pH dependence of inositol 1,4,5-trisphosphate-induced Ca²⁺ release in permeabilized smooth muscle cells of the guinea-pig

Michitaka Tsukioka, Masamitsu Iino* and Makoto Endo

Department of Pharmacology, Faculty of Medicine, the University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113, Japan

- 1. The dependence on pH of inositol 1,4,5-trisphosphate (IP₃)-induced Ca^{2+} release was studied in saponin-skinned smooth muscle cells from guinea-pig portal vein, using the indicator fura-2 to monitor Ca^{2+} release.
- 2. Increasing pH between 6.7 and 7.3 enhanced the rate of IP_3 -induced Ca^{2+} release at all the Ca^{2+} concentrations above 30 nm without changing the bell-shaped dependence of the Ca^{2+} release rate on Ca^{2+} concentration with a peak near 300 nm.
- 3. The ascending limb of the biphasic Ca^{2+} dependence was shifted slightly toward the lower Ca^{2+} concentration at pH 7·3, suggesting an increase in the Ca^{2+} sensitivity of $IP_{3^{-1}}$ induced Ca^{2+} release at the higher pH.
- 4. With the elevation in pH from 6.7 to 7.3 at 100 nm Ca²⁺, about 7-fold higher IP₃ concentration was required to release half of the Ca²⁺ in the store within 15 s. This pH-dependent change in the IP₃ sensitivity was smaller at 1 μ m Ca²⁺ and was indiscernible in the absence of Ca²⁺.
- 5. These results suggest that H^+ may inhibit binding of IP_3 and Ca^{2+} to the modulator sites of the Ca^{2+} release mechanism. However, these effects on the binding sites may not fully explain the complex effect of pH, and there may be pH-dependent step(s) involved in the gating mechanism of IP_3 channels. The present study demonstrates the importance of pH as a modulator of IP_3 -induced Ca^{2+} release.

In agonist-induced contractions of vascular as well as other smooth muscle cells, inositol 1,4,5-trisphosphate (IP₃)induced Ca²⁺ release from the intracellular Ca²⁺ store may play an important role in the regulation of cytoplasmic Ca²⁺ concentration (Suematsu, Hirata, Hashimoto & Kuriyama, 1984; Somlyo, Bond, Somlyo & Scarpa, 1985). IP_3 is a soluble product of the hydrolysis of phosphatidylinositol 4,5-bisphosphate by phospholipase C, which is activated by G-protein-coupled agonist receptors (Berridge, 1993). IP₃ then diffuses inside the cell to bind to IP_3 receptors which are present in the non-mitochondrial membrane-bound Ca²⁺ stores and function as Ca²⁺ release channels (Ferris, Huganir, Supattapone & Snyder, 1989). We now know that IP_3 receptors have structural similarities to caffeine-sensitive Ca²⁺-induced Ca²⁺ release channels, or ryanodine receptors, which are also present in the intracellular Ca²⁺ stores. Not only are both channels formed by tetramers of protein molecules (Saito, Inui, Radermacher, Frank & Fleischer, 1988; Lai, Erickson, Rousseau, Liu & Meissner, 1988; Chadwick, Saito & Fleischer, 1990), but there are several stretches of homologous amino acid sequence in the two Ca²⁺ release channel proteins (Furuichi, Yoshioka, Miyawaki, Wada, Maeda & Mikoshiba, 1989; Mignery, Newton, Archer & Südhof, 1990). Furthermore, the two channels share certain functional properties. Both are dependent on Ca^{2+} concentration in a biphasic manner, although the range of effective concentration is lower for the IP₃ receptor channels (Endo, 1985; Iino, 1990; Bezprozvanny, Watras & Ehrlich, 1991). Both Ca^{2+} release mechanisms are enhanced by adenine nucleotides (Endo, 1985; Ferris, Huganir & Snyder, 1990; Iino, 1991). Thus, IP₃- and Ca^{2+} -induced Ca^{2+} release mechanisms are closely related, and are coexpressed in smooth and cardiac muscle cells (Yamazawa, Iino & Endo, 1992; Kijima, Saito, Jetton, Magnuson & Fleischer, 1993) and in nerve cells (Walton *et al.* 1991).

