Title:

Integrating Computational Modeling and Experimental Validation to Unveil Tyrosinase

Inhibition Mechanisms of Flavonoids from Alhagi graecorum

Authors and affiliations:

Reem S. Alruhaimi¹, Ayman M. Mahmoud^{2,3}, Sulaiman M. Alnasser⁴, Mohammed F. Alotaibi⁵, Ibrahim Elbagory⁶, Ashraf A. El-Bassuony⁷, Al Mokhtar Lamsabhi^{8,9}, Emadeldin M. Kamel⁷*

¹Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia.

²Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK.

³Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt.

⁴Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia.

⁵Physiology Department, College of Medicine, King Saud University, Riyadh, 11461, Saudi Arabia

⁶Department of Pharmaceutics, Faculty of Pharmacy, Northern Border University, Rafha 76321, Saudi Arabia.

⁷Organic Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt.

⁸Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC Cantoblanco, Madrid 28049, Spain.

⁹Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid 28049, Spain.

*Corresponding author:

Emadeldin M. Kamel

Organic Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt.

E-mail: emad.abdelhameed@science.bsu.edu.eg

Content

Cartesian coordinates of DFT optimized flavonoids at the B3LYP level of theory	.2
Figure S1. DFT optimized geometries of isolated flavonoids at the B3LYP level of theory1	12
Figure S2. ¹ H-NMR (DMSO-d ₆) spectrum of compound 11	2
Figure S3. ¹³ C-NMR (DMSO-d ₆) spectrum of compound 11	3
Figure S4. ¹ H-NMR (DMSO-d ₆) spectrum of compound 21	3
Figure S5. ¹³ C-NMR (DMSO-d ₆) spectrum of compound 21	4
Figure S6. ¹ H-NMR (DMSO-d ₆) spectrum of compound 31	4
Figure S7. ¹³ C-NMR (DMSO-d ₆) spectrum of compound 31	5
Figure S8. ¹ H-NMR (DMSO-d ₆) spectrum of compound 41	5
Figure S9. ¹³ C-NMR (DMSO-d ₆) spectrum of compound 41	6
Figure S10. ¹ H-NMR (DMSO-d ₆) spectrum of compound 51	6
Figure S11. 13 C-NMR (DMSO-d ₆) spectrum of compound 51	17

Cartesian coordinates of DFT optimized flavonoids at the B3LYP level of theory.

Compound 1

С	0.56751 3.56298 0.34468
С	0.97179 2.22614 0.35112
С	2.33967 1.97828 0.2584
С	3.29344 3.00988 0.14971
С	2.85188 4.36216 0.13428
С	1.49105 4.62691 0.24402
С	4.70226 2.7053 0.06055
С	5.04373 1.28828 0.08049
С	4.07112 0.32919 0.19403
С	4.28559 -1.12941 0.22449
С	5.46375 -1.67851 0.75161
С	3.28977 -1.99468 -0.27663
С	5.6604 -3.06057 0.76981
Н	6.23096 -1.02701 1.14675
С	3.49241 -3.36726 -0.27243
Н	2.36139 -1.60414 -0.67711
С	4.68357 -3.90654 0.25557
Н	6.57718 -3.4622 1.18697
0	2.75063 0.66907 0.28366
0	5.57839 3.60042 -0.03436
0	2.54847 -4.21287 -0.78434
Н	2.90987 -5.11295 -0.69762
0	4.74556 -5.27594 0.19377
0	6.36189 0.92023 0.04341
0	3.73296 5.37256 0.02339
Н	0.23201 1.43597 0.43302

