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SUMMARY
The Long-Read Personalized OncoGenomics (POG) dataset comprises a cohort of 189 patient tumors and 41
matched normal samples sequenced using the Oxford Nanopore Technologies PromethION platform. This
dataset from the POG program and the Marathon of Hope Cancer Centres Network includes DNA and
RNA short-read sequence data, analytics, and clinical information. We show the potential of long-read
sequencing for resolving complex cancer-related structural variants, viral integrations, and extrachromo-
somal circular DNA. Long-range phasing facilitates the discovery of allelically differentially methylated re-
gions (aDMRs) and allele-specific expression, including recurrent aDMRs in the cancer genes RET and
CDKN2A. Germline promoter methylation in MLH1 can be directly observed in Lynch syndrome. Promoter
methylation in BRCA1 and RAD51C is a likely driver behind homologous recombination deficiency where
no coding driver mutation was found. This dataset demonstrates applications for long-read sequencing in
precisionmedicine and is available as a resource for developing analytical approaches using this technology.
INTRODUCTION

Cancer is a multifaceted, heterogeneous disease that arises

from a diverse array of genetic alterations. Comprehensive

profiling methods have emerged as fundamental tools for deci-

phering the distinct genetic landscape and biology of each tumor

and identifying therapeutic vulnerabilities.1,2 While panel-based

sequencing approaches have become routine in clinical set-

tings,3,4 the significance of whole-genome and whole-transcrip-

tome analysis (WGTA) has progressively gained recognition in

both pediatric and adult cancers.5–8 WGTA reveals driver muta-

tions, gene fusions, expression alterations, and genome signa-

tures, significantly contributing to our understanding of cancer

genome landscapes and informing tailored therapeutic choices

for patients.9
Cell Genomics 4, 100674, Novem
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Cancer profiling has to date been predominantly reliant on

short-read sequencing methods, which, while very successful,

have inherent challenges and constraints due to read length.10

More recently, long-read sequencing, exemplified by Pacific

Biosciences and Oxford Nanopore Technologies (ONT), can

routinely produce reads of tens of thousands of bases, which im-

pacts complex structural variant (SV) calling and ultra-long

variant phasing.11 In contrast, phasing to identify which variants

occur on the same chromosome on the basis of short reads

alone requires parental genotypes or statistical inference from

reference populations. Another notable feature of sequencing

native DNA using long-read technologies is the simultaneous

detection of 5-methylcytosine.12,13 Short-read methodologies

require separate samples with an experimentally intensive assay

for methylation detection (for example, bisulfite sequencing).
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Figure 1. Nanopore long-read sequencing of an advanced cancer cohort

(A) Tumor types (top) and metastatic sites (bottom) for patient samples. Each patient is represented once; tissue groups with fewer than five samples are shown

under ‘‘other.’’

(B) Genomic features of tumors by type. TMB, tumor mutation burden; mut/Mb, mutations per megabase; HRD, homologous recombination deficiency; BRCA,

breast; SARC, sarcoma; COLO, colorectal; PANC, pancreatic. Boxplots represent the median and upper and lower quartiles of the distribution, and whiskers

represent 1.53 interquartile range (IQR). ‘‘Other’’ tumor group includes all tumors not in the five most common tumor types, n = 72.

(legend continued on next page)
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DNAmethylation is a key driver of many cancers, and character-

izing DNA methylation has potential diagnostic, prognostic,

and therapeutic applications.14,15 Explorations of long-read

sequencing in small cohorts of adult and pediatric tumors have

proven fruitful, unveiling complex rearrangements, viral integra-

tions, and tumor-specific methylation alterations.16–18

To achieve the potential of long-read sequencing in cancer ge-

nomics, the development of a comprehensive suite of analytical

methods tailored explicitly for tumor analysis is imperative. Exist-

ing tools are often unsuitable for cancer analysis or have been

tested solely on cell-line data.19,20 Patient-derived cancer

samples encompass diverse features, including tumor heteroge-

neity, normal cell contamination from distinct tissues, and vari-

ability in mutation burden,1,2 mandating analytical method

refinement. To date, the absence of a sizable cohort of patient-

derived cancer cases subjected to long-read sequencing has

impeded progress in developing cancer-specific analytical

approaches.