It has been reported that binding of IP_3 to its receptors is pH dependent, and that the binding increases with the rise in pH (Worley, Baraban, Supattapone, Wilson & Snyder, 1987; Guillemette & Segui, 1988; Joseph, Rice & Williamson, 1989). It is also known that Ca^{2+} -induced Ca^{2+} release is sensitive to pH in such a way that an increase in pH sensitizes the channels to Ca^{2+} (Endo, 1985; Iino, 1989). On the basis of these findings and analogy, one might expect pH to be a modulator of IP_3 -induced Ca^{2+} release. Although there have been several reports on the effect of pH on IP₃-induced Ca²⁺ release (Brass & Joseph, 1985; Clapper & Lee, 1985; Guillemette & Segui, 1988; Joseph et al. 1989), important modulating factors other than pH were not controlled during the Ca²⁺ release. Therefore, the effect of pH on the IP₃-induced Ca²⁺ release has not been quantitatively analysed. Since pH has profound effects on smooth muscle contraction (Wray, 1988), pH dependence of ${\rm IP}_3$ -induced ${\rm Ca}^{2+}$ release may be important for the regulation of the intracellular Ca²⁺ concentration in smooth muscle cells. We therefore studied the effect of pH on the rate of IP₃-induced Ca²⁺ release in permeabilized smooth muscle cells while keeping other modulating factors constant. The results indicate that pH is one of the important modulators and that IP₃-induced Ca²⁺ release is enhanced with increase in pH around neutral pH.

METHODS

Muscle preparation and experimental set-up

Thin smooth muscle strips (~70 μ m thick, 200-300 μ m wide, 3-5 mm long) were dissected from guinea-pig portal vein in a physiological salt solution containing (mM): NaCl, 150; KCl, 4; CaCl₂, 2; MgCl₂, 1; Hepes (N-2-hydroxyethylpiperazine-N'ethanesulphonic acid), 5; pH 7·4. The guinea-pigs were killed by concussion and subsequent exsanguination. The muscle strips were tied with silk filaments at both ends to stainlesssteel wires (100 μ m in diameter). After treatment with saponin (50 μ g ml⁻¹) for 35 min in a relaxing solution (solution 1, Table 1), fibre bundles attached to the metal wire were placed securely in a glass capillary cuvette (i.d., 400 μ m; length, 32 mm). To study the IP₃-induced Ca²⁺ release mechanism independently of the Ca²⁺-induced Ca²⁺ release, fibre bundles were treated with 30 μ m ryanodine in the presence of 45 mm caffeine before each experiment to remove the function of the compartment with the Ca²⁺-induced Ca²⁺ release mechanism that constitutes ~ 20 % of the total IP₃-sensitive store in this smooth muscle (Iino, 1991).

The experimental set-up uses a computer-controlled valve and pump system to change solutions in the cuvette and measures the fluorescence intensity at 510 nm, with excitation at 340 nm, of the Ca²⁺ indicator dye fura-2 (Grynkiewicz, Poenie & Tsien, 1985) bathing the preparation. Details of the set-up have been described previously (Iino, 1989). Experiments were carried out at room temperature (20–23 °C).

Experimental solutions

Table 1 shows the constituents of the solutions. Experimental solutions of various Ca^{2+} concentrations ($pCa = -\log[Ca^{2+}]$) were prepared by mixing two solutions, one containing 10 mM EGTA (ethylene glycol-bis (β -aminoethylether) N, N, N', N'-tetraacetic acid) or HEEDTA (N-hydroxyethylethlene diamine-N, N', N'-triacetic acid) without Ca^{2+} (solution 9) and the other both 10 mM EGTA (or HEEDTA) and 10 mM Ca^{2+} (solution 10) so that the total Ca^{2+} concentration had the values in Table 2. Ionic constituents were computed by solving multi-equilibrium equations using the binding constants compiled by Martell & Smith (1974–1989). pK_d (-log of the apparent dissociation constant) values thus obtained for Ca^{2+} -EGTA and Ca^{2+} -HEEDTA were 6·39 and 5·24, respectively, at 20 °C, pH 7·0.

Experimental protocol

The following protocol was used to study the Ca²⁺ release mechanism.

Procedure 1. To load the Ca²⁺ store with a fixed amount of Ca²⁺, skinned fibres were incubated with 1 μ M Ca²⁺ (solution 2) for 180 s (loading). Both Ca²⁺ and ATP were then washed with solution 6 for 120 s before Mg²⁺ was washed out by solution 8 (at pH 7.0 for 60 s).

