
Discussion 
Although other brain tumors have adopted molecular definitions in the most recent WHO 

classification1, meningiomas continue to be classified by microscopic assessment of 

histopathological features alone into three grades. While this classification has some 

advantages in that it can be widely applied in conventional neuropathology laboratories, the 

clinical behaviour of meningiomas does not consistently conform to their WHO grade2,3.  Some 

histologically benign meningiomas recur rapidly despite adequate resection and conversely a 

subset of higher grade meningiomas remain stable after surgery without evidence of early 

disease recurrence. Additionally, options for medical therapies are limited for patients with 

aggressive tumors that recur relentlessly despite multiple rounds of surgery and radiation. Easily 

adopted molecular classifications of meningioma that reliably reflect tumor behaviour and inform 

on novel medical therapies are greatly needed. 
 
Landmark genetic and epigenetic studies on meningioma have provided important insights into 

the possibility of refining meningioma classification using molecular data. These studies have 

principally performed unsupervised analyses of a single molecular datatype, most commonly 

DNA methylation or mutational analyses, with correlations to other datatypes, based on 

availability4–15. In other cancers, formal integration of multiple molecular datatypes has led to the 

discovery of clinically and biologically relevant consensus groups that cannot be identified from 

any single datatype alone16–18. However, integration of molecular platforms has not been 

explored yet in meningiomas, or other non-malignant tumor types, in part due to the very few 

number of samples that have concurrent genome-wide data across the primary platforms of 

DNA methylation, whole-genome or whole-exome sequencing, and RNA sequencing7,11,13,14.  

Here, we assembled a large cohort enriched for higher-grade meningiomas with extended 

longitudinal clinical data (up to 15-year follow-up) and integrated matched DNA somatic copy 

number, DNA point mutation, DNA methylation, transcriptome, and proteomic data in order to 

robustly subtype meningiomas into four novel consensus molecular groups. We demonstrated 

that meningiomas in each molecular group had distinctive clinical outcomes that superseded 

existing WHO and other molecular classifications in two independent cohorts, and showed that 

the novel, prototypical biology of each group could inform selection of novel medical therapies 

(see Extended Data Fig. 12) 
 
Building on the known distinction between NF2-mutant and non-NF2 mutant meningiomas5,8 we 

comprehensively characterized two novel consensus groups of benign meningiomas. The first 



(MG1) is composed of NF2-mutant meningiomas with concurrent loss of chromosome 22q that 

are characterized by predominantly myeloid immune cell infiltration which we confirmed using 

single cell RNA sequencing, deconvolution of bulk RNA profiles, and protein data. These 

immunogenic meningiomas showed benign behaviour with low recurrence rates, suggesting 

that immunogenicity may prevent rapid tumor growth in this consensus group. Elegant studies 

have recently shown that the meninges are a hub for homeostatic immunity, with the bone 

marrow of the adjacent skull being the primary source of myeloid cells in healthy meninges and 

in the setting of an inflamed CNS. As meningiomas arise from the meninges and can frequently 

invade the adjacent skull, it is possible that immune cells are recruited through similar 

mechanisms in immunogenic meningiomas19,20. 
 
The second benign molecular group (MG2) with favourable outcomes were comprised of 

meningiomas with either driver mutations known to be mutually exclusive with NF2 (TRAF7, 

AKT1, KLF4, SMO) or meningiomas with several polysomies, including those previously 

reported in angiomatous and microcystic meningiomas21,22. Concordant with the copy number 

findings, vasculature and angiogenic pathways were upregulated in MG2 meningiomas by gene 

expression and protein data. Deconvolution of bulk RNA data using single cell signatures 

showed enrichment of endothelial cells in these tumors. Two of the MG2 tumors in our study 

harbored NF2 mutations and CNA that were atypical of MG2 meningiomas, suggesting there 

could be room for refinement of automated assignments from unsupervised clustering using 

mutational data. 
 

Although previous methylation-based classifications have identified groups of meningiomas with 

poor outcomes4,23,24, very little has been discovered with respect to the drivers of 

aggressiveness in these tumors, despite their overwhelming contribution to the morbidity of 

disease in these patients. The robust representation of these less common, but more 

aggressive meningioma phenotypes, together with the comprehensive molecular analyses we 

have undertaken enabled important discoveries in this regard. Specifically, we defined two 

distinct groups of aggressive meningiomas, that were driven by either a hypermetabolic (MG3) 

or proliferative biological phenotype (MG4). These tumors harbored novel statistically significant 

and recurrent driver mutations in the epigenetic regulator gene KDM6A and tumor suppressor 

gene PTEN. Point mutations in PTEN and KDM6A have each been previously reported in only 

one of over 1000 tumors profiled by unbiased mutational sequencing in the literature8,25. The 

fact that these mutations occur at rate similar to other known meningioma driver genes in our 



study likely reflects the enrichment of the more clinically aggressive tumors in our cohort5,8,10. 