Here, we present data from the Long-Read Personalized

OncoGenomics (POG) cohort of 189 tumor samples obtained

from 181 patients enrolled in the POG program (NCT

#02155621), sequenced using an ONT PromethION as part of

the Marathon of Hope Cancer Centres Network. Each case in

this cohort has also been studied using Illumina short-read

normal whole-genome sequencing (WGS), tumor WGS, and tu-

mor RNA sequencing (RNA-seq). Our analyses illustrate the

broad potential utility of this dataset in personalized oncoge-

nomics. All data have been deposited in the European Genomics

Archive as a resource for developers of software for tumor char-

acterization from nanopore long-read data.

RESULTS

The Long-Read POG cohort
Samples for long-read sequencing, previous short-read

sequencing data, and short-read analysis were provided by the

POG program, a precision medicine initiative that seeks to inte-

grate WGTA into the clinical care of advanced cancer patients2,6

(Table S1). The criteria used to select samples for long-read anal-

ysis included mutations in epigenetic modifiers, SV burden or

homologous recombination deficiency (HRD), presence of hu-

man papillomavirus (HPV), and sufficient material and tumor

content. This Long-Read POG cohort consists of 189 tumor

samples from 181 patients. Of these, 43 tumor samples from

41 patients havematched normal nanopore sequencing allowing

for somatic variant detection from long-read data. There were 26

cancer types represented, with the most common being breast

(n = 38, 20%), sarcoma (n = 27, 14%), and colorectal (n = 22,

12%) (Figure 1A). The majority of the tumors (n = 144, 76%)

were from biopsies of metastatic sites, frequently liver (n = 63,

33%) and lymph nodes (n = 30, 16%), while the rest were local

recurrences or refractory disease (n = 45, 24%). Patients

received between zero and nine lines of systemic therapy before

sequencing and had a median overall survival of 34 months from
(C) Schematic overview of the laboratory methods and primary analysis for this c

(D) Fold coverage per sample sequenced and per-flow cell quality control statist

BioBloom tools,21 a median of 97.8% of reads matched the human reference, w
diagnosis of advanced disease and 17 months from biopsy

(Figures S1A and S1B; Table S1). The tumor mutation burden

(TMB) determined from short-read variant analysis varied from

0.4 to 274 mutations per megabase (mut/Mb, median: 4.9),

with seven cases exhibiting microsatellite instability (MSI;

Figure 1B). HRD, as measured by the HRDetect score on

short-read data, was considered high for 26 samples (14%),

the majority of which (14/26) were breast or ovarian cancers.

The tumor content ranged from 21% to 100% (median 67%),

with estimates of immune infiltration provided in Table S1.

Automated library construction and nanopore sequencing on

the PromethION platform (Figures 1C, S1C, and S1D) yielded a

median of 17.5- and 26-fold haploid genome coverage for

normal and tumor samples, respectively (Figure 1D). The reads

had a median N50 length of 31.3 kb, with the longest read

spanning 1,036,455 bp. Reads longer than 20 kb accounted

for 77.8% of the sequence data. Median base error (the edit

distance of aligned reads to the GRCh38 reference) was 4%.

Chimeric artifacts were present in amedian of 4.1% of the reads.

Assessment for microbial contamination showed fewer than

0.2% of reads matching microbial taxa in any sample, which is

below the false discovery rate for the method used.21

Nanopore sequencing reveals novel complex SVs
We sought to evaluate the potential of nanopore sequencing,

combined with currently available software, for detecting SVs

in cancer samples. To this end, we applied four variant callers,

two with the ability to call somatic events and two without

(Figures 2A and S2; Table S2). We began by compiling a list of

well-established oncogenic fusion events that were previously

identified using short-read sequencing in this cancer cohort.22

Of these, 8/8 were successfully identified in the nanopore

sequencing data using a combination of SV callers (Table S3),

despite lower median sequencing depth of 263 for long reads

compared to short reads, typically at 803.

