Cell Genomics, Volume 4

Supplemental information

Mechanism-free repurposing of drugs

for C9orf72-related ALS/FTD

using large-scale genomic data

Sara Saez-Atienzar, Cleide dos Santos Souza, Ruth Chia, Selina N. Beal, Ileana Lorenzini, Ruili Huang, Jennifer Levy, Camelia Burciu, Jinhui Ding, J. Raphael Gibbs, Ashley Jones, Ramita Dewan, Viviana Pensato, Silvia Peverelli, Lucia Corrado, Joke J.F.A. van Vugt, Wouter van Rheenen, Ceren Tunca, Elif Bayraktar, Menghang Xia, The International ALS Genomics Consortium, ITALSGEN Consortium, SLAGEN Consortium, Project MinE ALS Sequencing Consortium, Alfredo Iacoangeli, Aleksey Shatunov, Cinzia Tiloca, Nicola Ticozzi, Federico Verde, Letizia Mazzini. Kevin Kenna. Ahmad Al Khleifat. Sarah **Opie-Martin**. Flavia Raggi, Massimiliano Filosto, Stefano Cotti Piccinelli, Alessandro Padovani, Stella Gagliardi, Maurizio Inghilleri, Alessandra Ferlini, Rosario Vasta, Andrea Calvo, Cristina Antonio Canosa, Manera. Moglia. Umberto Maurizio Grassano. Jessica Mandrioli, Gabriele Mora, Christian Lunetta, Raffaella Tanel, Francesca Trojsi, Patrizio Cardinali, Salvatore Gallone, Maura Brunetti, Daniela Galimberti. Maria Serpente, Chiara Fenoglio, Elio Scarpini, Giacomo P. Comi, Stefania Corti, Roberto Del Bo, Mauro Ceroni, Giuseppe Lauria Pinter, Franco Taroni, Eleonora Dalla Bella, Enrica Bersano, Charles J. Curtis, Sang Hyuck Lee, Raymond Chung, Hamel Patel, Karen E. Morrison, Johnathan Cooper-Knock, Pamela J. Shaw, Gerome Breen, Richard J.B. Dobson, Clifton L. Dalgard, The American Genome Center, Sonja W. Scholz, Ammar Al-Chalabi, Leonard H. van den Berg, Russell McLaughlin, Orla Hardiman, Cristina Gianni Sorarù, Sandra D'Alfonso, Siddharthan Chandran, Suvankar Cereda. Pal, Antonia Ratti, Cinzia Gellera, Kory Johnson, Tara Doucet-O'Hare, Nicholas Pasternack, Tongguang Wang, Avindra Nath, Gabriele Siciliano, Vincenzo Silani, Ayşe Nazlı Başak, Jan H. Veldink, William Camu, Jonathan D. Glass, John E. Landers, Adriano Chiò, Rita Sattler, Christopher E. Shaw, Laura Ferraiuolo, Isabella Fogh, and Brvan J. Travnor

SUPPLEMENTARY METHODS

Replication cohort

The DNA samples for the replication cohort were obtained from a different study (principal investigator: Christopher Shaw, King's College London). These samples were collected at (A) King's College London and (B) Project MinE Sequencing Consortium (Utrecht University) as described below:

(A) The King's College London

The DNA samples of 464 novel *C9orf72* repeat expansion carriers were collected at King's College London. The participants were recruited through the SLAGEN Consortium, Boğaziçi University, and Scotland University. Details of the cohorts are as follows:

(1) **Italy (SLAGEN Consortium).** DNA samples of the novel Italian carriers were collected by the SLAGEN Consortium through the contribution of several Tertiary Centers and Clinical Laboratories across Italy. Patients were diagnosed with ALS according to the El Escorial revised criteria at the ALS tertiary referral center of Istituto Auxologico Italiano IRCCS [S1]. All patients had probable or definite familial ALS according to the Byrne criteria for FALS. Cognitive assessment in the care of ALS patients adopted standard neuropsychological assessment suitable for patients with verbal and motor impairment, such as the Edinburgh Cognitive and Behavioural ALS Screen (ECAS) [S2]. All individuals gave written informed consent, and the Ethics Committee of the Istituto Auxologico Italiano IRCCS, Milan, approved this protocol. Screening for the expanded repeats in the *C9orf72* gene was performed by a two-step protocol, including genotyping PCR followed by a repeat-primed PCR, as previously described [S3, S4].

(2) **Turkey (Boğaziçi University).** DNA samples of the Turkish carriers were collected at the Boğaziçi University and recruited across Turkey between 2002 and 2019. All individuals gave written informed consent, and the Ethics Committee on Research with Human Participants (INAREK) and Boğaziçi University, Istanbul, approved this protocol. Genomic DNA was isolated from whole blood using the MagNa Pure Compact System (Roche, Switzerland). The *C9orf72* GGGGCC repeat expansion was screened by Repeat-primed touchdown PCR using FastStart Universal Master Mix (Roche, Switzerland). FAM-labeled PCR products were subjected to fragment length analysis (Macrogen, Korea), and a sawtooth pattern in expansion-positive cases was visualized in PeakScanner Software (ThermoFisher Scientific, USA) [S5, S6].

(3) **Scotland (Edinburgh University).** DNA samples were obtained from patients with ALS who donated blood for research to the Scottish Regenerative Neurology Tissue Bank as part of the Scottish Motor Neurone Disease (MND) Register. ALS patients were diagnosed following the 'El Escorial' criteria [S7]. Ethical approval for research analysis of the Scottish Regenerative Neurology Tissue Bank samples affiliated with the Scottish MND register was obtained from the East of Scotland Research Ethics Service.

(B) Project MinE Sequencing Consortium cohort (Utrecht University)

A total of 456 *C9orf72* carriers were obtained from the Project MinE data, which consisted of a collection of ALS patients recruited worldwide through the collaboration of tertiary referral clinics for motor neuron disease. Neurologists from the European participating Tertiary Centers who are members of the EU Joint Program – Neurodegenerative Diseases Research (JPND) project STRENGTH and the Project MinE Sequencing Consortium have agreed to follow shared standard parameters in the collection of clinical information of ALS patients. Neurologic examination and diagnostic tests were used to determine whether participants met the revised El Escorial criteria for possible, probable, laboratory-supported, or definite ALS as fully described elsewhere [S1, S8]. Details of the cohorts are as follows:

(1) **The Netherlands.** ALS patients were diagnosed with ALS at the tertiary referral clinic for motor neuron disease at the University Medical Center Utrecht (Dutch ALS Center) or were included in the Prospective ALS Study in The Netherlands. Patients were not pre-screened for any mutations related to ALS. All individuals gave written informed consent, and the University Medical Center Utrecht Medical Ethics Committee, Utrecht, approved this protocol.

(2) **UK MNDA Biobank.** Neurologists diagnosed cases with ALS in one of twenty UK hospitals specialized in motor neuron diseases, and patients had no family history of ALS. All participated in the UK National Biobank for Motor Neuron Disease Research. All individuals gave written informed consent, and the Trent University Medical Ethics Committee approved this protocol.

(3) **Turkey.** ALS patients were recruited from hospitals across Turkey between 2002 and 2019. DNA samples were collected at Boğaziçi University. A full description of individuals gave written informed consent, and the Ethics Committee on Research with Human Participants (INAREK) at Boğaziçi University, Istanbul, approved this protocol.

(4) **Belgium.** Patients were diagnosed with ALS at the tertiary referral clinic for motor neuron diseases at the University Hospitals in Leuven. All individuals gave written informed consent, and the Ethical Committee of the University Hospitals in Leuven approved this protocol.

(5) **Ireland.** Cases were diagnosed with probable or definite ALS according to the El Escorial Criteria by neurologists specialized in motor neuron diseases at Beaumont Hospital in Dublin [S7]. Patients were part of an ongoing population-based prospective ALS registry. Patients were selected for sequencing so that all areas of Ireland were adequately represented. All individuals reported Irish ancestry for at least three generations. All individuals gave written informed consent, and the Beaumont Hospital Research & Ethics Committee, Dublin, approved this protocol.

(6) **Spain.** According to the El Escorial criteria, ALS patients were diagnosed with definite or probable ALS [S7]. Neurologists and neurophysiologists saw patients at the tertiary referral centers: the Bellvitge Hospital and Carlos III Hospital for Catalonia and Madrid, respectively. All individuals gave written informed consent, and the Bellvitge University Hospital Ethics Committee, Barcelona, and "Comité de Ética de la Investigación del Hospital Carlos III," Madrid, approved this protocol.

(7) **The United States.** All samples were taken from patients seen at the Emory ALS Center in Atlanta, Georgia, USA. The Emory Center is a tertiary care ALS clinic that cares for many patients in Georgia and the surrounding states. Diagnoses were made by neurologists specializing in neuromuscular diseases and motor neuron diseases. After informed consent, complete demographic and clinical information was stored in the clinic database. DNA was collected and stored. All individuals gave written informed consent, and the Committee for the Protection of Human Subjects in Research of the University of Massachusetts Medical School, Worcester, approved this protocol.

(8) **France.** ALS patients were diagnosed with probable or definite ALS according to the El Escorial criteria by neurologists specialized in motor neuron diseases at the Reference centers for ALS of the University Hospitals of Limoges and Tours (LITORALS federation), members of the French FILSLAN networks [S7]. All individuals gave written informed consent, and the ethics committee of Tours Hospital and Limoges University Hospital approved this protocol.

(9) **Sweden.** Cases were diagnosed with probable or definite ALS according to the revised El Escorial Criteria by neurologists specialized in motor neuron diseases [S1]. All participants were of Swedish descent and had reported Northern Swedish citizenship for at least three generations. All individuals gave written informed consent, and the Regional Ethical Review Board in Umeå approved this protocol.

(10) **Israel.** ALS patients were diagnosed with probable or definite ALS according to the El Escorial criteria [S7] and in follow-up at the tertiary referral ALS clinic at the Hadassah University Hospital, Jerusalem, or Tel-Aviv Sourasky Medical Center in Tel-Aviv. Patients were not pre-screened for any

mutations related to ALS. Patients were referred from all regions in Israel and participated in a prospective ALS database and sample repository. All individuals gave written informed consent, and the Hadassah University Hospital Institutional Review Board, Hadassah, and The Institutional Review Board of Tel Aviv Sourasky Medical Center, Tel Aviv, approved this protocol.

(11) **Portugal.** According to the revised El-Escorial criteria [S1], neurologists specialized in motor neuron diseases diagnosed patients with possible, probable, or definite ALS. All individuals gave written informed consent, and the Local Research Ethics Committee at the Faculty of Medicine, University of Lisbon, approved this protocol.

(12) **Italy.** Patients were diagnosed with ALS according to the El Escorial revised criteria at the ALS tertiary referral center of Istituto Auxologico Italiano IRCCS [S1]. All patients had probable or definite familial ALS according to the Byrne criteria for FALS in the *SOD1*, *TARDBP*, *FUS*, and *C90rf72* genes. All individuals gave written informed consent, and the Ethics Committee of the IRCCS Istituto Auxologico Italiano, Milan, approved this protocol.

(13) **Switzerland.** ALS patients were diagnosed at the Muskelzentrum/ALS clinic at the Kantonsspital St. Gallen, a tertiary referral center in Northern Switzerland. Patients fulfilled the El-Escorial Criteria for probable lab supported, probable or definite, or ALS [S7]. All individuals gave written informed consent, and the Kantonale Ethikkomission des Kantons St. Gallen approved this protocol.

Overall, of the 836 ALS/FTD *C9orf72* repeat expansion carriers who passed the quality control (QC) thresholds, complete clinical information was available for 713 (n = 385 males and n = 328 females) individuals. Of those, only 699 did not overlap with the training dataset.

SNP array-based genotyping in the replication dataset

C9orf72 carriers (n=464) from the King's College London cohort were genotyped on the Illumina InfiniumOmni2-5-8v1-4_A1 platform in the Illumina certified laboratory of the Department of Social Genetic & Developmental Psychiatry, King's College London. Genotype raw data were first annotated to the dbSNP150 and merged after alignment to the same genomic coordinate (coordinates GRCh37). All multi-allelic and A/T or C/G SNPs were excluded. Pre-phasing quality control steps were performed according to PLINK's standard protocols (version 1.9) [S9]. SNPs were excluded by low call rate < 99% (--geno 0.01), minor allele frequency (MAF) > 0.01, and Hardy-Weinberg disequilibrium (HWE) < 1 x 10^{-6} . Individuals were removed by missingness genotype value of 3%, (--mind 0.03), by the +/-3SD to the mean of the inbreeding distribution F (+/- 0.25), if with mismatches between genetic and reported gender. Related and duplicated individuals were identified by calculating each pair of individuals' identity by state (IBS) status. Those who passed the threshold of PI_HAT > 0.175 were excluded from further analyses. Ancestry differences were estimated by principal components analysis (PCA) using EIGENSTRAT software, and the outliers identified by the first ten principal components (PCs) were removed.

After pre-imputation quality control, 836 individuals (457 males, 379 females) with coverage of 1,349,769 SNPs passed the filter thresholds. Filtered data were phased according to the Haplotype Reference Consortium Release 1.1 (HRC.r1-1) through the Wellcome Sanger Institute Imputation Service (https://www.sanger.ac.uk/tool/sanger-imputation-service/) adopting the Eagle method (version 2.4.1). Imputation analysis generated ~ 39,000,000 variants. Post-imputation QC was performed using QCTOOL (version 2.0.8) and SNPTEST (version 2.5.6) software. The quality of the inferred variants was estimated according to the following thresholds: INFO score > 0.6, average posterior probability (APP) > 0.9, MAF > 0.01, and Hardy-Weinberg disequilibrium > 1 x 10⁻⁶. After post-imputation quality control, 7,635,605 SNPs remained for further analysis.

Whole-genome sequencing in the replication dataset

C9orf72 carriers (n=456) from Project MinE were whole-genome sequenced, and standard quality control criteria were applied. At the variant level, sites with a genotype quality (GQ) < 10 or missing and SNVs and indels with quality (QUAL) scores < 20 and < 30 were removed. Kinship coefficients (i.e., relatedness) were calculated using the KING method, as implemented in the *SNPRelate* package in R. All pairs of related individuals (kinship > 0.0625) were identified. The transition-transversion ratio in each sample was calculated using SnpSift27 (version 4.3p). The expected transition-transversion (Ti/Tv) ratio in whole-genome sequence data is ~2.0. Samples with a Ti/Tv ratio \pm 6 SD from the entire distribution of samples were removed. The number of single nucleotide variants (SNV) and singletons was calculated per sample. Samples with total SNVs or singletons > 6 SD from the mean were removed.

The transition in sequencing platforms from HiSeq 2000 to HiSeq X caused an increase in observed indels per sample. Accordingly, samples were filtered by platform (HiSeq 2000 or HiSeq X) and were excluded if the number of indels was \pm 6 SD from the mean of their respective group. After this step, the average sample depth was calculated again. It was higher for samples sequenced on the HiSeq 2000 (35X, on average) than for samples sequenced on the HiSeq X (25X, on average). However, no samples were removed at this step.