0	-0.74612	3.86874	0.43064
Н	-0.79241	4.84277	0.36158
Н	4.63444	4.93961	-0.0231
Н	1.14293	5.63866	0.25222
Н	5.66419	-5.55444	0.1812
С	7.1851	2.08362	0.16064
С	7.36946	3.06611	1.11142
0	8.01902	2.31389	-0.9344
С	8.37523	3.96661	0.58765
С	8.73899	3.47447	-0.64889
Н	9.78539	3.25101	-0.64751
С	8.44532	4.53486	-1.72636
Н	7.9362	5.36408	-1.28129
Н	7.83001	4.10664	-2.48986
0	9.67535	4.98357	-2.30131
Н	9.51178	5.75901	-2.8431
Н	7.96834	4.95091	0.48521
Н	7.70937	2.63019	2.02757
Н	6.37802	2.65647	-0.246
0	9.5099	3.99302	1.45754
Н	9.74352	4.90364	1.65195
0	6.14539	3.77258	1.32922
Н	6.20593	4.27453	2.1453
Compound 2			
С	0.56751	3.56298	0.34468
С	0.97179	2.22614	0.35112
С	2.33967	1.97828	0.2584
С	3.29344	3.00988	0.14971

С	2.85188	4.36216	0.13428
С	1.49105	4.62691	0.24402
С	4.70226	2.7053	0.06055
С	5.04373	1.28828	0.08049
С	4.07112	0.32919	0.19403
С	4.28559	-1.12941	0.22449
С	5.46375	-1.67851	0.75161
С	3.28977	-1.99468	-0.27663
С	5.6604	-3.06057	0.76981
Н	6.23096	-1.02701	1.14675
С	3.49241	-3.36726	-0.27243
Н	2.36139	-1.60414	-0.67711
С	4.68357	-3.90654	0.25557
Н	6.57718	-3.4622	1.18697
0	2.75063	0.66907	0.28366
0	5.57839	3.60042	-0.03436
0	2.54847	-4.21287	-0.78434
Н	2.90987	-5.11295	-0.69762
0	4.74556	-5.27594	0.19377
0	6.36189	0.92023	0.04341
0	3.73296	5.37256	0.02339
Н	0.23201	1.43597	0.43302
0	-0.74612	3.86874	0.43064
Н	-0.79241	4.84277	0.36158
Н	4.63444	4.93961	-0.0231
Н	1.14293	5.63866	0.25222
Н	5.66419	-5.55444	0.1812
С	7.1851	2.08362	0.16064

С	8.05663 2.21558 -1.07207
Н	6.50472 2.97244 0.23314
С	8.97356 3.16213 1.53978
С	9.00531 3.39073 -0.95113
Н	7.40925 2.3472 -1.97762
С	9.84401 3.2961 0.30708
Н	8.38319 4.10509 1.68349
Н	8.41584 4.34505 -0.93493
Н	10.52659 2.40888 0.23447
0	8.02432 1.98749 1.41851
0	10.66464 4.46128 0.42455
Н	11.55674 4.25537 0.13584
0	9.86182 3.43428 -2.09542
Н	9.93631 4.3397 -2.40567
0	8.80947 1.0133 -1.25276
Н	9.10457 0.95393 -2.16435
С	9.86408 2.97973 2.78289
Н	10.62119 2.25258 2.57568
Н	9.26531 2.64691 3.60484
0	10.47937 4.22697 3.11563
Н	10.97901 4.13073 3.92969
Compound 3	
С	0.56751 3.56298 0.34468
С	0.97179 2.22614 0.35112
С	2.33967 1.97828 0.2584
С	3.29344 3.00988 0.14971
С	2.85188 4.36216 0.13428
С	1.49105 4.62691 0.24402