We further compared somatic long-read calls with high-confi-

dence somatic calls previously made in short-read data2 (see

STAR Methods). Of those, 1,919 (54.1%) duplications, 1,943

(57.1%) inversions, 3,358 (37.6%) deletions, and 7 (<1.0%) in-

sertions were consistent between the short- and the long-read

datasets (see STARMethods) (Figure 2B). To understand the dis-

parities between the calls made on the different platforms, we

manually reviewed those calls that overlapped cancer genes.

The absence of calls in the nanopore results was attributed to

lower coverage in 3/4 (75%) of samples. Conversely, all of the

events unique to the nanopore calls (6/6) showed evidence in

the underlying nanopore sequence alignment, but not in the

short read (Table S4). In 4/6 samples, this difference was attrib-

uted to low-complexity regions, which could not bemappedwith

shorter reads. The remaining two calls were complex variants

that could not be fully resolved by the short-read callers.

We examined these two complex SVs in depth. The first was a

loss-of-function inversion, deletion, and duplication in SMG1 in a

colorectal adenocarcinoma sample (POG117; Figure 2C). The
ohort.

ics. Red bars indicate medians. Median yield of 68.4 Gbp per flow cell. Using

hile no sample showed more than 0.2% of reads matching microbial taxa.
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Figure 2. Structural variants

(A) Per-sample counts of somatic SV calls in samples with matched normal (n = 43). Boxplots represent median, upper, and lower quartiles; whiskers represent

1.53 IQR. Del, deletion; Ins, insertion; Dup, duplication; Inv, inversion; Tra, translocation.

(B) Concordance of SV calling between platforms, summed across cohort.

(C) Schematic of a resolved complex foldback inversion affecting SMG1, including a deletion of exons 26–38, detected only in the nanopore data.

(D) Schematic of a resolved complex foldback inversion affecting HIRA, including duplication of exons 16–17, detected only in the nanopore data.

(E) Features of HPV integration characterized using nanopore sequencing in the five tumors with HPV.

(F) Diagram of a complex rearrangement (bottom) and alterations in read depth (top) involving HPV integration sites in a cervical cancer (POG109).
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Figure 3. Phasing

(A) Spearman’s correlation between read length, phase block size, and phasing rate for Ensembl 100 protein-coding genes (plus promoters) across normal and

tumor tissues.

(B) Spearman’s correlation between gene length and phasing rate for protein-coding genes (percentage of tumors in which a gene plus promoter could be fully

phased).

(legend continued on next page)
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second was an inversion with multiple duplication events that

predicted a frameshift and likely loss of function of one allele of

the tumor suppressorHIRA in ametastatic breast cancer sample

(POG279; Figure 2D). These complex SVs showed an overlap-

ping breakpoint in an L1MB4 long interspersed nuclear element

(LINE) and an AluY element, respectively, underscoring the ca-

pacity of long-read sequencing to resolve some SVs in repetitive

regions.

The greatest disparity in somatic calls was a notably greater

number of insertions called in the nanopore data (Figure 2B).

We manually reviewed the underlying sequence data for those

affecting cancer genes. Of these, 8/14were identified asmiscalls

resulting from difficult-to-map regions. The remaining 6/14 had

underlying nanopore sequence evidence but were missed or

mischaracterized by short-read callers (Table S5; Figure S3).

Notably, all 14 of these insertion calls were made by a single

SV caller, nanomonSV. This highlights the potential for long

reads but also the need for further development of nanopore so-

matic SV calling software.