Procedure 2. Following the change of pH to a desired value (solution 8 for 15 s), a test solution (Table 2) containing $0-30 \ \mu \text{m IP}_3$ was applied in the absence of MgATP and hence in the absence of simultaneous Ca²⁺ uptake (test procedure).

		-	-					
Q-lasting	EGTA or	Ca-EGTA or	MaMa	K Ma	۵۳۵	AMD	M~2+	" П
Solution	HEEDIA*	Ca-HEEDIA+	mgms ₂	L MS	AIL	AME	мg	pm
(1) G1	1	0	5.54	108.6	4·76	0	1.2	7.0
(2) Loading	0.298	0.702	5.51	108.6	4·76	0	1.2	7.0
(3) GORMg0	0	0	0	142.1	0	0	0	7.0
(4) Assay	0	0	0	84.1	0	25	0	7.0
(5) Ryanodine	0.171	0.829	0	84.1	0	22.5	0	7.0
(6) GIR	1	0	1.54	134·5	0	0	1.2	7.0
(7) G10R†	10	0	1.90	107.1	0	0	1.5	7.0
(8) G1RMg0†	1	0	0	139.0	0	0	0	7.0
(9) Test Ca ²⁺ free	10 or 10*	0	0	(see Table 2)	0	0	0	6.7-7.3
(10) Test Ca ²⁺ plus	0	10 or 10*	0	(see Table 2)	0	0	0	6.7-7.3

Table 1. Composition of experimental solutions (mm)

All solutions contained 20 mm Pipes (piperazine-N-N'-bis(2-ethanesulphonic acid)) and 20 mm NaN₃. Solution 4 (Assay) contained 10 μ m IP₃. Solution 5 (Ryanodine) contained 45 mm caffeine and 30 μ m ryanodine. † Representative composition: the pH of these solutions was changed between 6.7 and 7.3, and HEEDTA was used instead of EGTA when necessary (see text). pH was adjusted at 20 °C. Ms, methanesulphonate. Mg²⁺ concentration was estimated by solving multi-equilibrium equations (see text). Total ionic strength was adjusted to 200 mm. Fura-2 and/or IP₃ were added to appropriate solutions (see text).

Ca ²⁺ free	Ca ²⁺ plus
(soln 9)	(soln 10)
111.8	118.3
111.8	112·0
104.6	105.2
119.6	137.6
112.7	131.4
105.6	124.8
	(soln 9) 111.8 111.8 104.6 119.6 112.7 105.6

Table 2. Total Ca²⁺ and KMs concentrations in test solutions

Test solutions with various pCa values were prepared by mixing solutions 9 and 10 (Table 1 with KMs concentrations shown in the right-hand columns of this table) in such a way that the total Ca^{2+} concentrations were equal to the values shown here.

The Ca²⁺ concentration of the test solutions was strongly buffered by 10 mm EGTA or HEEDTA to prevent Ca²⁺ concentration change due to Ca²⁺ release. Then, IP₃ and Ca²⁺ were washed out by solution 7 at the same pH before pH was brought back to 7.0 and the EGTA concentration was lowered to 1 mm (solution 6). When we used HEEDTA as the Ca²⁺ buffer, solutions 8 and 7 also had HEEDTA instead of EGTA.

Procedure 3. Then 35–40 μ M fura-2 was introduced for 60 s in solution 6, and EGTA was removed in the continued presence of fura-2 for 60 s (solution 3). Finally, the remaining Ca²⁺ in the store was fully released by 10 μ M IP₃, and the fluorescence intensity change of fura-2 was measured at pH 7.0 (assay, solution 4). The concentration of IP₃ in the assay solution was the maximum dose, and its increase to 30 μ M induced no further increase in the amount of Ca²⁺ release (see Fig. 3 of Iino, 1991).

After the complete release of Ca^{2+} , procedure 3 was repeated to measure baseline intensity of fura-2 fluorescence, which was subtracted from the preceding response to obtain fluorescence intensity change due solely to Ca^{2+} release from the store (Iino, 1989, 1991). Because fura-2 has strong affinity for Ca^{2+} , most of the Ca^{2+} released from the store binds to fura-2 with 1:1 stoichiometry. Therefore, the fluorescence intensity change is proportional to the total amount of Ca^{2+} released (Iino, 1989).