Samples with mismatched sex information or missing phenotypic information were excluded. The remaining sample quality control was performed on high-quality variants: multi-allelic SNVs, variants with missingness > 2%, variants with Hardy-Weinberg equilibrium p-value $< 1 \times 10^{-5}$, variants with differential missingness between cases, and controls with p-value $< 1 \times 10$ were removed. The final steps of sample quality control were performed on a set of variants with an MAF > 10%, SNP missingness < 0.1%, variants residing outside four complex regions (the major histocompatibility complex (MHC) on chromosome 6; the lactase locus (LCT) on chromosome 2; and inversions on chromosomes 8 and 17). A/T and C/G variants were also excluded. We used the SNVs to calculate observed and expected autosomal homozygous genotype counts for each sample, and they were removed if |F| > 0.1. Samples with a PI HAT > 0.8 were excluded to avoid duplicated samples.

Principal component analysis, as implemented in EIGENSOFT, was used to visualize potential structure in the data induced by population stratification or other variables. Projections onto the HapMap3 and the 1000 Genomes (phase 3, version 5) populations indicated that the samples were primarily of European ancestry. However, some were of African or East Asian ancestries, while others appeared admixed. Outliers from the European population (HapMap3: > 10 SD on principal components (PC) 1-4, 1000 Genomes: > 4 SD on PCs 1-4) were excluded from further analyses.

All samples were sent in batches to Illumina for sequencing. Thus, all variants were regressed against batch using PLINK (version 1.9) [S9]. Finally, all variants with an association p-value $< 1.0 \times 10^{-10}$ in at least one batch were excluded.

New York Genome Center RNA sequencing

Patient and control samples were acquired from the New York Genome Center (NYGC) Consortium Database and can be accessed by contacting the NYGC at <u>https://www.nygenome.org/contact/</u>. *Trimmomatic* software was used to trim the original sequencing files obtained from NYGC to 80 base pairs to remove barcodes and improve sample quality [S10]. To account for sample sequencing depth differences, the reads from all samples were downsampled to 25 million reads. These reads were aligned to the hg38 reference genome (https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.26/) with the *Spliced Transcripts Alignment to a Reference* (STAR) software [S11].

These raw mRNA transcript counts were collated into a single count matrix file for differential expression analysis (DEA). First, samples in the count matrix file collected from the motor cortex were selected. Next, genes with a low number of transcript counts (5 or less) were removed, as well as those that were

significantly associated with biological sex (DESeq2 FDR adjusted p-value < 0.05). The NYGC provided information regarding which patients had a pathogenic C9orf72 expansion. The number of patients with a pathogenic *C9orf72* expansion only (i.e., no other known genetic predisposition to ALS) was 36. The DEA was performed on the resulting non-normalized count data matrix using the *DESeq2* package in R to compare the expression profiles of *C9orf72* ALS patients and controls [S12]. Differentially expressed genes (DEGs) were counted with a Bonferroni adjusted p-value < 0.05.

Individual-level variant analysis

We evaluated associations of the rs113247976 (*KIF5A*) variant with age at onset using linear regression models adjusted for sex and principal components one to ten. The variant was studied under an additive genotypic and a dominant genotypic model.

Induced pluripotent stem cells (iPSCs) maintenance and differentiation into motor neurons

Differentiation of iPSCs (Table S10) into motor neurons was performed as previously described with modifications [S13]. For the differentiation, induced pluripotent stem cells (iPSCs) were seeded in growth factor-reduced Matrigel-coated plates (0.1 µg/ml). On day zero, iPSCs at 100% confluence were washed once with PBS. Neuralization was initiated by switching to iPSC-NPC day 1-6 differentiation media (containing 50% KnockOut DMEM/F-12, 50% neurobasal medium, 0.5× N2 supplement, 0.5× B27 supplement, 1× GlutaMAX, 1% penicillin/streptomycin; this will be referred as a basal medium) supplemented with 2 µM dorsomorphin homolog 1 (DMH1), 2 µM SB431542, 3 µM CHIR (a GSK3 inhibitor), which was replaced every 24 hours. On day 7 of the differentiation, cells were switched to day 7-12 iPSC-NPC differentiation media (which contains basal medium, supplemented with 1 µM CHIR, 2 µM DMH1, 2 µM SB431542, 0.1 µM all-trans retinoic acid, and 0.5 µM purmorphamine (PMN)). For the passage, cells were washed with HBSS without calcium and magnesium and incubated for 7 minutes with Accutase at 37°C. Accutase was neutralized with double the medium quantity, and the cell suspension was centrifuged at 200 g for 4 minutes. The supernatant was discarded, and the cell pellet was resuspended in 7-12 iPSC-NPC differentiation media supplemented with 10µM Y27632 ROCK inhibitor. Cells were re-plated onto new matrigel-coated 6-well plates at a ratio of 1:1, and differentiation was continued. By day 12 of the differentiation, neural rosettes should have formed, and the cells should express classical neural progenitor cell (NPC) markers (Pax6, Nestin).

For the motor neuron differentiation, NPCs were plated in Matrigel-coated 6-well plates at a density of $7x10^5$ cells per well. After 24 hours of incubation, the medium was changed to basal medium supplemented with 0.5 μ M all-*trans* retinoic acid and 0.1 μ M PMN, and the medium was changed every day for six days. On day 19, the motor neuron progenitors were passaged with accutase onto matrigel-coated plates. The medium was replaced with basal medium supplemented with 0.5 μ M all-*trans* retinoic acid, 0.1 μ M PMN, 0.1 μ M compound E (Cpd E), 10 ng/mL BDNF, 10 ng/mL CNTF, and 10 ng/mL IGF-1 (19-28 days medium) and seeded into an optic 96-well plate (Perkin Elmer) for staining, at a density of $2x10^4$ cells per well. On day 29 of the differentiation, the cells were switched to day 29-40 neuronal differentiation medium (which contains Neurobasal basal medium, supplemented with 1x of B27, 10 ng/mL BDNF, 10 ng/mL CNTF, and 10 ng/mL IGF-1). The cells were fed on alternate days with the neuronal medium until day 40. Cells were previously characterized at day 40 of differentiation and were found to express classical mature motor neuron markers (ChAT, SMI32, Islet 1/2, MAP2, NeuN) (**Figure S5**).

Drug Treatments

Acamprosate was obtained from Sigma-Aldrich (acamprosate calcium A6981), stored at 10 mM in dH₂O, and kept out of light at -20°C until use. To evaluate the effect of acamprosate on neuronal survival, on day 40, motor neurons were treated with acamprosate (0.01-30 μ M) diluted in 29-40 neuronal differentiation medium for 72 hours. As a positive control for cell death, motor neurons were treated with 2 μ M

camptothecin (CPT) made up in day 29-40 neuronal differentiation medium for 1 hour at 37°C. Control cultures were treated with dH₂O, the vehicle of dilution of acamprosate.

Apoptosis assessment

On day 40, motor neurons were treated with the selected drugs. After three days of treatment, motor neurons were fixed and stained for (i) active Caspase-3 to identify cells undergoing apoptosis and (ii) MAP2, a neuron-specific cytoskeletal protein, to define the cytoplasmic boundaries of cells. 4,6-diamidino-2-phenylindole (DAPI) was used for nuclear counterstain. Quantitative imaging analysis was conducted through the Opera Phenix high content Screening System at 40x magnification, using the Harmony software for analysis. The percentage of Caspase-3 positive cells and the number of fragmented nuclei were assessed per every condition. At least 25 fields were randomly selected and scanned per well of a 96-well plate in triplicate. To identify and remove any false readings generated by the system, three random treated and untreated wells were selected and counted manually (blind to the group).

Immunocytochemistry

Cells were washed with PBS and incubated with 4% paraformaldehyde warmed to approximately 37° C for 10 minutes at room temperature, then washed with PBS. Fixed motor neurons were permeabilized with 0.3% Triton X-100 in PBS for 5 minutes and incubated in 5% donkey serum blocking solution for 1 hour to block non-specific staining. Antibodies were diluted in 5% donkey serum. Cells were incubated with primary antibodies (**Table S11**) overnight at 4°C and washed three times with PBS (5 minutes per wash). Cells were incubated with AlexaFluor secondary antibodies (1:400 dilution) (**Table S11**) for 1 hour at room temperature in the dark. They were washed once with PBS before incubating in 1 µg/mL of DAPI for 5 minutes at room temperature in the dark. Cells were washed three times with PBS and stored in the dark at 4°C until imaging.

Imaging

All the imaging was performed using the Opera PhenixTM High Content Screening System (Perkin Elmer) at \times 40 magnification to allow high throughput analysis without experimental bias. Z-stacks of at least eight or more planes separated by 0.7 µm were obtained from a minimum of 25 fields per well from three technical replicate wells per experiment, thus assessing > 6000 cells per experiment. 405, 488, 594, and 647nm lasers, and the appropriate excitation and emission filters were used. Settings were kept consistent while taking images from all cultures. For active caspase-3 analysis, the total number of caspase-3 positive cells was counted using the automated image analysis software Harmony (Perkin Elmer) and divided by the total number of cells.

MTT assay

The effect of acamprosate on cell viability was assessed via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. This colorimetric assay is based on the reduction of a yellow tetrazolium salt (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide to purple formazan crystals by metabolically active cells. For this assay, motor neurons were seeded in clear 96-well plates, treated with different acamprosate concentrations, and incubated for 72 hours at 37°C. Motor neurons were treated with 2 μ M camptothecin (CPT) as a positive control for cell death. After incubation, the media was removed, and the cells were washed with PBS (100 μ l per well). MTT solution was then added to a final concentration of 0.5 mg/mL and incubated at 37°C for 2 hours to allow the formation of formazan crystals. The cells were washed with PBS, and DMSO was added (100 μ l per well) to dissolve the formazan crystals. The plates were shaken for 10 minutes to lyse the cells. Plate absorbance was read

at 570nm in a PherAstar plate reader. The percentage of cell viability was normalized to the vehicle group.

SUPPLEMENTARY FIGURES

Figure S1. The sporadic ALS genetic risk influenced the age at onset among ALS *C9orf72* and FTD *C9orf72* carriers, related to Figure 3.

(A) The regression line shows the association between ALS genetic risk score and age at onset among 817 ALS/FTD patients carrying *C9orf72* repeat expansions (p-value = 0.024, beta = -0.765, 95% CI = -1.429 - -0.101) (ALS & FTD group), 666 ALS patients carrying *C9orf72* repeat expansions (p-value = 0.028, beta = -0.815, 95% CI = -1.54 - -0.09) (ALS group), and 151 FTD patients carrying *C9orf72* repeat expansions (p-value = 0.705, beta = -0.333, 95% CI = -2.06 - 1.39) (FTD group). The shadow areas represent the 90% confidence interval of the regression model. (B) The forest plot shows the meta-analysis results of the ALS and FTD groups (p-value 0.029, beta = -0.742, 95% CI = -1.412 - -0.072).

Figure S2. The sporadic ALS genetic risk score did not influence age at onset among patients without the *C9orf72* repeat expansion, related to Figure 3.

The regression line shows the lack of association between ALS genetic risk score and age at onset in 7,037 ALS patients without *C9orf72* repeat expansions (p-value = 0.437, beta = 0.115, 95% CI = -0.175-0.404). The shadow areas represent the 99% confidence interval of the regression model. The forest plot shows the regression result and the 95% confidence interval.

Figure S3. A schematic illustration of the leave-one-out analysis and decile calculation, related to Figure 4.

Leave-one-out analyses were performed by excluding one variant from the ALS genetic risk score analysis (based on 161 predictors) and re-estimating the causal effect on age at the onset of the remaining 160 variants. The variants were ordered based on their impact on age at onset, and ten ranked deciles, each containing 16 SNPs, were generated. Scores were recalculated using the deciles, and regression analysis evaluated the contribution of the 16 variants within each decile to age at onset.

Figure S4. The genetic risk score of each decile showed no relationship to age of symptom onset among the ALS cases who did not carry the *C9orf72* expansion, related to Figure 4.

The Forest plot shows the effect estimates of the genetic risk score on age at onset in ALS non-*C9orf72* cases based on deciles obtained from the leave-one-out analysis. It also shows the regression results and the 95% confidence interval per decile. The analysis was performed in 7,037 ALS patients without *C9orf72* repeat expansions.

Figure S5. Enrichment analysis of the decile ten genes identified pathways influencing the age of onset among *C9orf72* carriers, related to Figure 4.

Twelve out of sixteen variants within decile ten are mapped to genes based on genomic coordinates. These genes were used for enrichment analysis based on Gene Ontology (GO) terms, including biological processes, molecular functions, and KEGG pathways.

Figure S6. The cell lines displayed characteristics of motor neurons, related to Figure 6.

The picture shows motor neurons derived from unaffected controls (control), *C9orf72* ALS patients (ALS-C9orf72), and an isogenic control line (ISO-C9orf72). Chat, Choline acetyltransferase; DAPI, 4',6-diamidino-2-phenylindole; Islet 1/2, ISL LIM Homeobox 1/2; MAP2, Microtubule-associated protein 2; NeuN, neuronal nuclei antigen; SMI, neurofilament H; and TUJ, beta-tubulin III. The nuclei were counterstained with DAPI (Blue). Scale bar, 50 µm.

Figure S7. Acamprosate showed no evidence of toxicity in healthy-derived motor neurons, related to Figure 6.

Data are shown as the percentage of viable cells normalized to the vehicle (water). After 72 hours of treatment, acamprosate was not toxic for iPSC-derived motor neurons from two healthy donors. Camptothecin (CPT), an apoptosis inductor, was used as a positive control of cell death. The comparison was performed using one-way ANOVA. Each dot represents a technical replicate, and the data were pooled from two motor neuron lines to calculate the means and standard deviations.

Figure S8. Acamprosate showed no evidence of toxicity in ALS-derived motor neurons, related to Figure 6.

Data are shown as the percentage of viable cells normalized to the vehicle (water). Acamprosate was not toxic in two iPSC-derived motor neuron cell lines derived from ALS patients carrying *C9orf72* expansion after 72 hours of treatment. The lines used were CS52iALS-C9nxx and CS28iALS-C9nxx; more information is listed in Table S10. Camptothecin (CPT), an apoptosis inductor, was used as a positive control of cell death. The comparison was performed using one-way ANOVA. Each dot represents a technical replicate, and the data were pooled to calculate the means and standard deviations.

Figure S9. The dose-response curve of acamprosate in ALS-derived motor neurons showed a neuroprotective effect, related to Figure 6.

Dose-response curve and half maximal effective concentration (EC50 = 0.271μ M, 95% CI = 0.0218 - 2.95) of acamprosate in *C9orf72* ALS-derived motor neurons. The dose-response curve illustrates the effect of increasing concentrations of acamprosate (x-axis) on the survival of two different lines of *C9orf72*-carrying motor neurons (y-axis). For each line, data were averaged across three biological replicates, with three technical replicates for each one. Data are means \pm standard deviations.

SUPPLEMENTARY TABLES

Table S1. The ALS genetic risk profile was based on 161 SNPs, related to Figure 2.