Four samples exhibited clear outlier behavior in terms of the

number of SV calls of a particular type (Figure S4A). Two pa-

tients, POG884 and POG986, had 10-fold more insertion calls

than the median, but only in the nanopore calls, accounting for

1,837/4,126 of the nanopore-only insertion calls mentioned

above. These were the only two cases (of those with somatic

calls) with MSI. On examining the insertions themselves, we

found that the majority (71.5%) overlapped short tandem repeat

regions, consistent with MSI repeat expansions (Figure S4B).23

Two other cases, POG111 and POG147, exhibited high nano-

pore-unique inversion frequencies. These showed copy number

alterations (CNAs) and inversion profiles that have been previ-

ously characterized as ‘‘tyfonas’’24 (Figure S5).
Oncoviral integrations detected by long reads impact
surrounding gene expression
HPV infection is the driving cause of cervical cancer and impli-

cated inmany head-and-neck and anogenital cancers. HPV inte-

gration into the host genome is frequent, and integration events

often involve a complex combination of structural alterations and

multiple copies of the 8 kb viral genome. This complexity makes

mapping with short reads difficult. We investigated the ability of

long-read sequencing to reconstruct HPV integration events and

their effects. We investigated five samples with HPV previously

detected in short-read data and confirmed in this study. Of

these, four had HPV integration detected, each at a single

host genome location (Figure 2E; Table S1). We identified three

of these events as simple, meaning that they were made up

of only two integration breakpoints. The remaining event, in

POG109, was complex, incorporating seven HPV-to-host

genome breakpoints within a 130 kb region in the 8q24 locus,
(C) Summary of IMPALA results for the cohort, showing number of genes with suffi

and at least one phasing SNP, and their final classification as having allele-spec

(D) Percentage of genes in regions of the tumor genome with balanced copy num

(E) Percentage of genes with allele-specific promoter methylation by the relative p

median, upper, and lower quartiles; whiskers represent 1.53 IQR for (C), (D), and

(F and G) Examples of biallelic variants in tumor suppressor genes with ASE (F) a

phasing, and reads that could not be assigned to a haplotype are colored in gra
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300 kb downstream (30) ofMYC and overlapping theMYC-asso-

ciated long non-coding RNA (lncRNA) PVT1 (Figure 2F). This

event also overlapped several SVs and oscillating copy number

states, which resembled focal chromothripsis (Figure S6A).

Three of the integration events were associated with elevated

expression (R85th percentile2; Figure S6B) of neighboring

cancer genes, including P3H2, MYC, CDKN2A, and CDKN2B.

POG109 exhibited allele-specific expression (ASE) of PVT1, the

gene it overlapped, with higher expression from the haplotype

containing the integration. POG785 (which had overexpression

of CDKN2A and CDKN2B) exhibited ASE of CDKN2B, also with

higher expression from the haplotype containing the integration.
Long-range phasing enables resolution of double hits to
tumor suppressors
We assessed the ability of nanopore sequencing to enable long-

range phasing, particularly of tumor suppressor genes (TSGs).

The biallelic inactivation of TSGs is an important mechanism of

tumor formation, with potential biological and clinical signifi-

cance for informing diagnosis, disease prognosis, and/or

response to therapy. We found that phase block size was

strongly correlated with read length (Spearman’s rho 0.72, p %

2.2 3 10�16; Figure 3A), and the cases with the longest phase

blocks also had high TMB (Figure S7). Phasing was able to

completely resolve the haplotypes of the majority of genes in

each sample, from promoter to 30 end (median 85%, interquartile

range [IQR] 79.1%–89.1%). This included most putative and

known TSGs (Figure 3B), although longer geneswere completely

phased less often (Spearman’s rho �0.65, p % 2.2 3 10�16).

However, several notable tumor suppressors of modest size,

including BRCA1, NF1, and RB1, could be phased completely

in only around half of tumors, suggesting other locus-related fea-

tures may reduce their phasing potential. Further investigation

showed that this was due to lower density of phasing SNPs

and greater density of repetitive or paralogous sequences that

may not be fully resolved at modest read lengths (Figure S7). In

tumor genomes, ploidy, genomic instability, loss of heterozygos-

ity (LOH), and somatic variation may further influence global and

local phasing.