The identification of PTEN as a driver mutation implicates a divergence in the PIK3/AKT/mTOR 

pathway that separates meningiomas with more aggressive behavior from meningiomas with 

downstream AKT1 mutations that generally have a more indolent course. Additional 

subthreshold mutational hits were identified suggesting that more focused mutational analyses 

of more aggressive meningiomas may reveal additional driver mutations yet to be discovered. In 

addition to the above, we found that MG3 tumors, and to a greater extent MG4 tumors, showed 

significant genomic instability that was not observed in either immunogenic (MG1) or benign 

NF2-wildtype (MG2) meningiomas and were associated with patterns of aberrant DNA 

methylation and enrichment for critical master regulators of cell proliferation in MG4 tumors. 

Altogether, these findings highlight convergence of multiple distinct but related alterations, as 

opposed to one alteration in isolation, contribute to aggressive behavior in meningiomas. 

 

Importantly, the establishment of molecular groups facilitated the discovery of novel therapeutic 

vulnerabilities. Vorinostat, a histone deacetylase inhibitor approved for the treatment of other 

cancers26, targeted genes that were uniquely enriched in proliferative (MG4) meningiomas. By 

developing faithful models of meningiomas that align to the molecular groups we described 

here, we showed that Vorinostat had viable anti-proliferative effects on only MG4 meningioma 

cells in-vitro and in-vivo. Although the molecular mechanisms behind Vorinostat’s therapeutic 

effect need to be deciphered, these promising results warrant further investigation in human 

studies that would be most informative in a setting where patient’s meningiomas can be 

stratified according to their MGs.  

 

The multiplicity of molecular features that were specific for each group also facilitates 

implementation of these findings clinically, even in centers without comprehensive molecular 

testing. For example, we show that loss of chr 1p is almost universally seen in MG3 and MG4 

meningiomas and essentially absent in MG1 and MG2 meningiomas. As well, gain of chr 1q 

was highgly specific to MG4 tumors. Similarly, the novel mutations we describe in PTEN and 

KDM6A were exclusive to MG3 and MG4 meningiomas. As most conventional neuropathology 

labs are familiar with chr 1p analyses and mutational analyses for PTEN as part of the 

diagnostic work-up for gliomas, these approaches can be immediately applied to identify higher 

risk meningiomas and their MGs.  We also identified protein marks that were enriched in each 

MG using proteomic data, and validated one protein-mark for each MG by blinded 

immunohistochemical, further demonstrating the potential for these novel MGs to be 



distinguished using conventional techniques familiar to all neuropathology labs. It is possible 

that staining for multiple group-specific proteins may further improve the discrimination of MG 

groups beyond what was reported in our study. With further careful validation and 

standardization of staining, scoring, and reporting, these immunohistochemical markers, as well 

as the common molecular alterations we defined for each group, may be considered for 

inclusion in future iterations of recognized grading systems. 

 

Lastly, we reported on the first single cellular RNA sequencing analysis of human meningioma 

tumors. In line with other cancers, we found that the variation between neoplastic cells of 

different tumors was more prominent than variation within the same tumor27–31. Most tumors 

harbored a single dominant cluster of cells. In some cases, we found a smaller second cluster of 

cells that generally reflected cycling neoplastic cells. In addition to this, clonality assessments of 

bulk mutational profiles revealed that most mutations in meningioma were clonal. We did, 

however, identify four recurrent meta-expression programs (cell cycle, metabolism, 

inflammatory, mesenchymal) from our single cell data. With the exception of the dominant cell 

cycle program, these represented subtle continuous patterns of variation in gene expression, 

with differences in the distribution of activation of these programs across MGs. For example, the 

inflammatory program was generally inactive in MG4 tumors compared to the others. The genes 

in this inflammatory program notably were shown to also be repressed in a general oncogenic 

program of synovial sarcoma32. This may reflect neoplastic-immune cell crosstalk that merits 

further and more focused investigation in larger cohorts. 

 

In summary, we have generated a key TCGA-style resource for meningiomas, the most 

common primary intracranial tumor. Integration of multiple comprehensive datatypes in a single 

analysis yielded novel findings that had biological, prognostic and therapeutic relevance. We 

described patterns of intra- and intertumoral heterogeneity in meningioma by coupling single cell 

and bulk analyses, providing orthogonal support for our proposed consensus molecular 

classification. 