TZ ME. /

The above sequence was run several times on one fibre bundle with different pH and/or different concentrations of Ca^{2+} during the test procedure. The amount of Ca^{2+} released during the test procedure was estimated by comparing the runs with the control runs as follows. The control runs were carried out in exactly the same way except for the omission of the application of the test solution containing IP_3 , and the change in the pH in solutions 8 and 7 was always carried out. Usually two test runs were bracketed by a pair of control runs. If we take the amount of Ca^{2+} assayed in a test run as T, and the average of the control runs as C, the fractional amount of Ca^{2+} remaining in the store after the test application of IP₃ is expressed by $(T/C) \times 100$ % (Fig. 1) and the relative amount of Ca²⁺ released by the test application is expressed by $\{1 - (T/C)\} \times 100\%$ (Figs 2 and 3). Further details of the protocol are described elsewhere (Iino, 1991).

Figure 1. Increase in pH facilitated IP₃-induced Ca²⁺ release Time course of IP₃-induced Ca²⁺ release at pH 6.7 (\blacktriangle), pH 7.0 (O) and pH 7.3 (\blacksquare). Relative amount of Ca²⁺ remaining in the store after application of 0.3 μ M IP₃ at pCa 7 in the absence of ATP is plotted against the duration of the IP₃ application. Means \pm s.E.M. (n = 4).

Chemicals

ATP was obtained from Boehringer Mannheim (FRG), saponin from ICN Pharmaceuticals Inc. (Cleveland, OH, USA), fura-2 from Molecular Probes, Inc. (Eugene, OR, USA). IP₃, EGTA and HEEDTA were from Dojindo Laboratories (Kumamoto, Japan). All the other chemicals were of the highest reagent grade.

RESULTS

Time course of IP_3 -induced Ca^{2+} release at different pH levels

Figure 1 shows the time course of IP_3 -induced Ca^{2+} release at pH 6.7, 7.0 and 7.3. The duration of the application of test solutions containing 0.3 μ M IP₃ and 100 nM Ca²⁺ was varied as shown on the ordinate, and the amount of Ca²⁺ remaining in the store was plotted. The rate of Ca²⁺ release was slow at pH 6.7, and it took 90 s or more to release half of the Ca²⁺ in the store. In contrast, at pH 7.0 and 7.3 the rate of Ca²⁺ release was faster than at pH 6.7, and the halftime was less than 15 s. These results clearly show that the increase in pH results in faster release of Ca²⁺. As is shown in Fig. 1, the effect of pH was more pronounced with the rise in pH from pH 6.7 to 7.0 than with the increase from pH 7.0 to 7.3 at pCa 7.

Dependence of Ca²⁺ release on Ca²⁺ concentration

The rate of IP₃-induced Ca²⁺ release is biphasically dependent on the cytoplasmic Ca²⁺ concentration (Iino, 1990; Bezprozvanny *et al.* 1991). We examined whether the Ca²⁺ dependence was altered by the change in pH. The amount of Ca²⁺ released by the test application of $0.3 \,\mu\text{M}$ IP₃ for 15 s was plotted against the Ca²⁺ concentration of the test solution at three different pH levels (Fig. 2). At pH 7.0, Ca²⁺ accelerated the IP₃-induced

Ca²⁺ release in a concentration-dependent manner between pCa 7.5 and pCa 6.5. However, the increase in Ca²⁺ concentration beyond pCa 6.5 decreased the release of Ca²⁺. Thus, the biphasic dependence of IP₃-induced Ca²⁺ release on the Ca²⁺ concentration is also observed in vascular smooth muscle cells as well as in intestinal smooth muscle cells (Iino, 1990) and in cerebellar microsomes (Bezprozvanny *et al.* 1991). Figure 2 clearly shows that the biphasic dependence on Ca²⁺ was retained at all the pH levels studied with the peak always obtained near pCa 6.5, but the rate of Ca²⁺ release was greater at higher pH.

There was a small but definite effect of pH on the Ca²⁺ sensitivity of the ascending limb of the biphasic Ca²⁺ dependence (Fig. 2A). At pH 7·3, Ca²⁺ significantly enhanced IP₃-induced Ca²⁺ release at pCa 8 compared with release in the absence of Ca²⁺ (P < 0.01, t test). However, no significant Ca²⁺-dependent enhancement of the Ca²⁺ release was observed even at pCa 7.5, either at pH 7.0 or at pH 6.7 (P > 0.4, t test). Therefore, the ascending limb was shifted toward the lower Ca²⁺ concentration at the higher pH. On the other hand, there was little, if any, effect of pH in the absence of Ca²⁺.