С	4.70226	2.7053	0.06055
С	5.04373	1.28828	0.08049
С	4.07112	0.32919	0.19403
С	4.28559	-1.12941	0.22449
С	5.46375	-1.67851	0.75161
С	3.28977	-1.99468	-0.27663
С	5.6604	-3.06057	0.76981
Н	6.23096	-1.02701	1.14675
С	3.49241	-3.36726	-0.27243
Н	2.36139	-1.60414	-0.67711
С	4.68357	-3.90654	0.25557
Н	6.57718	-3.4622	1.18697
0	2.75063	0.66907	0.28366
0	5.57839	3.60042	-0.03436
0	2.54847	-4.21287	-0.78434
0	4.74556	-5.27594	0.19377
0	6.36189	0.92023	0.04341
0	3.73296	5.37256	0.02339
Н	0.23201	1.43597	0.43302
0	-0.74612	3.86874	0.43064
Н	-0.79241	4.84277	0.36158
Н	4.63444	4.93961	-0.0231
Н	1.14293	5.63866	0.25222
Н	5.66419	-5.55444	0.1812
С	7.1851	2.08362	0.16064
С	7.36946	3.06611	1.11142
0	8.01902	2.31389	-0.9344
С	8.37523	3.96661	0.58765

С	8.73899	3.47447 -0.64889
Н	9.78539	3.25101 -0.64751
С	8.44532	4.53486 -1.72636
Н	7.9362	5.36408 -1.28129
Н	7.83001	4.10664 -2.48986
0	9.67535	4.98357 -2.30131
Н	9.51178	5.75901 -2.8431
Н	7.96834	4.95091 0.48521
Н	7.70937	2.63019 2.02757
Н	6.37802	2.65647 -0.246
0	9.5099	3.99302 1.45754
Н	9.74352	4.90364 1.65195
0	6.14539	3.77258 1.32922
Н	6.20593	4.27453 2.1453
С	3.07918	-5.53462 -0.65699
Н	4.00461	-5.60028 -1.19006
Н	3.24679	-5.75358 0.37687
Н	2.38325	-6.239 -1.06248
Compound 4		

С	0.56751	3.56298	0.34468
С	0.97179	2.22614	0.35112
С	2.33967	1.97828	0.2584
С	3.29344	3.00988	0.14971
С	2.85188	4.36216	0.13428
С	1.49105	4.62691	0.24402
С	4.70226	2.7053	0.06055
С	5.04373	1.28828	0.08049
С	4.07112	0.32919	0.19403

С	4.28559 -1.12941 0.22449
С	5.46375 -1.67851 0.75161
С	3.28977 -1.99468 -0.27663
С	5.6604 -3.06057 0.76981
Н	6.23096 -1.02701 1.14675
С	3.49241 -3.36726 -0.27243
Н	2.36139 -1.60414 -0.67711
С	4.68357 -3.90654 0.25557
Н	6.57718 -3.4622 1.18697
0	2.75063 0.66907 0.28366
0	5.57839 3.60042 -0.03436
0	2.54847 -4.21287 -0.78434
Н	2.90987 -5.11295 -0.69762
0	4.74556 -5.27594 0.19377
0	6.36189 0.92023 0.04341
0	3.73296 5.37256 0.02339
Н	0.23201 1.43597 0.43302
0	-0.74612 3.86874 0.43064
Н	-0.79241 4.84277 0.36158
Н	4.63444 4.93961 -0.0231
Н	1.14293 5.63866 0.25222
С	7.1851 2.08362 0.16064
С	8.05663 2.21558 -1.07207
Н	6.50472 2.97244 0.23314
С	8.97356 3.16213 1.53978
С	9.00531 3.39073 -0.95113
Н	7.40925 2.3472 -1.97762
С	9.84401 3.2961 0.30708

Н		8.38319 4.10509 1.68349
Н		8.41584 4.34505 -0.93493
Н		10.52659 2.40888 0.23447
0		8.02432 1.98749 1.41851
0		10.66464 4.46128 0.42455
Н		11.55674 4.25537 0.13584
0		9.86182 3.43428 -2.09542
Н		9.93631 4.3397 -2.40567
0		8.80947 1.0133 -1.25276
Н		9.10457 0.95393 -2.16435
С		9.86408 2.97973 2.78289
Н		10.62119 2.25258 2.57568
Н		9.26531 2.64691 3.60484
Н		10.32447 3.91298 3.03186
С		6.11393 -5.69079 0.17505
Н		6.56719 -5.46773 1.11829
Н		6.1648 -6.74433 -0.00484
Н		6.6337 -5.17073 -0.60231
C	1 –	