Biallelic tumor suppressor inactivation may occur via different

combinations of LOH and small mutations. When two small inac-

tivating mutations are called by short-read sequencing in the

same TSG, it is often assumed that they are in trans. In the

Long-Read POG cohort, cases with two or more small somatic

variants in TSGs with potential biological and/or clinical signifi-

cance were identified by retrospective review of the genomic

report issued at the time of POG analysis. There were 30 cases

identified with double somatic variants in at least one TSG.

Among 33 pairs of variants (with three variants in one case), 19

across 18 cases could be phased by long reads (Table 1).
cient expression to be considered (<1 TPM), number with sufficient expression

ific expression (ASE) or balanced allelic expression (BAE).

ber (CN), imbalanced CN, or LOH that were classified as ASE or BAE.

hase of the major expressed allele for ASE and BAE genes. Boxplots represent

(E). The p values are Wilcoxon rank-sum test for (D) and (E).

nd BAE (G). Reads are colored by predicted haplotype from long-read-based

y.



Table 1. Phasing of tumor suppressor gene small variants

Phase Origin Case ID Cancer Gene Allele A Allele B

In trans germline and somatic POG1000 PANC ATM exon 9 deletion (germline) c.3577�14_3585delinsC (somatic)

In trans germline and somatic POG792 CHOL BRCA2 p.(Leu2092Profs*7) (germline) p.(Val2385Phefs*9) (somatic)

In trans germline and somatic POG976 CHOL PALB2 p.(Lys353Asnfs*3) (germline) p.(Glu907*) (somatic)

In trans germline and somatic POG604 BRCA TP53 p.(Arg213*) (germline) p.(Glu180*) (somatic)

In trans double somatic POG295 COLO APC p.(Cys417Valfs*37) p.(Tyr1376Cysfs*9)

In trans double somatic POG720 COLO APC p.(Ala591Profs*19) p.(Pro1427Lysfs*44)

In trans double somatic POG777a OV ARID1A p.(Gln1401*) p.(Met1595Val)

In trans double somatic POG130 COLO MLH1 p.(Glu297*) p.(Phe530Serfs*5)

In trans double somatic POG581 SKCM NF1 p.(Ser879*) p.(Gln1188His)

In trans double somatic POG239 SECR NOTCH1 p.(Ala1349Leufs*53) p.(Cys942Tyr)

In trans double somatic POG777a OV PIK3R1 p.(Thr371Ilefs*5) p.(Lys459del)

In trans double somatic POG352 UCEC PTEN p.(Arg130Gly) c.1026+1G>T

In trans double somatic POG778 BRCA PTEN p.(Tyr27Asp) p.(Leu247Phefs*6)

In trans double somatic POG958 BRCA PTEN p.(Ile32Asn) and p.(Ala34Gly) c.490_492+1del

In trans double somatic POG884 ESCA RB1 p.(Arg255*) p.(Met484Valfs*8)

In trans double somatic POG021 LUNG TP53 p.(Val272Leu) p.(Gly154Val)

In trans double somatic POG680 HNSC TP53 p.(Pro82Leu) and p.(Ser127Pro) p.(Arg282Trp)

In cis double somatic POG446 BRCA KAT5 p.(Ile37Met) and p.(Ser135Phe) –

In cis double somatic POG507b BRCA PTEN p.(Pro38Ser) and p.(Phe278Leu) –
aThis case is represented twice as it includes two genes with hits on both alleles.
bDouble somatic variants occurred in the context of copy loss of the other allele, consistent with biallelic events in PTEN.
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Variants for which phase could not be confirmed included vari-

ants supported by only one read, variants not within a phase

block, and variants supported by reads with conflicting haplo-

type assignments. The majority (n = 17) of pairs were found to

occur in trans, while two were found to occur in cis: double so-

matic variants in PTEN (POG507) and KAT5 (POG446). Notably,

the double somatic variants in PTEN were found to occur on the

opposite allele from a heterozygous somaticPTEN deletion, sug-

gesting an alternate mechanism of biallelic loss.