Ca²⁺ concentrations above 1 μ M (pCa 6) are difficult to buffer adequately with EGTA at pH 7·3, because the p K_d of EGTA for Ca²⁺ is pH dependent, and is ~7 at pH 7·3. Therefore, we used another kind of Ca²⁺ buffer to study IP₃-induced Ca²⁺ release at higher Ca²⁺ concentrations. Panel *B* in Fig. 2 shows the Ca²⁺ dependence of IP₃induced Ca²⁺ release at pH 7·3, 7·0 and 6·7 with HEEDTA as a Ca²⁺ buffer. The p K_d of this chelator is 5·5, 5·2 and 4·9 at pH 7·3, 7·0 and 6·7, respectively. It is clearly seen that the increase in Ca²⁺ concentration above 1 μ M inhibited IP₃-induced Ca²⁺ release at all the pH levels, but there was no clear shift of the Ca²⁺ dependence.

Figure 2. The peak of the biphasic Ca²⁺ dependence of IP₃-induced Ca²⁺ release was greater at higher pH, although little effect of pH was seen in the absence of Ca²⁺ Ca²⁺ dependence of IP₃-induced Ca²⁺ release at pH values of 6.7 (\triangle), 7.0 (\bigcirc) and 7.3 (\blacksquare). Relative amount of Ca²⁺ released by 0.3 μ M IP₃ in 15 s without ATP (means \pm s.E.M.) is plotted against Ca²⁺ concentration. A, EGTA as the Ca²⁺ buffer (n = 4-9). B, HEEDTA as the Ca²⁺ buffer (n = 4-6).

Figure 3. Effect of pH on the relationship between IP_3 concentration and Ca^{2+} release was observed only in the presence of Ca^{2+}

Relative amount of Ca^{2+} released as a function of IP₃ concentration at pH values of 6.7 (\blacktriangle) and 7.3 (\blacksquare). Data points were normalized by the control runs without a test procedure (means \pm s.E.M.). Test IP₃ application was carried out in the absence of Ca²⁺ (A), at pCa 7 (B), and at pCa 6 (C) buffered with 10 mM EGTA (n = 4-7). Each fibre bundle was used to obtain complete IP₃ dependence at a fixed pH and pCa condition.

Dose-response relation of IP_3 -induced Ca^{2+} release at high and low pH

While a significant effect of pH was observed in the presence of Ca²⁺, there was little effect of pH in the absence of Ca^{2+} (Fig. 2A). We, therefore, studied the effect of pH on the dose-response relation of IP₃-induced Ca²⁺ release in the presence and absence of Ca^{2+} . The amount of Ca^{2+} test procedures released during \mathbf{with} different concentrations of IP_3 for 15 s was plotted in Fig. 3. The dose-response relation was almost independent of pH between 6.7 and 7.3 in the absence of Ca^{2+} (Fig. 3A). At pCa 7, however, the relationship is significantly shifted toward the lower IP_3 concentration at pH 7.3 compared with that at pH 6.7, and about 7 times higher concentration of IP_3 was required to release half of the Ca²⁺ in the store within 15 s (Fig. 3B). Similar pH-dependent sensitization to IP_3 was observed at pCa 6, but the magnitude of the shift was smaller than that at pCa7 (Fig. 3C). Figure 3 also shows that there is no significant effect of pH on the leak of Ca²⁺ from the store in the absence of IP_3 .

DISCUSSION

The present study has demonstrated that pH is an important modulator of IP_3 -induced Ca^{2+} release. We took careful measures to isolate the effects of pH from the effects of other modulating factors. If the experiments had been carried out in the presence of ATP, it would be difficult to separate the effects of pH on Ca^{2+} release from those on Ca^{2+} uptake (Watanabe, Lewis, Nakamoto, Kurzmack, Fronticelli & Inesi, 1981). It has been shown

that the Ca²⁺ concentration on the cytoplasmic side of the Ca²⁺ release channels alters the rate of IP₃-induced Ca²⁺ release (Iino, 1990; Finch, Turner & Goldin, 1991; Bezprozvanny *et al.* 1991) and that Ca²⁺ released from the store exerts a feedback regulation on the rate of Ca²⁺ release (Iino & Endo, 1992). Since pH may affect the Ca²⁺- buffering capacity, effects observed under a condition where the Ca²⁺ concentration is changing during Ca²⁺ release may not be ascribable to pH alone. To circumvent these problems we measured the amount of Ca²⁺ released upon application of IP₃ in the absence of ATP and with a high concentration constant. The present study, therefore, reports the first quantitative analysis of the effect of pH on IP₃-induced Ca²⁺ release.