 
 
 
 
 
 
 
 
 



References (Discussion) 
1. Louis, D. N. et al. The 2016 World Health Organization Classification of Tumors of the 

Central Nervous System: a summary. Acta Neuropathol. 131, 803–20 (2016). 
2. Goldbrunner, R. et al. EANO guidelines for the diagnosis and treatment of meningiomas. 

Lancet. Oncol. 17, e383-91 (2016). 
3. Nassiri, F., Tabatabai, G., Aldape, K. & Zadeh, G. Challenges and opportunities in 

meningiomas: recommendations from the International Consortium on Meningiomas. 
Neuro. Oncol. 21, i2–i3 (2019). 

4. Sahm, F. et al. DNA methylation-based classification and grading system for 
meningioma: a multicentre, retrospective analysis. Lancet Oncol. 18, 682–694 (2017). 

5. Clark, V. E. et al. Genomic analysis of non-NF2 meningiomas reveals mutations in 
TRAF7, KLF4, AKT1, and SMO. Science (80-. ). 339, 1077–1080 (2013). 

6. Patel, A. J. et al. Molecular profiling predicts meningioma recurrence and reveals loss of 
DREAM complex repression in aggressive tumors. Proc. Natl. Acad. Sci. U. S. A. 116, 
21715–21726 (2019). 

7. Collord, G. et al. An integrated genomic analysis of anaplastic meningioma identifies 
prognostic molecular signatures. Sci. Rep. 8, 13537 (2018). 

8. Brastianos, P. K. et al. Genomic sequencing of meningiomas identifies oncogenic SMO 
and AKT1 mutations. Nat. Genet. 45, 285–289 (2013). 

9. Reuss, D. E. et al. Secretory meningiomas are defined by combined KLF4 K409Q and 
TRAF7 mutations. Acta Neuropathol. 125, 351–358 (2013). 

10. Clark, V. E. et al. Recurrent somatic mutations in POLR2A define a distinct subset of 
meningiomas. Nat. Genet. 48, 1253–1259 (2016). 

11. Harmancl, A. S. et al. Integrated genomic analyses of de novo pathways underlying 
atypical meningiomas. Nat. Commun. 8, 14433 (2017). 

12. Bi, W. L. et al. Genomic landscape of high-grade meningiomas. NPJ genomic Med. 2, 
(2017). 

13. Vasudevan, H. N. et al. Comprehensive Molecular Profiling Identifies FOXM1 as a Key 
Transcription Factor for Meningioma Proliferation. Cell Rep. 22, 3672–3683 (2018). 

14. Paramasivam, N. et al. Mutational patterns and regulatory networks in epigenetic 
subgroups of meningioma. Acta Neuropathol. 138, 295–308 (2019). 

15. Youngblood, M. W. et al. Correlations between genomic subgroup and clinical features in 
a cohort of more than 3000 meningiomas. J. Neurosurg. 1–10 (2019) 
doi:10.3171/2019.8.JNS191266. 

16. Hoadley, K. A. et al. Cell-of-Origin Patterns Dominate the Molecular Classification of 
10,000 Tumors from 33 Types of Cancer. Cell 173, 291-304.e6 (2018). 

17. Koboldt, D. C. et al. Comprehensive molecular portraits of human breast tumours. Nature 
490, 61–70 (2012). 

18. Cancer Genome Atlas Research Network et al. Comprehensive, Integrative Genomic 
Analysis of Diffuse Lower-Grade Gliomas. N. Engl. J. Med. 372, 2481–98 (2015). 

19. Rustenhoven, J. et al. Functional characterization of the dural sinuses as a neuroimmune 
interface. Cell 184, 1000-1016.e27 (2021). 

20. Cugurra, A. et al. Skull and vertebral bone marrow are myeloid cell reservoirs for the 
meninges and CNS parenchyma. Science (80-. ). eabf7844 (2021) 
doi:10.1126/science.abf7844. 

21. Abedalthagafi, M. S. et al. Angiomatous meningiomas have a distinct genetic profile with 
multiple chromosomal polysomies including polysomy of chromosome 5. Oncotarget 5, 
10596–606 (2014). 

22. Kuroi, Y. et al. Identification of shared genomic aberrations between angiomatous and 
microcystic meningiomas. Neuro-Oncology Adv. 1, (2019). 

23. Nassiri, F. et al. DNA methylation profiling to predict recurrence risk in meningioma: 



development and validation of a nomogram to optimize clinical management. Neuro. 
Oncol. 21, 901–910 (2019). 