Long-range variant phasing facilitates the detection of
ASE and linkage to genomic events
ASE is an imbalance in expression between alleles of a gene,

which is typically mediated by CNA or cis-acting regulatory

mechanisms.25,26 Long-range phasing offers the potential to

more accurately determine ASE and link it to genomic lesions

within the same or nearby genes.16,27We used the IMPALA pipe-

line to examine ASE in the Long-Read POG cohort.

We found ASE in an average of 26.5% of the phased genes

within each sample (SD = 12.2%) (Figure 3C). CNAs have been

identified as the primary drivers of ASE genes in cancer cells,28,29

and our results recapitulated this. Within this cohort, ASE genes

tended to overlap regions of LOH (p % 2.2 3 10�16) and copy

number imbalance (p % 2.2 3 10�16), whereas genes with bial-

lelic expression (BAE) overlapped copy-number-balanced re-

gions (Wilcoxon rank sum p = 0.02) (Figure 3D). We further noted

a significant positive correlation between the CNA allelic ratio

and the major expressed allele frequency (Pearson r = 0.63, p

% 2.23 10�16). Considering specifically nonsense mutations re-

sulting in premature stop codons (Figure S8), in balanced copy
number regions these are found more frequently in genes that

are ASE (p = 1.5 3 10�4) and are more likely to be on the minor

expressing allele (p = 1.6 3 10�13); this is consistent with loss of

expression of the mutated allele due to nonsense-mediated

mRNA decay. ASE may also be due to epigenomic dysregula-

tion. Examining ASE in regions with balanced copy number,

we found a significantly greater proportion of genes with

promoter allelic methylation (mean = 0.16) than with BAE

(mean = 0.01) (Wilcoxon rank sum, p = 3.5 3 10�23). Moreover,

allelic promoter methylation was more commonly found in trans

with the major expressed allele (p % 2.2 3 10�16) (Figure 3E),

indicating lower expression of the methylated allele.

ASE can be used to validate the downstream expression

effects of aberrant cis-acting regulatory mechanisms and further

ascertain biallelic TSG inactivation. For example, PTEN in

POG041 shows ASE with major expressed allele frequency of

0.67. A frameshift and a missense mutation (rs121909241)

were found on the minor and major expressed allele, respec-

tively, which represents a double-hit knockout scenario and

ASE consistent with larger impact on expression from the trun-

cating mutation (Figure 3F). POG976, with both PALB2 somatic

and germline variants, confirmed by phasing to be opposite al-

leles, shows BAE, as both alleles are impacted by truncating

events (Figure 3G). Consistent with loss of function of PALB2,

this cholangiocarcinomawas characterized by strongmutational

signatures of HRD (Table S1).

The most frequent ASE gene in this cohort was DUSP22, in

122/135 samples in which it was expressed and could be

phased, with a median major expressed allele frequency of

0.95. DUSP22 expression is associated with poorer survival in
Cell Genomics 4, 100674, November 13, 2024 7



Figure 4. Methylation

(A) Correlation of nanopolish methylation frequency with WGBS for POG044. BS, bisulfite sequencing; OXBS, oxidative bisulfite sequencing.

(B) Average methylation across tumors (T) compared with public WGBS methylation data from normal tissues and cells (NT), genome wide and at different

genomic regions.

(C) Average methylation at CGIs in POG cases with either IDH-activating or TET-inactivating mutations (yes) compared with the remainder of the cohort (no) and

public normal tissue (NT).

(D) tSNE plots based on DNA methylation at regulatory regions, compared with tumor type (left) and biopsy site (right).