Compound 5

С	0.56751	3.56298	0.34468
С	0.97179	2.22614	0.35112
С	2.33967	1.97828	0.2584
С	3.29344	3.00988	0.14971
С	2.85188	4.36216	0.13428
С	1.49105	4.62691	0.24402
С	4.70226	2.7053	0.06055
С	5.04373	1.28828	0.08049
С	4.07112	0.32919	0.19403

С	4.28559 -1.12941 0.22449
С	5.46375 -1.67851 0.75161
С	3.28977 -1.99468 -0.27663
С	5.6604 -3.06057 0.76981
Н	6.23096 -1.02701 1.14675
С	3.49241 -3.36726 -0.27243
Н	2.36139 -1.60414 -0.67711
С	4.68357 -3.90654 0.25557
Н	6.57718 -3.4622 1.18697
0	2.75063 0.66907 0.28366
0	5.57839 3.60042 -0.03436
0	2.54847 -4.21287 -0.78434
0	4.74556 -5.27594 0.19377
0	3.73296 5.37256 0.02339
Н	0.23201 1.43597 0.43302
0	-0.74612 3.86874 0.43064
Н	4.63444 4.93961 -0.0231
Н	1.14293 5.63866 0.25222
Н	5.66419 -5.55444 0.1812
С	3.07918 -5.53462 -0.65699
Н	4.00461 -5.60028 -1.19006
Н	3.24679 -5.75358 0.37687
Н	2.38325 -6.239 -1.06248
Н	6.06924 0.99235 0.00536
С	-0.81383 5.29356 0.32962
С	-1.63667 5.67833 -0.88308
Н	0.23429 5.67313 0.20499
С	-1.8043 7.18088 -0.98216

Н	-2.6465	5.19438	-0.81679
С	-1.57571	7.36791	1.50191
С	-2.39731	7.75368	0.28882
Н	-0.80619	7.65534	-1.17461
Н	-0.56548	7.85128	1.4366
Н	-3.44641	7.37664	0.41363
0	-1.40884	5.86525	1.60071
С	-2.25946	7.89564	2.7769
Н	-1.64984	7.67177	3.62729
Н	-3.21468	7.42684	2.88948
0	-2.43247	9.31139	2.67387
Н	-2.86888	9.63922	3.46361
0	-2.46191	9.17862	0.1874
Н	-3.25816	9.43041	-0.28608
0	-2.65095	7.4965	-2.09052
Н	-2.19716	8.10619	-2.677
0	-1.0023	5.18827	-2.06728
Н	-1.65742	5.0808	-2.76072

Figure S1. DFT optimized geometries of isolated flavonoids at the B3LYP level of theory.

Figure S2. ¹H-NMR (CD₃OD-d₆) spectrum of compound **1**.

Figure S3. ¹³C-NMR (CD₃OD-d₆)) spectrum of compound **1**.

Figure S4. ¹H-NMR (DMSO-d₆) spectrum of compound **2**.

Figure S5. ¹³C-NMR (DMSO-d₆) spectrum of compound **2**.

Figure S6. ¹H-NMR (CD₃OD-d₆) spectrum of compound **3**.

Figure S7. ¹³C-NMR (CD₃OD-d₆) spectrum of compound **3**.

Figure S8. ¹H-NMR (DMSO-d₆) spectrum of compound **4**.

Figure S9. ¹³C-NMR (DMSO-d₆) spectrum of compound **4**.

Figure S10. ¹H-NMR (DMSO-d₆) spectrum of compound **5**.

Figure S11. 13 C-NMR (DMSO-d₆) spectrum of compound **5**.