24. Olar, A. et al. Global epigenetic profiling identifies methylation subgroups associated with 
recurrence-free survival in meningioma. Acta Neuropathol. 133, 431–444 (2017). 

25. Peters, N. et al. Analysis of the PTEN gene in human meningiomas. Neuropathol. Appl. 
Neurobiol. 24, 3–8 (1998). 

26. Reardon, D. A. et al. Phase II study of Gleevec® plus hydroxyurea (HU) in adults with 
progressive or recurrent meningioma. J. Neurooncol. 106, 409–15 (2012). 

27. Venteicher, A. S. et al. Decoupling genetics, lineages, and microenvironment in IDH-
mutant gliomas by single-cell RNA-seq. Science (80-. ). 355, eaai8478 (2017). 

28. Izar, B. et al. A single-cell landscape of high-grade serous ovarian cancer. Nat. Med. 26, 
1271–1279 (2020). 

29. Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-
cell RNA-seq. Science (80-. ). 352, 189–196 (2016). 

30. Patel, A. P. et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary 
glioblastoma. Science (80-. ). 344, 1396–1401 (2014). 

31. Kinker, G. S. et al. Pan-cancer single-cell RNA-seq identifies recurring programs of 
cellular heterogeneity. Nat. Genet. 52, 1208–1218 (2020). 

32. Lawrence, M. S. et al. Mutational heterogeneity in cancer and the search for new cancer-
associated genes. Nature 499, 214–218 (2013). 

 



10
468

5254

60

1000

2000

3000

4000

5000

Si
ng

le
t 0

07
7

Si
ng

le
t 0

15
0

128

911

63

6173

0

2000

4000

6000

Sample 0077

Sample 0078 Sample 0151

Sample 0071 Sample 0073 Sample 0019

Sample 0150

SE
T 

#2
SE

T 
#1

SE
T 

#3

31

377

5 7

2769

0

1000

2000

A
m

bi
go

us

D
ou

bl
et

A
m

bi
go

us

D
ou

bl
et

A
m

bi
go

us

D
ou

bl
et

Si
ng

le
t 0

07
8

Si
ng

le
t 0

15
1

Si
ng

le
t 0

07
8

Si
ng

le
t 0

15
1

A
m

bi
go

us

D
ou

bl
et

Si
ng

le
t 0

07
7

Si
ng

le
t 0

15
0

A
m

bi
go

us

D
ou

bl
et

A
m

bi
go

us

D
ou

bl
et

A
m

bi
go

us

D
ou

bl
et

Si
ng

le
t 0

11
9

Si
ng

le
t 0

07
3

Si
ng

le
t 0

07
1

Si
ng

le
t 0

11
9

Si
ng

le
t 0

07
3

Si
ng

le
t 0

07
1

Si
ng

le
t 0

11
9

Si
ng

le
t 0

07
3

Si
ng

le
t 0

07
1

119

2479

46

5870

420

2000

4000

6000

118

1699

5850

10 590

2000

4000

6000

37
342

4349

120

1000

2000

3000

4000

N
um

be
r o

f c
el

ls
N

um
be

r o
f c

el
ls

N
um

be
r o

f c
el

ls

N
um

be
r o

f c
el

ls

N
um

be
r o

f c
el

ls

N
um

be
r o

f c
el

ls
N

um
be

r o
f c

el
ls

17
175

5

2934

0

1000

2000

3000

Supplementary Figure 1: Validation of assignment of cells to 
patients
Shown are barplots of cellular genotypes derived from comparing germline 
SNPs from snRNA-seq data to SNPs derived from bulk RNA-seq data for 
each sample. Samples that were processed at similar times were consid-
ered as “Sets”. Overall, there were very few cells with inconsistent geno-
types to the sample of origin (0.1 to 0.9% of all cells). For example, in Set 1, 
only 12 cells (0.2%) from sample CAM_0078 were considered singlets of 
another sample in this Set (CAM_0151). Cells with genotypes that aligned 
to the expected sample were retained and reported on in this manuscript. 
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Supplementary Figure 2: High-quality data from filtered cells are retained for analyses.
a,c,e,  Uniform Manifold Approximation and Projection of snRNA-seq data as in Fig. 4a. The fraction 
of mitochondrial genes (a), library size (b), and number of genes detected (c) are shown as color 
gradients for each cluster.
b,d,f, Boxplots of quality control metrics by cluster assignments from Fig. 5b for fraction of mitochon-
drial genes (b), library size (d), and number of genes detected (f).