(E) aDMR distributions by copy number (CN). Heterozygous diploid (HetDip) indicates CN-balanced regions. Heterozygous copy number variant (HetCNV) in-

dicates CNV regions with both parental alleles. Homozygous (Hom) indicates LOH. All p values are Wilcoxon rank-sum test. Boxplots represent median, upper,

and lower quartiles; whiskers represent 1.53 IQR.
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low-grade lymphomas.30,31 It also shows tissue-specific

imprinting during brain development.32,33 A survey of normal tis-

sues from the Genotype-Tissue Expression (GTEx) project

showed that only 9.12% (542/5940) ofDUSP22-expressing sam-

ples showed ASE.34 In the Long-Read POG cohort, 63.11% of

tumor samples with ASE in DUSP22 showed allele-specific pro-

moter methylation in trans and 81.15% showed allele-specific

gene body methylation in cis with the major expressed allele

(Figure S9). Although allele-specific promoter methylation is

found in both normal and tumor samples, allelic loss of gene

body methylation is a tumor-specific phenomenon (p % 2.2 3

10�16). This suggests that reactivation of tissue-specific imp-

rinting of DUSP22 may play a role in tumorigenesis.

DNA methylation derived from nanopore sequencing
can reveal globalmethylation patterns and reflect tissue
of origin
We evaluated nanopore-derived DNA methylation calls within

this study for their potential in personalized oncogenomics. A
8 Cell Genomics 4, 100674, November 13, 2024
comparison of DNA methylation detected using nanopore

sequencing with whole-genome bisulfite sequencing (WGBS)

calls from the same sample showed good correlation (R =

0.87, Figure 4A). In the Long-Read POG cohort, tumors dis-

played significant hypomethylation compared to normal WGBS

data from best-match tissue types (Figure 4B; see STAR

Methods). This hypomethylation was most distinct in repetitive

regions. Notably, these regions are more readily mappable

with long-read alignment.35 The only genomic regions with hy-

permethylation in tumor samples compared to normal WGBS

data (p = 1.4 3 10�8) were CpG islands (CGIs). These results

are consistent with the previously described pattern of overall

hypomethylation but focal hypermethylation in tumor DNA.36

TET enzymes are involved in active DNA demethylation and

use a-ketoglutarate as a cofactor, which is a product of IDH

enzyme activity. TET and IDH mutations are recurrent in can-

cer.37 Loss of TET demethylase activity due to loss-of-function

mutations can result in hypermethylation of tumor genomes.

TET can also be inhibited by accumulation of metabolites
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due to IDH1 R132 and other gain-of-function mutations, also re-

sulting in tumor hypermethylation.37 Within the cohort, 10/189

samples (8/181 cases) had either IDH1 R132 C/H or TET1/2/3

candidate inactivating mutations detected using short-read

sequencing (Table S1). Compared with other cases and normal

tissue, cases with these mutations show similar methylation

patterns at all regulatory sites except for CGIs (Figures 4C and

S10). At CGIs, mutated samples show slight hypermethylation

compared to the rest of the tumor samples and WGBS normal

samples. TET enzymes demonstrate sequence specificity to-

ward CGIs.37–39 The slightly higher methylation only at CGIs in

the mutated samples in our cohort supports the sequence

specificity of TET enzymes and concurs with previous findings

suggesting that the genome-wide hypomethylation in tumor

samples is largely due to the passive DNA demethylation

pathway.40–42

Methylation patterns can distinguish tissue and tumor

type.43,44 We performed t-distributed stochastic neighbor

embedding (tSNE) analysis of methylation in this cohort as a

coarse assessment of this. We observed that samples tended

to group by tumor tissue of origin, irrespective of metastatic bi-

opsy site (Figure 4D). This finding suggests the potential utility

of nanopore-derived DNA methylation for detecting or confirm-

ing tissue of origin in advanced and metastatic cancers, as an

adjunct or complementary analysis to the RNA approaches

currently in use.45

Patterns of allele-specific methylation in promoters and
gene bodies are uncovered by long-range phasing
As shown earlier in this study and elsewhere, long reads enable