The polygenic risk score was generated using genetic data from Van Rheenen et al., 2016 [S14]. EA, effect allele; Chr, chromosome; Pos, position in build hg 38.

rsID	Chr	Pos (hg38)	EA	Gene names	Beta	P-value
rs10938692	4	8116834	Т	ABLIM2	-0.079	2.74x10 ⁻⁵
rs12369156	12	120729872	Α	ACADS	0.261	7.17x10 ⁻⁶
rs116488199	10	1675116	Α	ADARB2	0.132	8.83x10 ⁻⁵
rs1159918	4	99321852	Α	ADH1B	-0.080	2.03x10 ⁻⁵
rs320019	1	48610454	Α	AGBL4	-0.078	6.75x10 ⁻⁵
rs73103977	12	53513226	Т	ATF7	-0.251	1.78x10 ⁻⁵
rs11065961	12	111585263	Α	ATXN2	-0.083	5.81x10 ⁻⁵
rs6737916	2	32372917	Α	BIRC6	0.121	2.59x10 ⁻⁵
rs75087725	21	44333234	Α	CFAP410	0.479	8.65x10 ⁻¹¹
rs10067826	5	10282407	Α	CMBL	-0.143	4.21x10 ⁻⁵
rs10443173	1	86068071	Α	COL24A1	-0.106	7.95x10 ⁻⁶
rs2271689	10	17046273	Α	CUBN	-0.090	9.43x10 ⁻⁵
rs6947666	7	137708989	Α	DGKI	0.333	4.92x10 ⁻⁵
rs10876069	12	50599395	Т	DIP2B	0.072	8.51x10 ⁻⁵
rs62073477	17	78448064	Т	DNAH17	0.102	4.65x10 ⁻⁵
rs77238283	17	11797907	Т	DNAH9	0.167	6.95x10 ⁻⁵
rs35059420	5	169995487	Α	DOCK2	-0.159	6.05x10 ⁻⁵
rs1442671	18	69528820	Α	DOK6	0.078	4.60x10 ⁻⁵
rs7764458	6	83116819	Т	DOP1A	0.121	5.74x10 ⁻⁵
rs11608027	11	34492865	Т	ELF5	0.123	3.05x10 ⁻⁵
rs17171046	7	37438260	Т	ELMO1	0.116	3.70x10 ⁻⁵
rs9901522	17	14770617	Т	ENSG00000205325	0.146	4.61x10 ⁻⁵
rs11185388	1	104198732	Т	ENSG00000215869	-0.070	9.25x10 ⁻⁵
rs2893656	7	106534655	Α	ENSG00000243797	0.070	8.87x10 ⁻⁵
rs3798105	5	133194937	Т	ENSG00000248245	0.075	9.76x10 ⁻⁵
rs4273590	5	159335610	Α	ENSG00000249738	-0.191	9.59x10 ⁻⁵
rs118072482	8	138017250	Т	ENSG00000253288	0.297	8.11x10 ⁻⁵
rs72973932	11	74400615	Α	ENSG00000254631	0.182	9.56x10 ⁻⁵
rs117219925	12	23142104	Α	ENSG00000256995	-0.318	7.15x10 ⁻⁵
rs111704832	15	93374070	Т	ENSG00000257060	-0.155	1.80x10 ⁻⁵
rs11171999	12	56846925	A	ENSG00000258679	0.077	8.21x10 ⁻⁵
rs6603044	15	83015059	Т	ENSG00000259805	-0.079	1.08x10 ⁻⁵
rs56024498	16	76893238	Α	ENSG00000259995	-0.070	8.18x10 ⁻⁵
rs12991146	2	59884087	А	ENSG00000271955	-0.170	6.05x10 ⁻⁵
rs144476584	9	23029711	Т	ENSG00000284418	0.270	7.46x10 ⁻⁵
rs116876275	13	65954214	Т	ENSG00000286395	-0.287	8.80x10 ⁻⁵

rs538622	5	172920676	Α	ERGIC1	0.079	1.33x10 ⁻⁵
rs2985994	13	45539849	Т	ERICH6B	-0.081	6.17x10 ⁻⁵
rs7930973	11	44159478	Α	EXT2	0.076	2.27x10 ⁻⁵
rs72792226	10	48204534	Т	FRMPD2	0.285	1.36x10 ⁻⁵
rs9903355	17	36580791	Т	GGNBP2	-0.081	5.29x10 ⁻⁶
rs7258235	19	2612120	Α	GNG7	-0.156	1.48x10 ⁻⁵
rs112820958	5	79465868	Т	HOMER1	0.148	4.75x10 ⁻⁵
rs11718653	3	122759011	Т	HSPBAP1	0.221	8.75x10 ⁻⁶
rs144049425	2	162505368	Т	KCNH7	-0.251	7.80x10 ⁻⁵
rs113247976	12	57581917	Т	KIF5A	0.288	1.13x10 ⁻⁵
rs61954176	13	40198035	Т	LINC00598	-0.096	5.32x10 ⁻⁶
rs11695294	2	176608890	Α	LINC01117	0.108	5.27x10 ⁻⁵
rs28407220	2	33816106	Т	LINC01320	0.103	7.11x10 ⁻⁶
rs150278778	1	209379025	Α	LINC01698	-0.254	4.82x10 ⁻⁵
rs72733862	5	8446181	Α	LINC02226	0.148	6.08x10 ⁻⁶
rs35318094	5	180245984	Т	МАРК9	0.184	1.15x10 ⁻⁵
rs17326496	5	113340882	Т	МСС	-0.091	5.54x10 ⁻⁵
rs79502718	18	50919413	Α	ME2	0.169	9.23x10 ⁻⁵
rs12972250	19	329746	Α	MIER2	0.073	6.10x10 ⁻⁵
rs9653747	21	18669100	A	MIR548XHG	-0.088	4.64x10 ⁻⁶
rs12079484	1	181048307	A	MR1	0.075	7.81x10 ⁻⁵
rs2240601	17	57673751	А	MSI2	-0.090	5.07x10 ⁻⁵
rs4292737	8	10401605	A	MSRA	0.073	5.11x10 ⁻⁵
rs4945276	11	78453938	Т	NARS2	0.076	5.90x10 ⁻⁵
rs150949995	5	150518937	Т	NDST1	0.373	4.28x10 ⁻⁶
rs642811	11	78053929	Т	NDUFC2-KCTD14	0.085	7.08x10 ⁻⁵
rs34432311	2	177346958	Т	NFE2L2	-0.207	3.20x10 ⁻⁵
rs68072647	17	9224590	Α	NTN1	-0.077	2.65x10 ⁻⁵
rs12886280	14	31829453	Т	NUBPL	-0.083	3.15x10 ⁻⁶
rs118036547	15	27863948	Т	OCA2	0.251	4.49x10 ⁻⁵
rs35346557	3	190120229	Т	P3H2	-0.090	4.92x10 ⁻⁵
rs3109207	4	168675360	Α	PALLD	0.071	9.49x10 ⁻⁵
rs36037136	1	164710739	A	PBX1	-0.291	1.72x10 ⁻⁵
rs10492593	13	66919985	Α	PCDH9	0.123	2.89x10 ⁻⁵
rs2477866	1	233152025	Α	PCNX2	-0.140	3.02x10 ⁻⁵
rs16865645	2	177696567	Т	PDE11A	0.096	9.42x10 ⁻⁵
rs5766195	22	44921429	Т	PHF21B	-0.072	4.36x10 ⁻⁵
rs11652752	17	67379776	Α	PITPNC1	-0.119	6.49x10 ⁻⁵
rs8053191	16	81117558	Т	PKD1L2	-0.152	6.50x10 ⁻⁵
rs10430614	10	131935136	Т	PPP2R2D	-0.079	6.04x10 ⁻⁵
rs9355960	6	161901879	Т	PRKN	-0.084	1.37x10 ⁻⁵
rs2253050	16	74040378	Т	PSMD7-DT	0.173	7.43x10 ⁻⁵
rs28660489	12	64560784	Α	RASSF3	-0.081	6.13x10 ⁻⁵

rs12229321	12	64518074	Т	RASSF3	0.071	8.42x10 ⁻⁵
rs9813285	3	29329178	Т	RBMS3	-0.077	2.42x10 ⁻⁵
rs6683585	1	240967882	Т	RGS7	-0.068	9.16x10 ⁻⁵
rs143747467	16	11367549	Т	RMI2	-0.293	1.37x10 ⁻⁵
rs115348904	4	158390602	Т	RXFP1	-0.208	5.48x10 ⁻⁵
rs2294928	22	43986973	А	SAMM50	0.104	4.27x10 ⁻⁵
rs35714695	17	28392769	А	SARM1	-0.134	1.29x10 ⁻⁸
rs10139154	14	30678292	Т	SCFD1	0.081	1.92x10 ⁻⁵
rs118082508	12	56925035	Т	SDR9C7	0.288	3.76x10 ⁻⁵
rs111970477	3	47064091	А	SETD2	-0.262	6.96x10 ⁻⁵
rs430979	4	2812971	Т	SH3BP2	-0.085	2.63x10 ⁻⁶
rs9995307	4	146488500	А	SLC10A7	0.080	8.43x10 ⁻⁵
rs118038177	11	121459793	Т	SORL1	-0.216	4.79x10 ⁻⁵
rs60318796	17	32991387	Т	SPACA3	0.109	4.87x10 ⁻⁵
rs13387347	2	168898336	Т	SPC25	0.075	3.15x10 ⁻⁵
rs12967284	18	12532099	Т	SPIRE1	0.079	1.74x10 ⁻⁵
rs76805704	12	64138597	A	SRGAP1	0.188	5.95x10 ⁻⁶
rs79612353	20	59884601	А	SYCP2	0.190	3.84x10 ⁻⁵
rs112348322	4	118882809	А	SYNPO2	0.276	2.60x10 ⁻⁵
rs74654358	12	64488187	А	TBK1	0.206	7.72x10 ⁻⁷
rs11067262	12	114724621	Т	TBX3-AS1	0.078	8.56x10 ⁻⁵
rs79496463	8	132904843	Т	TG	0.194	7.17x10 ⁻⁵
rs13410191	2	137643025	А	THSD7B	-0.069	9.98x10 ⁻⁵
rs651001	6	11569169	А	TMEM170B	-0.074	3.81x10 ⁻⁵
rs115980385	7	141463227	Т	TMEM178B	0.292	9.81x10 ⁻⁵
rs10463311	5	151031274	Т	TNIP1	-0.100	8.51x10 ⁻⁷
rs4958888	5	151093281	Α	TNIP1	0.089	1.53x10 ⁻⁵
rs78549703	19	17638733	Α	UNC13A	0.110	1.31x10 ⁻⁸
rs8180839	7	5200339	Α	WIPI2	0.151	6.46x10 ⁻⁵
rs138116283	4	4318540	А	ZBTB49	0.337	7.77x10 ⁻⁶
rs4974650	4	2309992	А	ZFYVE28	0.090	1.63x10 ⁻⁶
rs8101883	19	56681170	Α	ZIM2-AS1	0.084	1.97x10 ⁻⁵
rs6997565	8	2560505	Т	Intergenic	-0.146	1.54x10 ⁻⁶
rs7118388	11	34432600	Α	Intergenic	-0.084	2.34x10 ⁻⁶
rs144387708	12	119264395	Α	Intergenic	0.348	4.95x10 ⁻⁶
rs116900480	12	58262322	Т	Intergenic	0.294	7.07x10 ⁻⁶
rs12900374	15	82741261	Т	Intergenic	0.107	7.27x10 ⁻⁶
rs10050775	5	38007940	Α	Intergenic	-0.109	1.08x10 ⁻⁵
rs117860708	11	1537217	Α	Intergenic	0.237	1.30x10 ⁻⁵
rs116946806	7	131997812	Т	Intergenic	0.224	1.43x10 ⁻⁵
rs4676496	3	39456514	Α	Intergenic	0.077	1.44x10 ⁻⁵
rs71472777	11	24121389	Т	Intergenic	0.241	1.45x10 ⁻⁵
rs112913348	5	108554187	Т	Intergenic	-0.156	1.51x10 ⁻⁵

rs34384833	5	91942338	Α	Intergenic	0.265	1.75x10 ⁻⁵
rs12472309	2	7266695	Т	Intergenic	0.229	2.45x10 ⁻⁵
rs10488631	7	128954129	Т	Intergenic	-0.120	2.52x10 ⁻⁵
rs7041171	9	111939350	Т	Intergenic	-0.094	2.71x10 ⁻⁵
rs12138742	1	119591406	Т	Intergenic	-0.123	2.74x10 ⁻⁵
rs62290425	4	4963737	Α	Intergenic	0.126	2.93x10 ⁻⁵
rs3098553	15	27631110	Т	Intergenic	0.267	3.04x10 ⁻⁵
rs79676202	12	49786775	Т	Intergenic	0.204	3.08x10 ⁻⁵
rs970258	2	5138399	Т	Intergenic	-0.100	3.11x10 ⁻⁵
rs72716562	5	7957484	Α	Intergenic	-0.209	3.12x10 ⁻⁵
rs141347161	7	42377714	Т	Intergenic	0.149	3.30x10 ⁻⁵
rs10008582	4	146026232	Α	Intergenic	-0.106	3.53x10 ⁻⁵
rs77058105	20	17070347	Т	Intergenic	-0.198	3.85x10 ⁻⁵
rs144129573	12	114485139	Т	Intergenic	-0.209	4.61x10 ⁻⁵
rs141730255	7	138253804	Α	Intergenic	-0.180	5.11x10 ⁻⁵
rs79446108	7	137863942	Т	Intergenic	0.186	5.33x10 ⁻⁵
rs6020200	20	50017227	Α	Intergenic	-0.101	5.36x10 ⁻⁵
rs6420358	13	84715333	Α	Intergenic	-0.080	6.14x10 ⁻⁵
rs12220832	10	80806689	Т	Intergenic	0.123	6.27x10 ⁻⁵
rs117452182	13	27293529	Α	Intergenic	0.284	6.31x10 ⁻⁵
rs7602576	2	112942040	Т	Intergenic	-0.087	6.39x10 ⁻⁵
rs11702120	21	23786163	Α	Intergenic	0.202	6.40x10 ⁻⁵
rs118071175	14	28515686	Т	Intergenic	0.123	6.78x10 ⁻⁵
rs7209200	17	5066645	Т	Intergenic	-0.075	6.82x10 ⁻⁵
rs9567838	13	47359837	Т	Intergenic	0.095	6.87x10 ⁻⁵
rs112288580	11	98729819	Α	Intergenic	-0.290	7.00x10 ⁻⁵
rs9819308	3	1691812	Α	Intergenic	-0.086	7.06x10 ⁻⁵
rs6037557	20	405220	Т	Intergenic	-0.097	7.56x10 ⁻⁵
rs9956309	18	38136697	Α	Intergenic	-0.091	8.42x10 ⁻⁵
rs76323495	16	16859460	Α	Intergenic	-0.200	8.54x10 ⁻⁵
rs16905848	11	20223160	Т	Intergenic	-0.097	8.72x10 ⁻⁵
rs35851984	17	28239061	Α	Intergenic	-0.070	8.98x10 ⁻⁵
rs76427181	6	86684739	А	Intergenic	-0.224	9.38x10 ⁻⁵
rs2176039	22	45189151	Α	Intergenic	0.069	9.44x10 ⁻⁵
rs1570281	6	146517546	А	Intergenic	-0.077	9.66x10 ⁻⁵
rs72838433	2	127913724	Α	Intergenic	0.073	9.87x10 ⁻⁵
rs193044924	17	15767328	Α	Intergenic	-0.077	9.89x10 ⁻⁵
rs73152707	3	86619077	Т	Intergenic	0.170	9.94x10 ⁻⁵
rs1146342	1	118440554	Т	Intergenic	0.269	9.98x10 ⁻⁵

Table S2. The genetic risk score influenced the age of symptom onset among *C9orf72* carriers, related to Figure 3.