Sensitivity of the Ca²⁺ release mechanism to IP₃ was increased at the higher pH in the presence of Ca²⁺, but little effect was found without Ca²⁺ (Fig. 3). The IP₃ binding showed steep pH dependence above pH 7·5 but there was only weak dependence on pH around pH 7·0 in the absence of Ca²⁺ (Worley *et al.* 1987). The little effect of pH on IP₃ binding near neutral pH may correspond to the fact that very little effect of pH was found on the IP₃induced Ca²⁺ release around pH 7·0 in the absence of Ca²⁺. It will be interesting, therefore, to study if there is a steeper pH dependence of IP₃ binding near pH 7·0 in the presence of Ca²⁺. The effect of pH on the IP₃ sensitivity was complex, and the difference between pH 6·7 and 7·3 became smaller at pCa 6 than at pCa 7.

The major effect of pH on the biphasic Ca^{2+} dependence of IP_3 -induced Ca^{2+} release was the elevation of the rate of Ca^{2+} release at all the Ca^{2+} concentrations above pCa 7.5, while little effect was found in the absence of Ca^{2+} (Fig. 2). Furthermore, the ascending limb of the biphasic Ca^{2+} dependence seems to be shifted toward the lower concentration of Ca^{2+} with increase in pH (Fig. 2*A*). The latter result suggests an increase in the Ca^{2+} sensitivity of IP_3 -induced Ca^{2+} release at higher pH. However, as to the descending limb, we could not see a clear shift toward the lower Ca^{2+} concentration with the increase in pH.

Thus, the present study suggests that the changes in the rate of Ca²⁺ release observed with alteration in pH may involve alteration in the binding of IP₃ and Ca²⁺ to the IP₃ channels. However, a simple change in their binding may not fully explain the complex effects of pH on the Ca²⁺ release. For example, the effect of alteration in pH on the IP_3 sensitivity is observed only in the presence of Ca²⁺. This suggests that there is a cross-talk among IP_3 , Ca^{2+} and H⁺ binding sites. Therefore, we may have to envisage pHdependent step(s) between binding of IP₃ and/or Ca²⁺ and the gating of the channel. The IP_3 binding site on the IP_3 receptor protein has been shown to be present near the Nterminus (Mignery & Südhof, 1990; Miyawaki et al. 1991), while the channel-forming domain is predicted to reside toward the C-terminus (Furuichi et al. 1989; Mignery et al. 1990). Therefore, the ligand-binding site and the channelforming pore are separated by a long stretch of polypeptide. A large conformational change of the IP_3 receptor proteins upon binding of IP₃ has been observed, and this has been implicated in the mechanism of the channel gating (Mignery & Südhof, 1990). It seems possible that some of the steps involved in that conformation change are pH dependent.

In summary, increase in pH enhances the rate of IP_3 induced Ca²⁺ release. The present results suggest that the pH dependence may partly involve increased affinity at higher pH for both IP_3 and Ca²⁺, the latter of which is a positive modulator of the Ca²⁺ release mechanism. pH may also affect the step(s) between the binding of IP_3 and the gating of the channels.

The present results show that the effects of pH are greatest between 100 nm and $1 \,\mu M \, \text{Ca}^{2+}$, concentrations which are within the physiological range of intracellular Ca²⁺ concentration, and suggest that a decrease in intracellular pH (pH_i) would tend to reduce IP₃-induced Ca^{2+} mobilization in smooth muscle cells. pH₁ of smooth muscle cells may change under various conditions and has profound effects on the smooth muscle tone, although the effect of pH seems tissue specific (Wray, 1988). For example, increase in CO₂ tension resulted in a fall in the pH_i, and at the same time augmented electrically evoked contractions in detrusor muscle (Liston, Palfrey, Raimbach & Fry, 1991). On the other hand, CO₂ has a pronounced vasodilator action in cerebral circulation, and the main mechanism for this effect is regarded as being a direct action on cerebral vascular smooth muscle cells through lowering of pH₁ (Kontos, 1981). The contraction of the detrusor muscle was evoked by depolarization-induced Ca^{2+} influx and IP₃ was unlikely to be involved in the Ca^{2+} regulation. Although it is not certain to what extent cerebral artery contraction depends on IP₃-induced Ca^{2+} mobilization, it seems possible that the tissue specificity of the pH effect may partly reflect different degrees of contribution of IP₃-sensitive Ca^{2+} mobilization to the Ca^{2+} regulation in various smooth muscle cells. Thus, the pH dependence of IP₃-induced Ca^{2+} release should be considered as one of the important factors that determine the intracellular Ca^{2+} rises in smooth muscle cells.

