

TRAINING TIME INFERENCE TIME COMPUTATION RESOURCES

CFD N/A 157.4 h 160 CPUS

CNN 0.33 h 0.0067 s 1 GPU

GNN 0.18 h 1.06 s 1 GPU

3 RELATED WORKS

A post-combustion CO2-capture process using chemical absorption involves an absorber and desorber in a
closed loop. Flue gas with 10%–15% CO2 enters the absorber from the bottom, while the absorbent flows
downward, capturing CO2. The CO2-lean stream exits the absorber’s top, while the CO2-rich stream is sent
to the desorber, where heat from a reboiler regenerates the absorbent. The regenerated absorbent returns to
the absorber for further capture, and the pure CO2 is collected after cooling. Trays or packing inside the
columns ensure sufficient contact area (Wang et al., 2017).

3.1 Machine Learning for Carbon Capture System

A key challenge for large-scale CO2-capture plants is the high energy demand, underscoring the need for
a tool to model and optimize the process, reducing energy costs and maximizing capture rates. Traditional
mechanistic models require extensive knowledge and are computationally intensive due to the process’s
nonlinear nature (Sipöcz et al., 2011; Li et al., 2017). In contrast, machine learning (ML) offers a data-driven
approach that is less complex, computationally efficient, and can achieve accurate results using readily
available process data. In Sipöcz et al. (2011), the authors employ a fully connected feed-forward network
with one hidden layer to predict specific reboiler duty and solvent rich load, using the physical properties
of the inlet flue gas as inputs. To predict the CO2 production rate and capture level, (Li et al., 2015, 2017)
employ bootstrap aggregated extreme learning machine (ELM) algorithms, while (Li et al., 2018) use a
deep belief network (DBN) to extract a deep hierarchical representation of the training data. However,
these studies only account for the influence of operating conditions (e.g., gas and solvent properties) on
CO2 capture efficiency, overlooking the impact of packing geometries. Additionally, none of the works
comprehensively compare the performance of different ML methods. In contrast, this work aims to evaluate
both packing geometries and operating conditions across various ML models. The findings offer valuable

4

Supplementary Material

insights for selecting suitable ML algorithms and highlight the potential of these models in identifying
optimal packing geometries and operating conditions.

3.2 GNNs for Dynamic System Prediction

The application of Graph Neural Networks (GNN) for dynamic system prediction is an emerging
research area in scientific machine learning due to their versatility and effectiveness Belbute-Peres et al.
(2020); Rubanova et al. (2021); Mrowca et al. (2018). Unlike image-based learning methods such as
Convolutional Neural Networks (CNNs) Um et al. (2018); Ummenhofer et al. (2019), GNNs can directly
handle unstructured simulation meshes, making them well-suited for simulating systems with complex
domain boundaries while ensuring spatial invariance and locality Battaglia et al. (2018); Wu et al. (2020).
The initial application of GNNs to physics-based simulations focused on deformable solids and fluids,
with MeshGraphNets (MGN) being a pioneering work in this area Pfaff et al. (2020). MGN employs a
message passing network to learn the dynamics of physical systems. Building on this foundation, various
MGN variants have been proposed: integrating GNNs with Physics-Informed Neural Networks (PINNs) ?,
enabling long-term predictions by combining GraphAutoEncoder (GAE) and Transformer models Han
et al. (2022), directly predicting steady states through multi-layer readouts Harsch and Riedelbauch (2021),
and accelerating fine-level simulations by using up-sampled coarse results inferred by GNNs Belbute-Peres
et al. (2020).

DATA AVAILABILITY STATEMENT

Code and datasets for this study are available upon request.

REFERENCES

Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi, V., Malinowski, M., et al.
(2018). Relational inductive biases, deep learning, and graph networks. arxiv 2018. arXiv preprint
arXiv:1806.01261

Belbute-Peres, F. D. A., Economon, T., and Kolter, Z. (2020). Combining differentiable pde solvers
and graph neural networks for fluid flow prediction. In international conference on machine learning
(PMLR), 2402–2411

Brackbill, J. U., Kothe, D. B., and Zemach, C. (1992). A continuum method for modeling surface tension.
Journal of computational physics 100, 335–354

Han, X., Gao, H., Pfaff, T., Wang, J.-X., and Liu, L.-P. (2022). Predicting physics in mesh-reduced space
with temporal attention. arXiv preprint arXiv:2201.09113

Harsch, L. and Riedelbauch, S. (2021). Direct prediction of steady-state flow fields in meshed domain with
graph networks. arXiv preprint arXiv:2105.02575

Li, F., Zhang, J., Oko, E., and Wang, M. (2015). Modelling of a post-combustion co2 capture process using
neural networks. Fuel 151, 156–163

Li, F., Zhang, J., Oko, E., and Wang, M. (2017). Modelling of a post-combustion co 2 capture process
using extreme learning machine. International Journal of Coal Science & Technology 4, 33–40

Li, F., Zhang, J., Shang, C., Huang, D., Oko, E., and Wang, M. (2018). Modelling of a post-combustion
co2 capture process using deep belief network. Applied Thermal Engineering 130, 997–1003

Loh, W.-L. (1996). On latin hypercube sampling. The annals of statistics 24, 2058–2080
Mrowca, D., Zhuang, C., Wang, E., Haber, N., Fei-Fei, L. F., Tenenbaum, J., et al. (2018). Flexible neural

representation for physics prediction. Advances in neural information processing systems 31

Frontiers 5

Supplementary Material

Panagakos, G. and Shah, Y. G. (2023). A Computational Investigation of the Effect of Packing Structural
Features on the Performance of Carbon Capture for Solvent-Based Post-Combustion Applications. Tech.
rep., National Energy Technology Laboratory (NETL), Pittsburgh, PA

Pfaff, T., Fortunato, M., Sanchez-Gonzalez, A., and Battaglia, P. W. (2020). Learning mesh-based
simulation with graph networks. arXiv preprint arXiv:2010.03409

Prosperetti, A. and Tryggvason, G. (2009). Computational methods for multiphase flow (Cambridge
university press)

Rubanova, Y., Sanchez-Gonzalez, A., Pfaff, T., and Battaglia, P. (2021). Constraint-based graph network
simulator. arXiv preprint arXiv:2112.09161

Sipöcz, N., Tobiesen, F. A., and Assadi, M. (2011). The use of artificial neural network models for co2
capture plants. Applied Energy 88, 2368–2376

Um, K., Hu, X., and Thuerey, N. (2018). Liquid splash modeling with neural networks. In Computer
Graphics Forum (Wiley Online Library), vol. 37, 171–182

Ummenhofer, B., Prantl, L., Thuerey, N., and Koltun, V. (2019). Lagrangian fluid simulation with
continuous convolutions. In International Conference on Learning Representations

Wang, Y., Zhao, L., Otto, A., Robinius, M., and Stolten, D. (2017). A review of post-combustion co2
capture technologies from coal-fired power plants. Energy Procedia 114, 650–665

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., and Philip, S. Y. (2020). A comprehensive survey on graph
neural networks. IEEE transactions on neural networks and learning systems 32, 4–24

6

	Data Preprocessing
	Train and Test Data Split
	Data Preparation for CNN Models
	Data Preparation for GNN Models

	Model Details
	Convolutional Neural Networks (CNNs)
	Graph Neural Networks (GNNs)
	Computation Time

	Related Works
	Machine Learning for Carbon Capture System
	GNNs for Dynamic System Prediction