The *bottom 3%* group is composed of individuals whose Z-score is in the bottom 3% of the genetic risk score distribution among *C9orf72* carriers and non-carriers, respectively. The *medium* group is comprised of individuals whose z-score is between 20-80% of the genetic risk score distribution. The *top 3%* group is comprised of individuals whose z-score is between 97-100% of the genetic risk score distribution.

	Age at onset mean	Age at onset standard deviation	Z-score mean	Z-score standard deviation	Count
Carriers					
Bottom 3%	58.11	10.23	-2.21	0.4	27
Medium	57.51	9.25	0.04	0.49	488
Тор 3%	55.12	9.92	2.35	0.36	32
Non-Carriers					
Bottom 3%	60.25	12.18	-2.2	0.35	213
Medium	60.07	12.48	-0.03	0.47	4288
Тор 3%	60.07	12.63	2.21	0.4	280

Table S3. The leave-one-out analysis stratified the 161 SNPs of the ALS genetic risk into ten deciles, related to Figure 4.

Decile ten contains the variants with a more significant contribution to age at onset. LOO, leave-one-out (indicating the removed SNP); Chr, chromosome; Pos (hg38), genomic position, GRCh38 assembly; SE, standard error.

LOO	Chr	Pos (hg38)	Gene name	Beta	SE	P-value	Decile	Rank
rs9901522	17	14770617	ENSG00000205325	-0.678	0.336	0.044	10	1st
rs118036547	15	27863948	OCA2	-0.705	0.337	0.037	10	2nd
rs2294928	22	43986973	SAMM50	-0.708	0.336	0.036	10	3rd
rs61954176	13	40198035	LINC00598	-0.711	0.337	0.035	10	4th
rs62073477	17	78448064	DNAH17	-0.715	0.337	0.034	10	6th
rs79502718	18	50919413	ME2	-0.715	0.336	0.034	10	5th
rs113247976	12	57581917	KIF5A	-0.716	0.336	0.034	10	7th
rs118082508	12	56925035	SDR9C7	-0.716	0.337	0.034	10	8th
rs1146342	1	118440554	Intergenic	-0.718	0.336	0.033	10	9th
rs117219925	12	23142104	ENSG00000256995	-0.72	0.337	0.033	10	10th
rs116900480	12	58262322	Intergenic	-0.721	0.336	0.032	10	11th
rs10876069	12	50599395	DIP2B	-0.725	0.336	0.031	10	12th
rs6420358	13	84715333	Intergenic	-0.727	0.336	0.031	10	13th
rs7118388	11	34432600	Intergenic	-0.728	0.336	0.031	10	14th
rs9355960	6	161901879	PRKN	-0.728	0.336	0.031	10	15th
rs10938692	4	8116834	ABLIM2	-0.73	0.336	0.03	10	16th
rs10488631	7	128954129	Intergenic	-0.731	0.337	0.03	9	17th
rs34384833	5	91942338	Intergenic	-0.732	0.336	0.03	9	18th
rs116876275	13	65954214	ENSG00000286395	-0.733	0.336	0.03	9	19th
rs12972250	19	329746	MIER2	-0.738	0.336	0.029	9	20th
rs11608027	11	34492865	ELF5	-0.739	0.336	0.028	9	22nd
rs17171046	7	37438260	ELMO1	-0.739	0.336	0.028	9	24th
rs62290425	4	4963737	Intergenic	-0.739	0.336	0.028	9	21st
rs6683585	1	240967882	RGS7	-0.739	0.337	0.028	9	23rd
rs6737916	2	32372917	BIRC6	-0.739	0.336	0.028	9	25th
rs10008582	4	146026232	Intergenic	-0.74	0.336	0.028	9	26th
rs7041171	9	111939350	Intergenic	-0.74	0.336	0.028	9	27th
rs9995307	4	146488500	SLC10A7	-0.74	0.336	0.028	9	28th
rs4958888	5	151093281	TNIP1	-0.741	0.337	0.028	9	29th
rs12991146	2	59884087	ENSG00000271955	-0.742	0.337	0.028	9	32nd
rs4945276	11	78453938	NARS2	-0.742	0.336	0.028	9	31st
rs56024498	16	76893238	ENSG00000259995	-0.742	0.336	0.028	9	30th
rs144476584	9	23029711	ENSG00000284418	-0.743	0.336	0.027	8	33rd
rs642811	11	78053929	NDUFC2-KCTD14	-0.743	0.336	0.027	8	34th
rs35346557	3	190120229	P3H2	-0.744	0.336	0.027	8	35th
rs71472777	11	24121389	Intergenic	-0.744	0.336	0.027	8	36th

rs118072482	8	138017250	ENSG00000253288	-0.745	0.336	0.027	8	37th
rs13410191	2	137643025	THSD7B	-0.745	0.336	0.027	8	38th
rs35714695	17	28392769	SARM1	-0.745	0.336	0.027	8	39th
rs11718653	3	122759011	HSPBAP1	-0.746	0.336	0.027	8	40th
rs2240601	17	57673751	MSI2	-0.746	0.336	0.027	8	41st
rs1570281	6	146517546	Intergenic	-0.747	0.336	0.027	8	43rd
rs74654358	12	64488187	TBK1	-0.747	0.337	0.027	8	42nd
rs2253050	16	74040378	PSMD7-DT	-0.748	0.336	0.027	8	46th
rs34432311	2	177346958	NFE2L2	-0.748	0.336	0.026	8	47th
rs76805704	12	64138597	SRGAP1	-0.748	0.337	0.027	8	45th
rs77058105	20	17070347	Intergenic	-0.748	0.336	0.027	8	44th
rs10463311	5	151031274	TNIP1	-0.749	0.336	0.026	8	48th
rs16905848	11	20223160	Intergenic	-0.749	0.336	0.026	7	50th
rs2477866	1	233152025	PCNX2	-0.749	0.337	0.026	7	49th
rs12138742	1	119591406	Intergenic	-0.75	0.336	0.026	7	52nd
rs138116283	4	4318540	ZBTB49	-0.75	0.336	0.026	7	53rd
rs6020200	20	50017227	Intergenic	-0.75	0.336	0.026	7	51st
rs11695294	2	176608890	LINC01117	-0.751	0.336	0.026	7	56th
rs60318796	17	32991387	SPACA3	-0.751	0.336	0.026	7	54th
rs73103977	12	53513226	ATF7	-0.751	0.336	0.026	7	55th
rs10430614	10	131935136	PPP2R2D	-0.752	0.336	0.026	7	58th
rs117452182	13	27293529	Intergenic	-0.752	0.336	0.026	7	57th
rs9956309	18	38136697	Intergenic	-0.752	0.336	0.026	7	59th
rs1159918	4	99321852	ADH1B	-0.753	0.336	0.025	7	60th
rs143747467	16	11367549	RMI2	-0.753	0.337	0.026	7	61st
rs2893656	7	106534655	ENSG00000243797	-0.754	0.336	0.025	7	62nd
rs2176039	22	45189151	Intergenic	-0.755	0.336	0.025	6	65th
rs28660489	12	64560784	RASSF3	-0.755	0.336	0.025	7	63rd
rs7602576	2	112942040	Intergenic	-0.755	0.336	0.025	7	64th
rs118038177	11	121459793	SORL1	-0.756	0.336	0.025	6	68th
rs6947666	7	137708989	DGKI	-0.756	0.336	0.025	6	66th
rs9567838	13	47359837	Intergenic	-0.756	0.336	0.025	6	67th
rs112288580	11	98729819	Intergenic	-0.757	0.336	0.025	6	70th
rs115980385	7	141463227	TMEM178B	-0.757	0.336	0.025	6	69th
rs6997565	8	2560505	Intergenic	-0.757	0.337	0.025	6	71st
rs72973932	11	74400615	ENSG00000254631	-0.758	0.337	0.025	6	72nd
rs11171999	12	56846925	ENSG00000258679	-0.759	0.336	0.024	6	73rd
rs141730255	7	138253804	Intergenic	-0.761	0.336	0.024	6	74th
rs111704832	15	93374070	ENSG00000257060	-0.762	0.336	0.024	6	77th
rs141347161	7	42377714	Intergenic	-0.762	0.336	0.024	6	76th
rs538622	5	172920676	ERGIC1	-0.762	0.336	0.024	6	75th
rs72792226	10	48204534	FRMPD2	-0.762	0.336	0.024	6	78th
rs10492593	13	66919985	PCDH9	-0.763	0.336	0.024	5	83rd

rs12900374	15	82741261	Intergenic	-0.763	0.336	0.024	6	80th
rs17326496	5	113340882	МСС	-0.763	0.336	0.023	5	81st
rs28407220	2	33816106	LINC01320	-0.763	0.336	0.023	5	86th
rs35059420	5	169995487	DOCK2	-0.763	0.336	0.023	5	84th
rs36037136	1	164710739	PBX1	-0.763	0.336	0.023	5	85th
rs4273590	5	159335610	ENSG00000249738	-0.763	0.336	0.024	5	82nd
rs9653747	21	18669100	MIR548XHG	-0.763	0.336	0.024	6	79th
rs12967284	18	12532099	SPIRE1	-0.764	0.336	0.023	5	89th
rs144049425	2	162505368	KCNH7	-0.764	0.336	0.023	5	87th
rs68072647	17	9224590	NTN1	-0.764	0.336	0.023	5	88th
rs112820958	5	79465868	HOMER1	-0.765	0.336	0.023	5	91st
rs12079484	1	181048307	MR1	-0.765	0.336	0.023	5	90th
rs144129573	12	114485139	Intergenic	-0.765	0.336	0.023	5	93rd
rs35851984	17	28239061	Intergenic	-0.765	0.336	0.023	5	92nd
rs11652752	17	67379776	PITPNC1	-0.766	0.336	0.023	5	94th
rs12220832	10	80806689	Intergenic	-0.766	0.336	0.023	4	99th
rs150278778	1	209379025	LINC01698	-0.766	0.336	0.023	4	100th
rs5766195	22	44921429	PHF21B	-0.766	0.336	0.023	5	95th
rs77238283	17	11797907	DNAH9	-0.766	0.336	0.023	4	97th
rs7764458	6	83116819	DOP1A	-0.766	0.336	0.023	4	101st
rs79612353	20	59884601	SYCP2	-0.766	0.336	0.023	5	96th
rs8101883	19	56681170	ZIM2-AS1	-0.766	0.336	0.023	4	98th
rs12229321	12	64518074	RASSF3	-0.767	0.336	0.023	4	103rd
rs1442671	18	69528820	DOK6	-0.767	0.336	0.023	4	102nd
rs72838433	2	127913724	Intergenic	-0.768	0.336	0.023	4	104th
rs430979	4	2812971	SH3BP2	-0.769	0.336	0.022	4	106th
rs6037557	20	405220	Intergenic	-0.769	0.336	0.022	4	107th
rs79446108	7	137863942	Intergenic	-0.769	0.336	0.022	4	105th
rs116488199	10	1675116	ADARB2	-0.77	0.336	0.022	4	108th
rs13387347	2	168898336	SPC25	-0.77	0.336	0.022	4	111th
rs2985994	13	45539849	ERICH6B	-0.77	0.336	0.022	4	112th
rs76427181	6	86684739	Intergenic	-0.77	0.336	0.022	4	109th
rs78549703	19	17638733	UNC13A	-0.77	0.336	0.022	4	110th
rs193044924	17	15767328	Intergenic	-0.771	0.336	0.022	3	114th
rs6603044	15	83015059	ENSG00000259805	-0.771	0.336	0.022	3	113th
rs10139154	14	30678292	SCFD1	-0.772	0.336	0.022	3	116th
rs150949995	5	150518937	NDST1	-0.772	0.336	0.022	3	117th
rs8053191	16	81117558	PKD1L2	-0.772	0.337	0.022	3	115th
rs72733862	5	8446181	LINC02226	-0.773	0.336	0.022	3	118th
rs76323495	16	16859460	Intergenic	-0.773	0.336	0.022	3	119th
rs4974650	4	2309992	ZFYVE28	-0.774	0.336	0.022	3	120th
rs79676202	12	49786775	Intergenic	-0.774	0.336	0.022	3	121st
rs16865645	2	177696567	PDE11A	-0.775	0.336	0.021	3	122nd

rs116946806	7	131997812	Intergenic	-0.776	0.336	0.021	3	123rd
rs320019	1	48610454	AGBL4	-0.776	0.336	0.021	3	124th
rs11185388	1	104198732	ENSG00000215869	-0.777	0.336	0.021	3	125th
rs3109207	4	168675360	PALLD	-0.777	0.336	0.021	3	126th
rs11065961	12	111585263	ATXN2	-0.778	0.336	0.021	3	127th
rs111970477	3	47064091	SETD2	-0.779	0.336	0.021	3	128th
rs115348904	4	158390602	RXFP1	-0.779	0.337	0.021	2	129th
rs112913348	5	108554187	Intergenic	-0.78	0.336	0.021	2	131st
rs72716562	5	7957484	Intergenic	-0.78	0.336	0.021	2	130th
rs8180839	7	5200339	WIPI2	-0.782	0.336	0.02	2	132nd
rs12472309	2	7266695	Intergenic	-0.783	0.336	0.02	2	134th
rs2271689	10	17046273	CUBN	-0.783	0.336	0.02	2	133rd
rs12369156	12	120729872	ACADS	-0.785	0.336	0.02	2	135th
rs75087725	21	44333234	CFAP410	-0.785	0.336	0.02	2	136th
rs10067826	5	10282407	CMBL	-0.786	0.336	0.02	2	138th
rs35318094	5	180245984	MAPK9	-0.786	0.336	0.02	2	139th
rs73152707	3	86619077	Intergenic	-0.786	0.336	0.02	2	137th
rs970258	2	5138399	Intergenic	-0.786	0.336	0.02	2	140th
rs117860708	11	1537217	Intergenic	-0.788	0.336	0.019	2	141st
rs4676496	3	39456514	Intergenic	-0.788	0.336	0.019	2	142nd
rs11067262	12	114724621	TBX3-AS1	-0.789	0.336	0.019	2	144th
rs3098553	15	27631110	Intergenic	-0.789	0.336	0.019	2	143rd
rs9819308	3	1691812	Intergenic	-0.79	0.336	0.019	1	145th
rs10050775	5	38007940	Intergenic	-0.791	0.336	0.019	1	146th
rs10443173	1	86068071	COL24A1	-0.796	0.336	0.018	1	148th
rs144387708	12	119264395	Intergenic	-0.796	0.336	0.018	1	150th
rs3798105	5	133194937	ENSG00000248245	-0.796	0.336	0.018	1	149th
rs9903355	17	36580791	GGNBP2	-0.796	0.336	0.018	1	147th
rs7209200	17	5066645	Intergenic	-0.797	0.336	0.018	1	151st
rs651001	6	11569169	TMEM170B	-0.798	0.336	0.018	1	153rd
rs79496463	8	132904843	TG	-0.798	0.336	0.018	1	152nd
rs9813285	3	29329178	RBMS3	-0.804	0.336	0.017	1	154th
rs118071175	14	28515686	Intergenic	-0.805	0.336	0.017	1	155th
rs7930973	11	44159478	EXT2	-0.806	0.336	0.017	1	156th
rs11702120	21	23786163	Intergenic	-0.808	0.336	0.016	1	157th
rs7258235	19	2612120	GNG7	-0.811	0.336	0.016	1	158th
rs4292737	8	10401605	MSRA	-0.814	0.336	0.016	1	159th
rs112348322	4	118882809	SYNPO2	-0.833	0.336	0.013	1	160th
rs12886280	14	31829453	NUBPL	-0.834	0.336	0.013	1	161st

Table S4. Enrichment analysis identified pathways influencing the age of symptom onset among *C9orf72* carriers, related to Figure 4.