REFERENCES

- BERRIDGE, M. J. (1993). Inositol trisphosphate and calcium signalling. Nature 361, 315–325.
- BEZPROZVANNY, I., WATRAS, J. & EHRLICH, B. E. (1991). Bellshaped calcium-response curves of $Ins(1,4,5)P_3$ - and calciumgated channels from endoplasmic reticulum of cerebellum. *Nature* 351, 751–754.
- BRASS, L. F. & JOSEPH, S. K. (1985). A role for inositol trisphosphate in intracellular Ca²⁺ mobilization and granule secretion in platelets. *Journal of Biological Chemistry* 260, 15172–15179.
- CHADWICK, C. C., SAITO, A. & FLEISCHER, S. (1990). Isolation and characterization of the inositol trisphosphate receptor from smooth muscle. Proceedings of the National Academy of Sciences of the USA 87, 2132-2136.
- CLAPPER, D. J. & LEE, H. C. (1985). Inositol trisphosphate induces calcium release from nonmitochondrial stores in sea urchin egg homogenates. Journal of Biological Chemistry 260, 13947-13954.
- ENDO, M. (1985). Calcium release from sarcoplasmic reticulum. Current Topics in Membranes and Transport 25, 181-230.
- FERRIS, C. D., HUGANIR, R. L. & SNYDER, S. H. (1990). Calcium flux mediated by purified inositol 1,4,5-trisphosphate receptor in reconstituted lipid vesicles is allosterically regulated by adenine nucleotides. *Proceedings of the National Academy of Sciences of the USA* 87, 2147-2151.
- FERRIS, C. D., HUGANIR, R. L., SUPATTAPONE, S. & SNYDER, S. H. (1989). Purified inositol 1,4,5-trisphosphate receptor mediates calcium flux in reconstituted lipid vesicles. *Nature* 342, 87–89.
- FINCH, E. A., TURNER, T. & GOLDIN, S. M. (1991). Calcium as a coagonist of inositol 1,4,5-trisphosphate-induced calcium release. *Science* 252, 443-446.
- FURUICHI, T., YOSHIOKA, S., MIYAWAKI, A., WADA, K., MAEDA, N. & MIKOSHIBA, K. (1989). Primary structure and functional expression of the inositol 1,4,5-trisphosphate-binding protein P₄₀₀. Nature 342, 32–38.
- GRYNKIEWICZ, G., POENIE, M. & TSIEN, R. Y. (1985). A new generation of Ca^{2+} indicators with greatly improved fluorescence properties. *Journal of Biological Chemistry* 260, 3440-3450.
- GUILLEMETTE, G. & SEGUI, J. A. (1988). Effects of pH, reducing and alkylating reagents on the binding and Ca²⁺ release activities of inositol 1,4,5-trisphosphate in the bovine adrenal cortex. *Molecular Endocrinology* 2, 1249–1255.
- IINO, M. (1989). Calcium-induced calcium release mechanism in guinea-pig taenia caeci. Journal of General Physiology 94, 363-383.
- IINO, M. (1990). Biphasic Ca²⁺ dependence of inositol 1,4,5trisphosphate-induced Ca release in smooth muscle cells of the guinea-pig taenia caeci. Journal of General Physiology 95, 1103-1122.