Enrichment analysis for decile ten was based on the variants that make up decile ten plus the *C9orf72* gene. g:Profiler maps intronic variants to their corresponding gene. Decile refers to the decile that yielded the pathways on enrichment analysis. No significant pathways were identified for deciles 1–4 and 9. GO:MF, Gene Ontology, molecular function; GO:BP, Gene Ontology, biological process; KEGG, Kyoto Encyclopedia of Genes and Genomes.

Source	Term name	Category	Term ID	Adjusted p-value	Decile
GO:MF	ATP-dependent microtubule motor activity	Transport	GO:1990939	0.020	10
GO:MF	Motor activity	Transport	GO:0003774	0.020	10
GO:MF	Microtubule motor activity	Transport	GO:0003777	0.020	10
GO:BP	Vacuolar transport	Transport	GO:0007034	0.043	10
GO:BP	Cytosolic transport	Transport	GO:0016482	0.045	10
GO:MF	Tubulin binding	Transport	GO:0015631	0.020	10
GO:BP	Developmental growth involved in morphogenesis	Transport	GO:0060560	0.034	10
GO:BP	Developmental cell growth	Transport	GO:0048588	0.034	10
GO:BP	Cell growth	Transport	GO:0016049	0.040	10
GO:BP	Synaptic vesicle transport	Axonal transport	GO:0048489	0.034	10
GO:BP	Synaptic vesicle localization	Axonal transport	GO:0097479	0.035	10
GO:BP	Axon extension	Axonal transport	GO:0048675	0.040	10
GO:BP	Neuron projection extension	Axonal transport	GO:1990138	0.028	10
GO:BP	Axonogenesis	Axonal transport	GO:0007409	0.040	10
GO:BP	Lysosomal transport	Autophagy	GO:0007041	0.040	10
GO:BP	Positive regulation of autophagy	Autophagy	GO:0010508	0.040	10
GO:BP	Establishment of protein localization to mitochondrion	Mitochondria	GO:0072655	0.040	10
GO:BP	Protein targeting to mitochondrion	Mitochondria	GO:0006626	0.040	10
GO:BP	Protein localization to mitochondrion	Mitochondria	GO:0070585	0.041	10
KEGG	Amyotrophic lateral sclerosis	Neurodegeneration	KEGG:05014	0.001	10
KEGG	Pathways of neurodegeneration - multiple diseases	Neurodegeneration	KEGG:05022	0.002	10
GO:MF	Oxidoreductase activity, acting on the CH- OH group of donors, NAD or NADP as acceptor	Other	GO:0016616	0.020	10
GO:MF	Oxidoreductase activity, acting on CH-OH group of donors	Other	GO:0016614	0.021	10
GO:BP	Phenol-containing compound metabolic process	Other	GO:0018958	0.040	10
GO:BP	Regulation of innate immune response	Defense response	GO:0045088	0.011	8
GO:BP	Positive regulation of response to biotic stimulus	Response to biotic stimulus	GO:0002833	0.017	8
GO:BP	Innate immune response-activating signaling pathway	Defense response	GO:0002758	0.017	8
GO:BP	Positive regulation of innate immune response	Defense response	GO:0045089	0.017	8
GO:BP	Pattern recognition receptor signaling pathway	Defense response	GO:0002221	0.017	8

GO:BP	Activation of innate immune response	Defense response	GO:0002218	0.017	8
GO:BP	Toll-like receptor signaling pathway	Receptor signaling pathway	GO:0002224	0.017	8
GO:BP	Immune response-activating signaling pathway	Signal transduction	GO:0002757	0.023	8
GO:BP	Positive regulation of defense response	Defense response	GO:0031349	0.023	8
GO:BP	Immune response-regulating signaling pathway	Signal transduction	GO:0002764	0.025	8
GO:MF	2-oxoglutarate-dependent dioxygenase activity	Oxidoreductase activity	GO:0016706	0.031	8
GO:MF	Dioxygenase activity	Oxidoreductase activity	GO:0051213	0.037	8
GO:BP	Stem cell differentiation	Cellular developmental process	GO:0048863	0.049	8
GO:MF	Transcription coactivator binding	Transcription factor binding	GO:0001223	0.006	7
GO:MF	Transcription coregulator binding	Transcription factor binding	GO:0001221	0.018	7
GO:BP	Neutral lipid metabolic process	Cellular lipid metabolic process	GO:0006638	0.016	6
GO:BP	Acylglycerol metabolic process	Cellular lipid metabolic process	GO:0006639	0.016	6
GO:BP	Endoplasmic reticulum to Golgi vesicle- mediated transport	Intracellular transport	GO:0006888	0.016	6
GO:MF	Small GTPase binding	Enzyme binding	GO:0031267	0.019	6
GO:MF	GTPase binding	Enzyme binding	GO:0051020	0.019	6
GO:MF	Molecular function inhibitor activity	Molecular function regulatory activity	GO:0140678	0.019	6
GO:MF	Enzyme inhibitor activity	Enzyme regulator activity	GO:0004857	0.019	6
GO:BP	Golgi vesicle transport	Vesicle-mediated transport	GO:0048193	0.026	6
GO:BP	Glycerolipid metabolic process	Cellular lipid metabolic process	GO:0046486	0.030	6
GO:MF	T cell receptor binding	Signaling receptor binding	GO:0042608	0.002	5

Table S5. The list of genes used in the gene-gene similarity network *GREP* analysis, related to Figure 5.

Seed genes refer to the genetically identified genes in decile ten.

Rank	Gene				
Seed gene	ABLIM2				
Seed gene	C9orf72				
Seed gene	DIP2B				
Seed gene	DNAH17				
Seed gene	KIF5A				
Seed gene	LINC00598				
Seed gene	ME2				
Seed gene	OCA2				
Seed gene	PRKN				
Seed gene	SAMM50				
Seed gene	SDR9C7				
1	RIMS3				
2	CAMKV				
3	CLASP2				
4	TUBB4A				
5	KCNQ2				
6	BSN				
7	KCNC1				
8	MAPK4				
9	SNCB				
10	CLVS2				
11	CNTN2				
12	SEPTIN3				
13	NCAN				
14	KIF1A				
15	LGI3				
16	CDH22				
17	CDHR1				
18	ADCYAP1R1				
19	OTUD7A				
20	KIF1B				
21	SLC8A2				
22	TMEM151B				
23	TRIM9				
24	PHF24				
25	VSTM2B				
26	CACNA1B				
27	DOCK3				

28	NDRG4			
29	ATP1A3			
30	GPM6B			
31	CRHR1			
32	RBFOX1			
33	TPPP			
34	GRIA2			
35	NEFL			
36	SLC35F1			
37	SNAP91			
38	KCNJ9			
39	HMP19			
40	ACTL6B			
41	CARMIL3			
42	PLP1			
43	SYP			
44	CELSR2			
45	SULT4A1			
46	NEFM			
47	RIMBP2			
48	CPLX2			
49	ASTN1			
50	CNTN1			
51	SHISA7			
52	STMN4			
53	SYN2			
54	GNAL			
55	DLG2			
56	KCNA2			
57	ARHGEF4			
58	KIF5C			
59	IGSF11			
60	NSG1			
61	CELF3			
62	ZDHHC22			
63	HRH3			
64	GDAP1L1			
65	SCRT1			
66	INA			
67	NRXN1			
68	WNK2			
69	PTPN5			
70	MMD2			

71	HPCAL4			
72	CHRNB2			
73	JPH3			
74	ATP2B3			
75	MAPK8IP2			
76	HAPLN2			
77	MYT1			
78	PAFAH1B1			
79	CDK5R1			
80	NOL4			
81	SYNPR			
82	ZNF536			
83	GALNT8			
84	CTNNA2			
85	ST8SIA3			
86	ABCG4			
87	LINGO1			
88	ADAM22			
89	AMER2			
90	PAK5			
91	PPFIA3			
92	SH3GL2			
93	PREPL			
94	ELMOD1			
95	ATP2B2			
96	LRRC4B			
97	SORCS1			
98	DUSP26			
99	JPH4			
100	MAST1			
101	BRSK2			
102	CA11			
103	ELAVL3			
104	GNG3			
105	STXBP5L			
106	PTPRZ1			
107	MAPT			
108	ZCCHC12			
109	RIMS4			
110	SYT4			
111	TMEM179			
112	CLASP1			
113	ELAVL4			

114	SOCS7			
115	ADGRB3			
116	RUNDC3A			
117	SCN3B			
118	PSD2			
119	EFR3B			
120	GARNL3			
121	GRID1			
122	ZDHHC11B			
123	TMEM63C			
124	RAB3C			
125	CHD5			
126	ADGRL3			
127	DPYSL5			
128	GRIK3			
129	PHYHIPL			
130	CCDC177			
131	GRIA4			
132	FBXL16			
133	IGSF21			
134	SEZ6L			
135	TTBK1			
136	CNTFR			
137	NRXN2			
138	LANCL1			
139	OLFM3			
140	SCG3			
141	ABCC8			
142	UNC13A			
143	SH3GL3			
144	GRIK5			
145	NELL1			
146	ATP1B2			
147	SCN4B			
148	CADM2			
149	RIPPLY2			
150	B3GAT1			
151	IGSF9B			
152	ANK2			
153	CADM4			
154	UBE2QL1			
155	PCDH8			
156	SYN1			

157	ADGRA1			
158	ADAM11			
159	KCNB2			
160	SMIM10L2A			
161	NXPH1			
162	CHRNA4			
163	NAPB			
164	GAP43			
165	MAP3K9			
166	PGBD5			
167	LRRTM3			
168	PIP4K2B			
169	RAB3A			
170	SLIT1			
171	TCEAL5			
172	GABRG2			
173	GNAO1			
174	GRID2			
175	PPP2R2C			
176	RUFY3			
177	CASKINI			
178	ADGRL1			
179	SORCS3			
180	SPTBN4			
181	CNTNAP4			
182	PDZD4			
183	PEX5L			
184	SOX8			
185	CSPG5			
186	ATCAY			
187	RPRD1A			
188	RGS8			
189	PHF21B			
190	ACTN2			
191	GAD2			
192	SLC6A11			
193	SLC32A1			
194	KCNJ4			
195	MEGF11			
196	POU3F3			
197	SV2B			
198	ELAVL2			
199	IGLON5			

200	LRRC3B
200	LIUICOD

Table S6. The list of repurposable, approved drugs identified by the GREP analysis, related to Figure 5.

Drug indications and mechanisms of action were curated from the Drugbank database [S15]. GABA, gamma-aminobutyric acid; GABA(A), gamma-aminobutyric acid Type A; VDCC, Voltage-dependent calcium channel; KCNK3, Potassium Two Pore Domain Channel Subfamily K Member 3; CHRNA4, Cholinergic Receptor Nicotinic Alpha 4 Subunit; CaV2.2, Neuronal voltage-gated N-type Calcium Channel.

Drug	Indication	Mechanism of action	
Acamprosate	Withdrawal symptoms of alcoholism	Analogue of GABA	
Adinazolam	Seizures	GABA positive allosteric modulator	
Alprazolam	Anxiety and panic disorders	GABA(A) receptor positive allosteric modulator	
Betahistine	Vertigo	H1-receptor agonist	
Brivaracetam	Seizures	Unknown, synaptic GABA release	
Bromazepam	Anxiety and panic disorders	GABA(A) receptor positive allosteric modulator	
Chlordiazepoxide	Withdrawal symptoms of alcoholism	GABA(A) receptor positive allosteric modulator	
Cinolazepam	Sleep disorders	GABA positive allosteric modulator	
Clobazam	Seizures	GABA positive allosteric modulator	
Clonazepam	Anxiety and panic disorders	GABA(A) receptor positive allosteric modulator	
Clotiazepam	Anxiety	GABA(A) receptor positive allosteric modulator	
Desflurane	Anesthetic	GABA(A) receptor positive allosteric modulator	
Diazepam	Anxiety and alcohol withdrawal	GABA(A) receptor positive allosteric modulator	
Enflurane	Anesthetic	GABA(A) receptor potentiator	
Estazolam	Insomnia	GABA(A) receptor positive allosteric modulator	
Eszopiclone	Insomnia	GABA(A) receptor potentiator	
Ethchlorvynol	Insomnia	GABA(A) receptor positive allosteric modulator	
Etizolam	Anxiety and insomnia	GABA(A) receptor positive allosteric modulator	
Etomidate	Anesthetic	GABA receptor subunit alpha-1 potentiator	
Fludiazepam	Convulsion	GABA receptor subunit alpha-1 agonist	
Flurazepam	Anxiety and convulsion	GABA(A) receptor positive allosteric modulator	
Gabapentin	Convulsion	VDCC subunit alpha-2/delta-1 inhibitor	
Glutethimide	Sedative	GABA receptor subunit alpha-1 agonist	
Halazepam	Seizures and anxiety	GABA(A) receptor positive allosteric modulator	
Halothane	Anesthetic	KCNK3 binder	
Isoflurane	Anesthetic	GABA receptor subunit alpha-1 agonist	
Levetiracetam	Seizures	CaV2.2 subunit alpha-1B inhibitor	
Lorazepam	Seizures, anxiety, and panic disorders	GABA(A) receptor positive allosteric modulator	
Lormetazepam	Anxiety	GABA(A) receptor positive allosteric modulator	
Meprobamate	Anxiety	GABA agonist	
Metharbital	Convulsion	GABA receptor subunit alpha-2 potentiator	
Methoxyflurane	Anesthetic	GABA receptor subunit alpha-1 agonist	
Methylphenobarbital	Seizures	Depressant of the central nervous system	
Midazolam	Anxiety and convulsion	GABA(A) receptor positive allosteric modulator	
Nicotine	Smoking cessation.	Neuronal CHRNA4 agonist	

Nitrazepam	Anxiety and insomnia	GABA positive allosteric modulator	
Oxazepam	Withdrawal symptoms of alcoholism	GABA(A) receptor positive allosteric modulator	
Pentobarbital	Seizures and sedation	GABA(A) receptor potentiator	
Pitolisant	Narcolepsy	Antagonist at the histamine H3 receptor	
Prazepam	Anxiety	GABA(A) receptor positive allosteric modulator	
Primidone	Seizures	GABA receptor subunit beta-2 potentiator	
Propofol	Sedative	GABA receptor subunit beta-2 potentiator	
Quazepam	Insomnia	GABA positive allosteric modulator	
Sevoflurane	Anesthetic	GABA(A) receptor agonist	
Stiripentol	Seizures	GABA(A) receptor agonist allosteric modulator	
Talbutal	Sedative	GABA receptor subunit alpha-2 potentiator	
Temazepam	Anxiety and panic disorders	GABA(A) receptor positive allosteric modulator	
Topiramate	Seizures	GABRA1 agonist	
Triazolam	Insomnia	GABA(A) receptor positive allosteric modulator	
Varenicline	Smoking cessation	CHRNA4 partial agonist	
Ziconotide	Chronic pain	CaV2.2 subunit alpha-1B inhibitor	

Table S7. *KIF5A* genotypes influenced the age of symptom onset among *C9orf72* carriers, related to Figure 4.