- IINO, M. (1991). Effects of adenine nucleotides on inositol 1,4,5trisphosphate-induced calcium release in vascular smooth muscle cells. Journal of General Physiology 98, 681-698.
- IINO, M. & ENDO, M. (1992). Calcium-dependent immediate feedback control of inositol 1,3,5-trisphosphate-induced Ca²⁺ release. *Nature* 360, 76-78.
- JOSEPH, S. K., RICE, H. L. & WILLIAMSON, J. R. (1989). The effect of external calcium and pH on inositol trisphosphate-mediated calcium release from cerebellum microsomal fractions. *Biochemical Journal* 258, 261–265.
- KIJIMA, Y., SAITO, A., JETTON, T. L., MAGNUSON, M. A. & FLEISCHER, S. (1993). Different intracellular localization of inositol 1,4,5-trisphosphate and ryanodine receptors in cardiomyocytes. *Journal of Biological Chemistry* 268, 3499–3506.
- KONTOS, H. (1981). Regulation of the cerebral circulation. Annual Review of Physiology 43, 397-407.
- LAI, F. A., ERICKSON, H. P., ROUSSEAU, E., LIU, Q.-Y. & MEISSNER, G. (1988). Purification and reconstitution of the calcium release channel from skeletal muscle. *Nature* 331, 315-319.
- LISTON, T. G., PALFREY, E. L. H., RAIMBACH, S. J. & FRY, C. H. (1991). The effects of pH changes on human and ferret detrusor muscle function. *Journal of Physiology* 432, 1-21.
- MARTELL, A. E. & SMITH, R. E. (1974-1989). Critical Stability Constants, vols 1-6. Plenum Publishing Corp., New York.
- MIGNERY, G. A., NEWTON, C. L., ARCHER, B. T. III & SÜDHOF, T. C. (1990). Structure and expression of the rat inositol 1,4,5trisphosphate receptor. *Journal of Biological Chemistry* 265, 12679-12685.
- MIGNERY, G. A. & SUDHOF, T. C. (1990). The ligand binding site and transduction mechanism in the inositol 1,4,5-triphosphate receptor. *EMBO Journal* 9, 3893-3898.
- MIYAWAKI, A., FURUICHI, T., RYOU, Y., YOSHIKAWA, S. NAKAGAWA, T., SAITOH, T. & MIKOSHIBA, K. (1991). Structure-function relationships of the mouse inositol-1,4,5trisphosphate receptor. Proceedings of the National Academy of Sciences of the USA 88, 4991-4915.
- SAITO, A., INUI, M., RADERMACHER, M., FRANK, J. & FLEISCHER, S. (1988). Ultrastructure of the calcium release channel of sarcoplasmic reticulum. *Journal of Cell Biology* 107, 211–219.
- SOMLYO, A. V., BOND, M., SOMLYO, A. P. & SCARPA, A. (1985). Inositol trisphosphate-induced calcium release and contraction in vascular smooth muscle. *Proceedings of the National Academy* of Sciences of the USA 82, 5231-5235.
- SUEMATSU, E., HIRATA, M., HASHIMOTO, T. & KURIYAMA, H. (1984). Inositol 1,4,5-trisphosphate releases Ca²⁺ from intracellular store sites in skinned single cell of porcine coronary artery. Biochemical and Biophysical Research Communications 120, 481–485.
- WALTON, P. D., AIREY, J. A., SUTKO, J. L., BECK, C. F., MIGNERY, G. A., SUDHOF, T. C., DEERINCK, T. J. & ELLISMAN, M. H. (1991). Ryanodine and inositol trisphosphate receptors coexist in avian cerebellar Purkinje neurons. *Journal of Cell Biology* 113, 1145-1157.
- WATANABE, T., LEWIS, D., NAKAMOTO, R., KURZMACK, M. FRONTICELLI, C. & INESI, G. (1981). Modulation of calcium binding in sarcoplasmic reticulum adenosinetriphosphatase. *Biochemistry* 20, 6617–6625.
- WORLEY, P. F., BARABAN, J. M., SUPATTAPONE, S., WILSON, V. & SNYDER, S. H. (1987). Characterization of inositol trisphosphate receptor binding in Brain. Regulation by pH and calcium. Journal of Biological Chemistry 262, 12132-12136.
- WRAY, S. (1988). Smooth muscle intracellular pH: Measurement, regulation, and function. American Journal of Physiology 254, C213-255.

YAMAZAWA, T., IINO, M. & ENDO, M. (1992). Presence of functionally different compartments of the Ca²⁺ store in single intestinal smooth muscle cells. FEBS Letters 301, 181–184.

Acknowledgements

This work was supported by Grant-in-Aid from the Ministry of Education, Science and Culture, Japan.

Received 17 May 1993; accepted 31 August 1993.