The table summarizes the age at onset of *C9orf72* individuals carrying the rs113247976 (chr12:57581917) variant in the *KIF5A* gene. N, number of cases.

Variant	Status	Genotype	Age at onset mean	Age at onset standard deviation	e at onset urd deviation Cases (n)	
		CC	57.81	9.49	780	
	C9orf72 carrier	CT	54.19	11.09	37	
rs113247976 (<i>KIF5A</i>)		TT	NA	NA	0	
	Non-carrier	CC	60.08	12.54	6,827	
		СТ	60.06	12.14	206	
		TT	61.75	11.76	4	

Dataset	Sample size	Reference
Reference	12,577 ALS cases & 23,475 controls	16
Training	7,030 ALS cases & 34,235 controls	16,17
Test (<i>C9orf72</i>)	817 ALS/FTD	16,18
Replication (C9orf72)	699 ALS/FTD	14

Table S8. The sources of the cohorts used in this study, related to Star Methods.

Table S9. The clinical descriptions of the test cohort, related to Star Methods.

The test cohort is composed of 817 *C9orf72* carriers. FTLD, frontotemporal lobar degeneration; FTLD-Tau, frontotemporal lobar degeneration with tau pathology; PSP, progressive supranuclear palsy; FTLD TDP, frontotemporal lobar degeneration with TDP-43 inclusions; FTLD-U, frontotemporal lobar degeneration with ubiquitin-positive inclusions; NOS, not otherwise specified. *One FTLD NOS patient was initially clinically misdiagnosed as PSP.

Туре	Subtype	Size
Asymptomatic		13
Clinical	ALS	666
Clinical	FTD Motor neuron disease	81
Clinical	FTD Behavioral variant	23
Clinical	FTD Language variant NOS	1
Clinical	FTD Nonfluent variant	3
Clinical	FTD NOS	2
Clinical	FTD Semantic variant	3
Pathological	FTLD NOS*	9
Pathological	FTLD Tau (PSP)	2
Pathological	FTLD TDP Type A	4
Pathological	FTLD TDP Type B	1
Pathological	FTLD TDP Type Unknown	6
Pathological	FTLD U	3

Table S10. The cell lines used for the drug validation experiments, related to Figure 6 and Figure S7.

F, female; M, male.

iPSC cell line	Source	Clinical remarks	Mutation	Race	Sex	Age at collection	Supplier
CS14iCTR-nxx	Fibroblast	Clinically normal and healthy volunteer	Unknown	Caucasian	F	52	Cedars-Sinai
GM23338	Fibroblast	Clinically normal and healthy volunteer	Unknown	Caucasian	М	55	Coriell Biorepository
MIFF1	Fibroblast	Clinically normal and healthy volunteer	Unknown	Caucasian	М	<1 month old	University of Sheffield
CS02iCTR-NTn1	PBMC	Clinically normal and healthy volunteer	Unknown	Caucasian	М	51	Cedars-Sinai
ALS-183-C9	Fibroblast	ALS, age of onset = 48; disease duration = 27 months.	C9orf72 repeat expansion	Caucasian	М	50	University of Sheffield
ALS-78	Fibroblast	ALS, age of onset = unknown; disease duration = 31.7 months	<i>C9orf72</i> repeat expansion	Caucasian	М	66	University of Sheffield
CS28iALS-C9nxx	Fibroblast	ALS, age of onset = 46; site of onset = left upper extremity	C9orf72 repeat expansion	Caucasian	М	47	Cedars-Sinai
CS29iALS-C9nxx	Fibroblast	ALS, age of onset = unknown; disease duration = unknown	C9orf72 repeat expansion	Caucasian	М	47	Cedars-Sinai
CS52iALS-C9nxx	Fibroblast	ALS, age of onset = 57; disease duration = 48 months	C9orf72 repeat expansion	Unknown	М	49	Cedars-Sinai
CS29iALS-C9n1.ISOxx	Fibroblast	ALS, Age of onset: Unknown; disease duration, Unknown	Isogenic control line of CS29iALS- C9nxx	Caucasian	М	47	Cedars-Sinai
CS52iALS-C9n6.ISOxx	Fibroblast	ALS, age of onset = 57; disease duration = 48 months	Isogenic control line of CS52iALS-nxx	Unknown	М	49	Cedars-Sinai

Table S11. The antibodies used in motor neuron staining, related to Star Methods.

ChAT, Choline acetyltransferase; MAP2, Microtubule-associated protein 2; Islet 1/2, ISL LIM
Homeobox 1/2.

	Host	Dilution	Wavelength (nm)	Supplier	Catalogue Number
Primary Antibodies					
Beta III tubulin	Mouse	1:1000	-	Biolegend	801201
Caspase-3	Rabbit	1:200	-	Merck Millipore	AB3623
ChAT	Goat	1:100	-	Merck Millipore	AB144P
MAP-2	Guinea pig	1:1000	-	Synaptic systems	188004
Islet 1/2	Rabbit	1:500	-	Abcam	ab109517
NeuN	Mouse	1:1000	-	Millipore	MAB377
Secondary Antibodies					
Anti-rabbit	Donkey	-	488	Thermofisher	A21206
Anti-rabbit	Donkey	-	568	Thermofisher	A10042
Anti-mouse	Donkey	-	568	Thermofisher	A10037
Anti-mouse	Donkey	-	488	Thermofisher	A21202
Anti-goat	Donkey	-	555	Thermofisher	A21432
Anti-guinea pig	Goat	-	647	Thermofisher	A21450

OTHER INFORMATION

Consortia

The members of the International ALS Genomics Consortium are:

Robert H. Baloh¹, Robert Bowser², Christopher B. Brady³, Alexis Brice^{4,5}, James Broach⁶, William Camu⁷, Ruth Chia⁸, Adriano Chiò^{9,10,11}, John Cooper-Knock¹², Daniele Cusi¹³, Jinhui Ding¹⁴, Carsten Drepper¹⁵, Vivian E. Drory¹⁶, Travis L. Dunckley¹⁷, Eva Feldman¹⁸, Mary Kay Floeter¹⁹, Pietro Fratta²⁰, Glenn Gerhard¹⁷, J. Raphael Gibbs¹⁴, Summer B. Gibson²¹, Jonathan D. Glass²², Stephen A. Goutman¹⁸, John Hardy²³, Matthew B. Harms²⁴, Terry D. Heiman-Patterson^{25,26}, Lilja Jansson²⁷, Janine Kirby²⁸, Hannu Laaksovirta²⁷, John E. Landers²⁹, Francesco Landi³⁰, Isabelle Le Ber³¹, Serge Lumbroso³², Claire Guissart³², Daniel JL. MacGowan³³, Nicholas J. Maragakis³⁴, Gabriele Mora⁹, Kevin Mouzat³², Liisa Myllykangas²⁷, Richard W. Orrell³⁵, Lyle W. Ostrow²⁶, Stuart Pickering-Brown³⁶, Erik P. Pioro³⁷, Stefan M. Pulst²¹, John M. Ravits³⁸, Alan E. Renton³⁹, Wim Robberecht⁴⁰, Ekaterina Rogaeva⁴¹, Jeffrey D. Rothstein⁴², Erika Salvi⁴³, Sonja W. Scholz^{42,44}, Michael Sendtner⁴⁵, Pamela J. Shaw¹², Katie C. Sidle²³, Zachary Simmons⁴⁶, David J. Stone⁴⁷, Pentti J. Tienari²⁷, Bryan J. Traynor^{8,23,42,48,49}, John Q. Trojanowski⁵⁰, Juan C. Troncoso⁵¹, Miko Valori²⁷, Philip Van Damme^{41,52}, Vivianna M. Van Deerlin⁵⁰, Ludo Van Den Bosch⁴¹, Lorne Zinman⁵³

- 1. Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- 2. Division of Neurology, Barrow Neurological Institute, Phoenix, AZ 85013, USA
- 3. Research and Development Service, Veterans Affairs Boston Healthcare System, Boston, MA 02130, USA
- 4. Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière, Université Pierre et Marie Curie, Paris, France
- 5. INSERM U975, Paris, France
- 6. Department of Biochemistry, Penn State College of Medicine, Hershey, PA 17033, USA
- 7. ALS reference center, Gui de Chauliac Hospital, CHU and Univ Montpellier, Montpellier, France
- 8. Neuromuscular Diseases Research Section, National Institute on Aging, Bethesda, MD 20892, USA
- 9. 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Via Verdi 8, Turin, 10124, Italy
- 10. Neuroscience Institute of Torino, University of Turin, Turin, 10124, Italy
- 11. Institute of Cognitive Sciences and Technologies, C.N.R., Rome, Italy
- 12. Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
- 13. Bio4Dreams Scientific Unit Bio4Dreams Business Nursery for Life Sciences Milano Italy
- 14. Computational Biology Group, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD 20892, USA
- 15. Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg 97080, Germany
- 16. Department of Neurology, Tel-Aviv Sourasky Medical Center, Tel-Aviv,
- 17. Department of Pathology, Penn State College of Medicine, Hershey, PA 17033, USA
- Department of Neurology, University of Michigan, 1500 E Medical Center Dr, Ann Arbor, MI 48109, USA
- 19. Motor Neuron Disorders Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
- 20. Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, WC1N 3BG, UK
- 21. Department of Neurology, University of Utah School of Medicine, 175 North Medical Drive East, Salt Lake City, UT 84132, USA
- 22. Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA

- 23. Department of Molecular Neuroscience and Reta Lila Weston Laboratories, Institute of Neurology, University College London, London, WC1N 3BG, UK
- 24. Department of Neurology, Columbia University, New York, NY 10032, USA
- 25. Department of Neurology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- 26. Department of Neurology, Temple University, 7602 Central Ave, Philadelphia, PA 19111, USA
- 27. Department of Neurology and HUSLAB, Helsinki University Hospital, Translational Immunology, Research Programs Unit and Department of Pathology University of Helsinki, Helsinki, FIN-02900, Finland
- 28. Department of Neuroscience, University of Sheffield, Sheffield, S10 2HQ, UK
- 29. Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
- 30. Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
- 31. Service de Biochimie, CHU de Nîmes, Nîmes, France
- 32. CHU Nimes, Univ. Montpellier, INM, INSERM, Montpellier, France
- 33. New York Hospital Cornell University Medical Center 1305 York Avenue NYC NY 10021
- 34. Department of Neurology, Johns Hopkins University, Baltimore, MD 21287, USA 40.
- 35. Department of Clinical Neuroscience, Institute of Neurology, University College London, London, NW2 2PG, UK
- 36. Faculty of Human and Medical Sciences, University of Manchester, Manchester, M13 9PT, UK
- 37. Department of Neurology, Cleveland Clinic, Cleveland, OH 44195, USA
- Neuroscience and Disease, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
- 39. Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- 40. Department of Neurosciences, Experimental Neurology, and Leuven Research Institute for Neuroscience and Disease, University of Leuven, Leuven, 3000, Belgium
- 41. Division of Neurology, Tanz Centre for Research of Neurodegenerative Diseases and Toronto Western Hospital, University of Toronto, Toronto, M5S 3H2, Canada
- 42. Department of Neurology, Johns Hopkins University, Baltimore, MD 21287, USA 40
- 43. Neurology and Headache Unit, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
- 44. Neurodegenerative Diseases Research Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
- 45. Department of Neurology, Institute for Clinical Neurobiology, University of Würzburg, Würzburg, D-97078, Germany
- 46. Department of Neurology, Penn State College of Medicine, Hershey, PA 17033, USA
- 47. Genetics, Genetics and Pharmacogenomics, Merck Research Laboratories, Merck & Co., Inc., West Point, PA 19486, USA
- 48. National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
- 49. RNA Therapeutics Laboratory, National Center for Advancing Translational Sciences, NIH, Rockville, MD 20850, USA
- 50. Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- 51. Clinical and Neuropathology Core, Johns Hopkins University, Baltimore, MD 21287, USA
- 52. VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, University of Leuven, Leuven, 3000, Belgium
- 53. Division of Neurology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, M4N 3M5, Canada

The members of the ITALSGEN Consortium are:

Stefania M. Angelocola¹, Francesco P. Ausiello², Marco Barberis³, Ilaria Bartolomei⁴, Stefania Battistini⁵, Enrica Bersano^{6,7}, Giulia Bisogni⁸, Giuseppe Borghero⁹, Maura Brunetti¹⁰, Corrado Cabona¹¹, Andrea Calvo^{10,12}, Fabrizio Canale¹³, Antonio Canosa^{10,12,14}, Teresa A. Cantisani¹⁵, Margherita Capasso¹⁶, Claudia Caponnetto¹¹, Patrizio Cardinali¹, Paola Carrera¹⁷, Federico Casale¹⁰, Adriano Chiò^{10,12,14}, Tiziana Colletti¹⁸, Francesca L. Conforti¹⁹, Amelia Conte⁸, Elisa Conti^{20,21}, Massimo Corbo²², Stefania Cuccu⁹, Eleonora Dalla Bella⁶, Eustachio D'Errico²³, Giovanni DeMarco¹⁰, Raffaele Dubbioso², Carlo Ferrarese^{20,21}, Pilar M. Ferraro¹¹, Massimo Filippi^{24,25,26,27}, Nicola Fini²⁸, Gianluca Floris⁹, Giuseppe Fuda¹⁰, Salvatore Gallone¹⁰, Giulia Gianferrari²⁸, Fabio Giannini⁵, Maurizio Grassano¹⁰, Lucia Greco²⁹, Barbara Iazzolino¹⁰, Alessandro Introna²³, Vincenzo La Bella¹⁸, Serena Lattante^{30,31}, Giuseppe Lauria^{6,32}, Rocco Liguori³³, Giancarlo Logroscino^{34,35}, Francesco O. Logullo³⁶, Christian Lunetta²⁹, Paola Mandich^{11,37}, Jessica Mandrioli^{38,39}, Umberto Manera¹⁰, Fiore Manganelli², Giuseppe Marangi^{30,31}, Kalliopi Marinou⁴⁰, Maria Giovanna Marrosu⁴¹, Ilaria Martinelli²⁸, Sonia Messina⁴², Cristina Moglia^{10,12}, Maria Rosaria Monsurro⁴³, Gabriele Mora⁹, Lorena Mosca⁴⁴, Maria R. Murru⁹, Paola Origone¹¹, Carla Passaniti⁴³, Cristina Petrelli³⁶, Antonio Petrucci⁴⁵, Angelo Pirisi⁴⁶, Susanna Pozzi²⁹, Maura Pugliatti⁴⁶, Angelo Quattrini⁴⁷, Claudia Ricci⁵, Giulia Riolo⁵, Nilo Riva⁴⁷, Massimo Russo⁴⁸, Mario Sabatelli⁴⁹, Paolina Salamone¹⁰, Marco Salivetto²⁹, Fabrizio Salvi⁴, Marialuisa Santarelli⁵⁰, Luca Sbaiz³, Riccardo Sideri⁴⁰, Isabella Simone²³, Cecilia Simonini²⁸, Rossella Spataro¹⁸, Raffaella Tanel⁵¹, Gioacchino Tedeschi⁴³, Anna Ticca⁵², Antonella Torriello⁵³, Stefania Tranquilli⁹, Lucio Tremolizzo^{20,21}, Francesca Trojsi⁴³, Rosario Vasta¹⁰, Veria Vacchiano⁴, Giuseppe Vita⁴⁸, Paolo Volanti⁵⁴, Marcella Zollino^{55,56}, Elisabetta Zucchi²⁸

1. Neurology Unit, AST Ferme, Marche, Italy

- 2. Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples Federico II, Napoli, Italy
- 3. Department of Medical Genetic, Azienda Ospedaliero Universitaria Città Della Salute e Della Scienza, Torino, Italy
- 4. Center for Diagnosis and Cure of Rare Diseases, Department of Neurology, IRCCS Institute of Neurological Sciences, Bologna, Italy
- 5. Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
- 6. 3rd Neurology Unit and Motor Neuron Diseases Centre, IRCCS Foundation "Carlo Besta" Neurological Institute, Milano, Italy
- 7. 'L. Sacco' Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Università degli Studi di Milano, Milano, Italy
- 8. NeuroMuscular Omnicentre (NEMO), Serena Onlus, Foundation- Pol. A. Gemelli, Roma, Italy
- 9. Neurologic Unit, Monserrato University Hospital, Cagliari University, Cagliari, Italy
- 10. 'Rita Levi Montalcini' Department of Neuroscience, Amyotrophic Lateral Sclerosis Center, University of Torino, Torino, Italy
- 11. Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal-Child Sciences, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- 12. Division of Neurology, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
- 13. Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Caserta, Italy
- 14. Institute of Cognitive Sciences and Technologies, C.N.R., Rome, Italy
- 15. Struttura complessa di Neurofisiopatologia, Azienda Ospedaliera di Perugia, Perugia, Italy
- 16. Unit of Neurology, Ospedale Clinicizzato SS Annunziata, Chieti, Italy
- 17. Unit of Genomics for the diagnosis of human pathologies, IRCCS San Raffaele Scientific Institute, Milano, Italy
- 18. ALS Clinical Research Center, Bi.N.D., University of Palermo, Palermo, Italy

- 19. Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
- 20. Neurology Unit, "San Gerardo" hospital, Monza, Italy
- 21. School of Medicine and Surgery and Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, Milano, Italy
- 22. Department of Neurorehabilitation Sciences, Casa Cura Policlinico, Milano, Italy
- 23. Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Policlinic, Bari, Italy
- 24. Neurology Unit and Rehabilitation Unit, IRCCS "San Raffaele Scientific Institute", Milano, Italy
- 25. Neuroimaging Research Unit, Division of Neuroscience, IRCCS "San Raffaele Scientific Institute", Milano, Italy
- 26. Neurophysiology Service, IRCCS "San Raffaele Scientific Institute," Milano, Italy
- 27. Vita-Salute San Raffaele University, Milano, Italy
- 28. Department of Neurosciences, Ospedale Civile S. Agostino Estense, Azienda Ospedaliero Universitaria di Modena, Modena, Italy
- 29. NEMO Clinical Center Milano, Fondazione Serena Onlus, Milano, Italy
- 30. Genetica Medica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
- 31. Dipartimento Universitario Scienze della Vita e Sanità Pubblica, Sezione di Medicina Genomica, Università Cattolica del Sacro Cuore Facoltà di Medicina e Chirurgia, Roma, Italy
- 32. Department of Biomedical and Clinical Sciences Luigi Sacco, University of Milan, Milano, Italy
- 33. Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- 34. Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
- 35. Center for Neurodegenerative Diseases and the Aging Brain, Department of Clinical Research in Neurology, Pia Fondazione Cardinale G Panico, Tricase, Italy
- 36. Neurology Unit, AV3, ASUR Marche, Macerata, Italy
- 37. Medical Genetics Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- 38. Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, Modena, Italy
- 39. Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- 40. Department of Neurorehabilitation, Istituti Clinici Scientifici Maugeri IRCCS, Institute of Milan, Milano, Italy
- 41. Department of Neurology, Azienda Universitario Ospedaliera di Cagliari and University of Cagliari, Cagliari, Italy
- 42. NEuroMuscular Omnicentre (NEMO) Sud, Fondazione Aurora, OUC Neurology and Neuromuscular Disorders, University of Messina, Italy, Messina, Italy
- 43. Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Napoli, Italy
- 44. Department of Laboratory Medicine, Medical Genetics, Niguarda Ca' Granda Hospital, Milano, Italy
- 45. Neurology Department, San Camillo Hospital, Roma, Italy
- 46. Department of Biomedical and Surgical Sciences, Section of Neurological, Psychiatric and Psychological Sciences, University of Ferrara, Ferrara, Italy
- 47. Department of Neurology, IRCCS "San Raffaele Scientific Institute", Milano, Italy
- 48. OUC Neurology and Neuromuscular Disorders, University of Messina, Messina, Italy
- 49. NeuroMuscular Omnicentre (NEMO) Fondazione Policlinico Universitario A. Gemelli, Università Cattolica del Sacro Cuore, Roma, Italy
- 50. Department of Medicine, Azienda Complesso Ospedaliero, San Filippo Neri, Roma, Italy
- 51. Operative Unit of Neurology, S. Chiara Hospital, Trento, Italy
- 52. Department of Neurology, Azienda Ospedaliera San Francesco, Nuoro, Italy
- 53. ALS Center, Operative Unit of Neurology, AOU "San Giovanni di Dio e Ruggi d'Aragona", Salerno, Italy
- 54. Neurorehabilitation Unit ALS Center, Istituti Clinici Scientifici (ICS) Maugeri, Mistretta, Italy

- 55. Sezione di Medicina Genomica, Dipartimento Scienze della Vita e Sanità Pubblica, Facoltà di Medicina e Chirurgia, Università Cattolica Sacro Cuore, Roma, Italy
- 56. Unità di Genetica Medica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy

The members of the SLAGEN Consortium are:

Vincenzo Silani^{1,2}, Isabella Fogh³, Nicola Ticozzi^{1,2}, Antonia Ratti^{2,4}, Cinzia Tiloca², Silvia Peverelli², Cinzia Gellera⁵, Giuseppe Lauria Pinter^{6,7}, Franco Taroni⁵, Viviana Pensato⁵, Barbara Castellotti⁵, Giacomo P. Comi^{1,8}, Stefania Corti^{1,8}, Roberto Del Bo^{1,8}, Cristina Cereda⁹, Mauro Ceroni^{9,10}, Stella Gagliardi⁹, Lucia Corrado¹¹, Letizia Mazzini¹², Gianni Sorarù¹³, Flavia Raggi¹³, Gabriele Siciliano¹⁴, Costanza Simoncini¹⁴, Annalisa Lo Gerfo¹⁴, Massimiliano Filosto¹⁵, Maurizio Inghilleri^{16,17}, Alessandra Ferlini¹⁸

- 1. Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Milan, Italy
- 2. Department of Neurology and Laboratory of Neuroscience, Istituto Auxologico Italiano IRCCS, Milan, Italy
- 3. United Kingdom Dementia Research Institute, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King's College London
- 4. Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
- 5. Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- 6. 3rd Neurology Unit, Motor Neuron Diseases Center, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
- 7. Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- 8. Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- 9. Genomic and Post-Genomic Center, IRCCS Mondino Foundation, Pavia, Italy
- 10. Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
- 11. Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
- 12. ALS Center Department of Neurology "Maggiore della carità" University Hospital Novara, Italy
- 13. Department of Neurosciences, University of Padova, Padova, Italy
- 14. Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- 15. Department of Clinical and Experimental Sciences and NeMO-Brescia Clinical Center for Neuromuscular Diseases, University of Brescia, Italy
- 16. Department of Human Neurosciences, Rare Neuromuscular Diseases Centre, Sapienza University, Viale Dell'Università 30, 00185, Rome, Italy
- 17. IRCCS Neuromed, Pozzilli, Italy
- 18. Unit of Medical Genetics, Department of Medical Science, University of Ferrara, Ferrara, Italy

The members of Project MinE ALS Sequencing Consortium are:

Philip Van Damme^{1,2}, Philippe Corcia^{3,4}, Philippe Couratier^{5,4}, Patrick Vourc'h^{6,7}, Orla Hardiman^{8,9}, Russell McLaughlin¹⁰, Marc Gotkine¹¹, Vivian Drory¹², Nicola Ticozzi^{13,14}, Vincenzo Silani^{15,14}, Jan H. van den Veldink¹⁶, Leonard H. Berg¹⁶, Mamede de Carvalho^{17,18}, Jesus S. Mora Pardina¹⁹, Monica Povedano²⁰, Peter Andersen²¹, Markus Weber²², Ayşe Nazlı Başak²³, Ammar Al-Chalabi^{24,25}, Chris Shaw²⁶, Pamela J. Shaw²⁷, Karen E. Morrison²⁸, John E. Landers²⁹, Jonathan D. Glass³⁰

- 1. KU Leuven University of Leuven, Department of Neurosciences, Leuven, Belgium
- 2. VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium

- 3. Centre SLA, CHRU de Tours, Tours, France; UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.
- 4. Federation des Centres SLA Tours and Limoges, LITORALS, Tours, France
- 5. Centre SLA, CHU Limoges, Limoges, France
- 6. Service de Biochimie et Biologie moléculaire, CHU de Tours, Tours, France
- 7. UMR 1253, Université de Tours, Inserm, 37044 Tours, France
- 8. Academic Unit of Neurology, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin, Republic of Ireland
- 9. Department of Neurology, Beaumont Hospital, Dublin, Republic of Ireland
- 10. Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Republic of Ireland
- 11. Department of Neurology, Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Israel
- 12. Department of Neurology Tel-Aviv Sourasky Medical Centre, Israel
- 13. Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milano, Italy
- 14. Department of Pathophysiology and Transplantation, 'Dino Ferrari' Center, Università degli Studi di Milano, Milano, Italy
- 15. Department of Neurology and Laboratory of Neuroscience, Istituto Auxologico Italiano IRCCS, Milano, Italy
- 16. Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- 17. Instituto de Fisiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- 18. Department of Neurosciences, Hospital de Santa Maria-CHLN, Lisbon, Portugal
- 19. ALS Unit, Hospital San Rafael, Madrid, Spain
- 20. la Unitat Funcional de Motoneurona, Cap de Secció de Neurofisiologia, Servei de Neurologia, Hospital Universitario de Bellvitge-IDIBELL
- 21. Department of Clinical Science, Neurosciences, Umeå University, Sweden
- 22. Neuromuscular Diseases Unit/ALS Clinic, Kantonsspital St. Gallen, 9007, St. Gallen, Switzerland
- 23. Neurodegeneration Research Laboratory (NDAL), Research Center for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Turkey
- 24. Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King's College London
- 25. Department of Clinical Neuroscience, King's College Hospital, London SE5 9RS, UK
- 26. United Kingdom Dementia Research Institute, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King's College London
- 27. Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
- 28. School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, UK
- 29. Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
- 30. Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA

The members of the American Genome Center are:

Adelani Adeleye^{1,2}, Camille Alba^{1,2}, Dagmar Bacikova^{1,2}, Clifton L. Dalgard^{1,3}, Daniel N. Hupalo^{1,2}, Elisa McGrath Martinez^{1,2}, Anthony R. Soltis^{1,2}, Gauthaman Sukumar^{1,2}, Coralie Viollet^{1,2}, Matthew D. Wilkerson^{1,2,3}

1. The American Genome Center, Collaborative Health Initiative Research Program, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA

- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
- **3.** Department of Anatomy, Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA

Acknowledgments

The authors also acknowledge the ALS Association and the Muscular Dystrophy Association, which support DNA collection. This work was supported in part by the Italian Ministry of Health (Ministero dellaDella Salute, Ricerca Sanitaria Finalizzata, grant RF-2016-02362405, RF-2013-02355764, and GR-2016-02364373); the European Commission's Health Seventh Framework Programme (FP7/2007-2013 under grant agreement 259867); the Italian Ministry of Education, University and Research (Progetti di Ricerca di Rilevante Interesse Nazionale, PRIN, grant 2017SNW5 MB); the Fondazione Italiana di Ricerca per la SLA (AriSLA, Grant AZYGOS 2.0); the Joint Programme - Neurodegenerative Disease Research (Brain-Mend project) granted by Italian Ministry of Education, University and Research, and the Canadian Consortium on Neurodegeneration in Aging (CCNA). This study was performed under the Department of Excellence grant of the Italian Ministry of Education, University and Research to the 'Rita Levi Montalcini' Department of Neuroscience, University of Torino, Italy.

AAK is funded by the ALS Association Milton Safenowitz Research Fellowship (grant number 22-PDF-609.DOI:10.52546/pc.gr.150909.), The Motor Neurone Disease Association (MNDA) Fellowship (Al Khleifat/Oct21/975-799), The Darby Rimmer Foundation, and The NIHR Maudsley Biomedical Research Centre.

This study used DNA samples and clinical data from the Target ALS Human Postmortem Tissue Core, the NINDS Repository at Coriell, the North East ALS (NEALS) Consortium Biorepository, the New York Brain Bank-The Taub Institute, Columbia University, Department of Veterans Affairs Biorepository Brain Bank (grant #BX002466; CBB), the Baltimore Longitudinal Study of Aging (BLSA), and the Johns Hopkins University Alzheimer's Disease Research Center, the NICHD Brain, and Tissue Bank for Developmental Disorders at the University of Maryland.

The InCHIANTI study baseline (1998–2000) was supported as a "targeted project" (ICS110.1/RF97.71) by the Italian Ministry of Health and, in part, by the United States National Institute on Aging (contracts 263 MD 9164 and 263 MD 821336). The InCHIANTI follow-up 1 (2001–2003) was funded by the United States National Institute on Aging (contracts N.1-AG-1-1 and N.1-AG-1- 2111), and the InCHIANTI follow-ups 2 and 3 studies (2004–2010) were financed by the United States National Institute on Aging (contract N01-AG- 5-0002).

The data collection and genotyping of the *C9orf72* replication cohort at the King's College London was supported by MOTOR NEURONE DISEASE Association (MNDA) UK (grant code: Shaw/Apr18/864-791).

Project MinE data collection and genotyping of the *C9orf72* replication cohort was supported by funding provided by the Dutch Research Council (NWO) [VENI scheme grant 09150161810018] and Prinses Beatrix Spierfonds (neuromuscular fellowship grant W.F19-03 and by the Project number W.OR20-08 (The "Repeatome" as a basis for new treatments of ALS) of the Prinses Beatrix Spierfonds. and by the Dutch Research Council (NWO) [VIDI grant 91719350]. Project MinE is part of an EU Joint Programme - Neurodegenerative Disease Research (JPND) project. The project is supported through the following funding organizations under the aegis of JPND - www.jpnd.eu (the United Kingdom, Medical Research Council (MR/L501529/1; MR/R024804/1) and Economic and Social Research Council (ES/L008238/1)) and through the Motor Neurone Disease Association. This study represents independent research partfunded by the National Institute for Health Research (NIHR) Biomedical Research Centre at South

London and Maudsley NHS Foundation Trust and King's College London. This is, in part, an EU Joint Programme - Neurodegenerative Disease Research (JPND) project. The project is supported through the following funding organizations under the aegis of JPND - www.jpnd.eu (the United Kingdom, Medical Research Council (MR/L501529/1; MR/R024804/1) and Economic and Social Research Council (ES/L008238/1)) and through the Motor Neurone Disease Association. This study represents independent research part-funded by the National Institute for Health Research (NIHR) Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London. In part, samples used in this research were obtained from the UK National DNA Bank for MND Research, funded by the MND Association and the Wellcome Trust. This project is partially supported by the AGING Project of the Department of Excellence at the Department of Translational Medicine (DIMET), Università del Piemonte Orientale, Novara, Italy. ALS Association Milton Safenowitz Research Fellowship funds AAK (grant number 22-PDF-609. DOI: 10.52546/pc.gr.150909.), The Motor Neurone Disease Association (MNDA) Fellowship (Al Khleifat/Oct21/975-799) and The NIHR Maudsley Biomedical Research Centre.

The dataset(s) used for the analyses described in this manuscript were obtained from the Age-Related Eye Disease Study (AREDS) Database found at https://www.nei.nih.gov/research/clinical-trials/age-related-eye-disease-study-aredsthrough dbGaP accession number phs000001.v3.p1. Funding support for AREDS was provided by the National Eye Institute (N01-EY-0-2127). We thank the AREDS participants and the AREDS Research Group for their valuable contribution to this research.

The Framingham Heart Study is conducted and supported by the National Heart, Lung, and Blood Institute (NHLBI) in collaboration with Boston University (Contract No. N01-HC-25195 and HHSN268201500001I). This manuscript was not prepared in collaboration with the Framingham Heart Study investigators. It did not necessarily reflect the opinions or views of the Framingham Heart Study, Boston University, or NHLBI. Funding to support the Omni cohort recruitment, retention, and examination was provided by NHLBI Contract N01-HC-25195 and HHSN268201500001I, and NHLBI grants R01-HL070100, R01-HL076784, R01-HL-49869, and U01-HL-053941.

Research support to collect data and develop an application to support this project was provided by 3P50CA093459, 5P50CA097007, 5R01ES011740, and 5R01CA133996.

The WHI program is funded by the National Heart, Lung, and Blood Institute, National Institutes of Health, and US Department of Health and Human Services through contracts HHSN268201600018C, HHSN268201600001C, HHSN268201600002C, HHSN268201600003C, and HHSN268201600004C. This manuscript was not prepared in collaboration with investigators of the WHI, has not been reviewed and approved by the Women's Health Initiative (WHI), and does not necessarily reflect the opinions of the WHI investigators or the NHLBI. Funding support for WHI GARNET was provided through the NHGRI Genomics and Randomized Trials Network (GARNET) (Grant Number U01 HG005152). The GARNET Coordinating Center assisted with phenotype harmonization, genotype cleaning, and general study coordination (U01 HG005157). The National Center assisted with data cleaning for Biotechnology Information. Funding support for genotyping, performed at the Broad Institute of MIT and Harvard, was provided by the NIH Genes, Environment and Health Initiative [GEI] (U01 HG004424). The datasets used for the analyses described in this manuscript were obtained from dbGaP at http://www.ncbi.nlm.nih.gov/sites/entrez?db=gap through dbGaP accession phs000001, phs000007, phs000187, phs000196, phs000200, phs000315, phs000675, phs000248, phs000292, phs000304, phs000368, phs000372, phs000394, phs000397, phs000404, phs000421, phs000428, phs000454, phs000615, phs000801, and phs000869.

The authors acknowledge the contribution of data from Hepatitis C Pathogenesis and the Human Genome supported by 1X01HG005271-01 and R01DA013324 and accessed through dbGAP to the analysis presented in this publication.

Funding support for the Genes and Blood Clotting Study was provided through the NIH/NHLBI (R37 HL039693). The Genes and Blood Clotting Study is one of the Phase 3 studies in the Gene Environment

Association Studies (GENEVA) under GEI. The GENEVA Coordinating Center assisted with genotype cleaning (U01 HG004446). Funding support for DNA extraction and genotyping, performed at the Broad Institute, was provided by NIH/NHLBI (R37 HL039693). The Howard Hughes Medical Institute provided additional support.

The dataset(s) used for the analyses described in this manuscript were obtained from the Genotype and Phenotype (dbGaP) database found at http://www.ncbi.nlm.nih.gov/gap through dbGaP accession number phs000368. Samples and associated phenotype data for the Genome-Wide Association Scan [GWAS] of Polycystic Ovary Syndrome Phenotypes were provided by Andrea Dunaif, MD.

The authors acknowledge the contribution of data from Genetic Architecture of Smoking and Smoking Cessation accessed through dbGaP. Funding support for genotyping, performed at the Center for Inherited Disease Research (CIDR), was provided by 1 X01 HG005274-01. CIDR is fully funded through a federal contract from the National Institutes of Health to The Johns Hopkins University, contract number HHSN268200782096C. The Gene Environment Association Studies (GENEVA) Coordinating Center (U01 HG004446) assisted with genotype cleaning and general study coordination. Funding support for collecting datasets and samples was provided by the Collaborative Genetic Study of Nicotine Dependence (COGEND; P01 CA089392) and the University of Wisconsin Transdisciplinary Tobacco Use Research Center (P50 DA019706, P50 CA084724).

The dataset(s) used for the analyses described in this manuscript were obtained from the Genetics of Fuchs' Endothelial Corneal Dystrophy (FECD) Study through dbGaP accession number phs000421. The grants that have funded the enrollment of the cases and controls to be used in this GWAS are R01EY016514 (DUEC, PI: Gordon Klintworth), R01EY016482 (CWRU, PI: Sudha Iyengar), and 1X01HG006619-01 (PI: Sudha Iyengar, Natalie Afshari). We would like to thank the FECD participants and the FECD Research Group for their valuable contribution to this research.

The authors acknowledge the contribution of data from the CIDR-NIDA Study of HIV Host Genetics accessed through dbGAP. Funding support for genotyping, performed at the Center for Inherited Disease Research (CIDR), was provided by 1 X01 HG005275-01A1. CIDR is fully funded through a federal contract from the National Institutes of Health to The Johns Hopkins University, contract number HHSN268200782096C. Funding support for the collection of datasets and samples was provided by NIDA grants R01DA026141(Johnson), R01DA004212 (Watters), U01DA006908 (Watters), R01DA009532 (Bluthenthal), the San Francisco Department of Public Health, SAMHSA, and HRSA.

The Genome-Wide Association Study (GWAS) of Non-Hodgkin Lymphoma (NHL) project was supported by the intramural program of the Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), National Institutes of Health (NIH). The datasets have been accessed through the NIH database for Genotypes and Phenotypes (dbGaP) under accession # phs000801. A complete list of acknowledgments can be found in the supplementary note (Berndt SI et al., Nature Genet., 201354).

This study made use of data generated by investigators in the BEACON consortium through a grant funded by the US National Institutes of Health (NIH) (RO1CA136725) to Thomas L. Vaughan and David C. Whiteman (multiple PIs). In support of this work, TLV was supported by NIH grant KO5CA124911 and DCW by a Future Fellowship grant FT0990987 from the Australia Research Council. Additional collaborators, sources of support, and origin of the data and biospecimens are listed in the following publication: Levine DM, Ek WE, Zhang R, Liu X, Onstad L, Sather C, et al. A genome-wide association study identifies new susceptibility loci for esophageal adenocarcinoma and Barrett's esophagus. Nat Genet. 2013 Dec;45(12):1487–93.

The American Genome Center is partly supported by an NHLBI grant: IAA-A-HL-007.001. The opinions and assertions expressed herein are those of the author(s). They do not necessarily reflect the official

policy or position of the Uniformed Services University, the Department of Defense, the Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., or the U.S. Government.

This project is partially supported by the AGING Project for the Department of Excellence at the Department of Translational Medicine (DIMET), Università del Piemonte Orientale, Novara, Italy.

RJBD is supported by the following: (1) NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London, London, UK; (2) Health Data Research UK, which is funded by the UK Medical Research Council, Engineering and Physical Sciences Research Council, Economic and Social Research Council, Department of Health and Social Care (England), Chief Scientist Office of the Scottish Government Health and Social Care Directorates, Health and Social Care Research and Development Division (Welsh Government), Public Health Agency (Northern Ireland), British Heart Foundation and Wellcome Trust; (3) The BigData@Heart Consortium, funded by the Innovative Medicines Initiative-2 Joint Undertaking under grant agreement No. 116074. This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation program and EFPIA; it is chaired by DE Grobbee and SD Anker, partnering with 20 academic and industry partners and ESC; (4) the National Institute for Health Research University College London Hospitals Biomedical Research Centre; (5) the National Institute for Health Research (NIHR) Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London; (6) the UK Research and Innovation London Medical Imaging & Artificial Intelligence Centre for Value-Based Healthcare; (7) the National Institute for Health Research (NIHR) Applied Research Collaboration South London (NIHR ARC South London) at King's College Hospital NHS Foundation Trust.

REFERENCES

- S1. Brooks, B.R., Miller, R.G., Swash, M., Munsat, T.L., and World Federation of Neurology Research Group on Motor Neuron, D. (2000). El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Other Motor Neuron Disord. 1, 293-299. https://doi.org/10.1080/146608200300079536.
- S2. Abrahams, S., Newton, J., Niven, E., Foley, J., and Bak, T.H. (2014). Screening for cognition and behaviour changes in ALS. Amyotroph. Lateral Scler. Frontotemporal Degener. 15, 9-14. https://doi.org/10.3109/21678421.2013.805784.
- S3. Renton, A.E., Majounie, E., Waite, A., Simon-Sanchez, J., Rollinson, S., Gibbs, J.R., Schymick, J.C., Laaksovirta, H., van Swieten, J.C., Myllykangas, L., et al. (2011). A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72, 257-268. 10.1016/j.neuron.2011.09.010.
- S4. DeJesus-Hernandez, M., Mackenzie, I.R., Boeve, B.F., Boxer, A.L., Baker, M., Rutherford, N.J., Nicholson, A.M., Finch, N.A., Flynn, H., Adamson, J., et al. (2011). Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72, 245-256. 10.1016/j.neuron.2011.09.011.
- S5. Tunca, C., Seker, T., Akcimen, F., Coskun, C., Bayraktar, E., Palvadeau, R., Zor, S., Kocoglu, C., Kartal, E., Sen, N.E., et al. (2020). Revisiting the complex architecture of ALS in Turkey: Expanding genotypes, shared phenotypes, molecular networks, and a public variant database. Hum. Mutat. 41, e7-e45. https://doi.org/10.1002/humu.24055.
- S6. Dolzhenko, E., van Vugt, J., Shaw, R.J., Bekritsky, M.A., van Blitterswijk, M., Narzisi, G., Ajay, S.S., Rajan, V., Lajoie, B.R., Johnson, N.H., et al. (2017). Detection of long repeat expansions from PCR-free whole-genome sequence data. Genome Res. 27, 1895-1903.https://doi.org/10.1101/gr.225672.117.
- S7. Brooks, B.R. (1994). El Escorial World Federation of Neurology criteria for the diagnosis of amyotrophic lateral sclerosis. Subcommittee on Motor Neuron Diseases/Amyotrophic Lateral Sclerosis of the World Federation of Neurology Research Group on Neuromuscular Diseases and the El Escorial "Clinical limits of amyotrophic lateral sclerosis" workshop contributors. J. Neurol. Sci. 124 Suppl, 96-107. https://doi.org/10.1016/0022-510x(94)90191-0.
- S8. van Rheenen, W., van der Spek, R.A.A., Bakker, M.K., van Vugt, J., Hop, P.J., Zwamborn, R.A.J., de Klein, N., Westra, H.J., Bakker, O.B., Deelen, P., et al. (2021). Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology. Nat. Genet. 53, 1636-1648. https://doi.org/10.1038/s41588-021-00973-1.
- S9. Chang, C.C., Chow, C.C., Tellier, L.C., Vattikuti, S., Purcell, S.M., and Lee, J.J. (2015). Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4, 7. 10.1186/s13742-015-0047-8.
- S10. Bolger, A.M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114-2120. https://doi.org/10.1093/bioinformatics/btu170.
- S11. Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., and Gingeras, T.R. (2013). STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15-21. https://doi.org/10.1093/bioinformatics/bts635.
- S12. Love, M.I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550. https://doi.org/10.1186/s13059-014-0550-8.

- S13. Du, Z.W., Chen, H., Liu, H., Lu, J., Qian, K., Huang, C.L., Zhong, X., Fan, F., and Zhang, S.C. (2015). Generation and expansion of highly pure motor neuron progenitors from human pluripotent stem cells. Nat. Commun. 6, 6626. https://doi.org/10.1038/ncomms7626.
- S14. van Rheenen, W., Shatunov, A., Dekker, A.M., McLaughlin, R.L., Diekstra, F.P., Pulit, S.L., van der Spek, R.A., Vosa, U., de Jong, S., Robinson, M.R., et al. (2016). Genome-wide association analyses identify new risk variants and the genetic architecture of amyotrophic lateral sclerosis. Nat. Genet. 48, 1043-1048. https://doi.org/10.1038/ng.3622.
- S15. Wishart, D.S., Knox, C., Guo, A.C., Shrivastava, S., Hassanali, M., Stothard, P., Chang, Z., and Woolsey, J. (2006). DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. 34, D668-672. https://doi.org/10.1093/nar/gkj067.