long-range phasing, which extends tomethylation information.46

In this cohort, an average of 84% of the CpG sites within each

sample could be phased (median = 86%; SD = 7.1%). We define

the term ‘‘allelically differentially methylated regions’’ (aDMRs) to

refer to genomic regions in which clusters of CpG sites display

differential methylation between alleles. We detected 4.46

million (mean = 23.61K, SD = 14.64K) aDMRs across all tumor

samples, with around 5-fold more in tumor samples than in their

matched normals (mean = 4.7K, SD = 876; Figure S11A). The

majority (79%) of the aDMRs mapped to heterozygous copy

number variant (CNV) and LOH regions (Figure 4E). The number

of aDMRs in each sample was positively correlated with the frac-

tion of the genome in LOH regions (Pearson r = 0.469, p = 2.6 3

10�11) and negatively correlated with the fraction of the genome

in heterozygous diploid regions (Pearson r = �0.38, p =

1.4 3 10�7).

We examined aDMRs in heterozygous diploid regions as po-

tential sources of cancer-specific epigenetic dysregulation. We

excluded aDMRs associated with normal cell function (linked

to imprinting or random allele-specific methylation; see STAR

Methods), leaving �462K tumor-specific aDMRs. Most (76%

of aDMRs) mapped to CGI, transcription factor (TF), promoter,

enhancer, or poly(A) sites (Figure S11B). We detected 2,854

genes (8,511 transcripts) with recurrent aDMRs at their pro-

moters, including the cancer genes RET and CDKN2A. TF

enrichment analysis of these genes demonstrated significant

enrichment for PRC1 and PRC2 complex protein subunits

(adjusted p < 0.05 from Enrichr; Figure S11C). PRC1 and
PRC2 are transcriptional repressive complexes involved in

the regulation of developmental genes. Allele-specific methyl-

ation of their target genes in different tissues as well as hy-

permethylation of those genes in cancers have been re-

ported.47–49 This result suggests the preferential occurrence

of aDMRs at genes likely involved in the stem cell-like proper-

ties of cancer.

We further examined the aDMRs affecting RET and CDKN2A.

RET is a receptor tyrosine kinase and a well-known oncogene.50

TheRET aDMR overlapped an intragenic CGI alternate promoter

(per Ensembl 100 transcript models) in 26 of the cohort samples

(Figure 5A). Another 66 tumor samples showed methylation

(>25% average methylation) at this promoter. Those cases

with intragenic promoter methylation (allelic or non-allelic) had

significantly greater overall RET gene expression than those

without methylation (p = 0.0071) and normal GTEx tissues (p =

2.2 3 10�6; Figure 5B).

CDKN2A is a well-known TSG that has a series of intragenic

CGI promoters, which showed recurrent aDMRs in nine samples

(Figure 5C) and methylation (>25% average methylation) in 140

samples. As for RET, cases with methylation (allelic or non-allelic)

at this intragenic promoter had significantly greater expression of

CDKN2A compared to those without methylation (p = 6 3 10�9)

and normal GTEx data (p < 2.22 3 10�16; Figures 5D and

S12A). Despite CDKN2A being a tumor suppressor, it is some-

times upregulated in cancers, with associated increase in immune

cell infiltration51 (Figure S12B), suggesting that it may function as

an oncogene. In both RET and CDKN2A, intragenic promoter

methylation may be a novel means of inducing overexpression

of these genes as part of tumorigenesis.

We further examined whether known promoter mutations

are associated with ASE and methylation. We examined the

most frequent hotspot non-coding mutations described in the

POG570 cohort,2 which are associated with the genes TERT,

PLEKHS1, ADGRG6, and AP2A1 (Table S6). As these mutations

are still rare, in the Long-Read POG cohort we found only four or

five mutations associated with the described hotspot regions in

each of PLEKHS1, ADGRG6, and AP2A1, and with such few

samples, we were unable to find associations with ASE or

aDMRs. TERT promoter mutations were more common, found

in a total of 13 samples. TERT, an oncogene encoding telome-

rase associated with maintaining telomeres in rapidly dividing

cancer cells, is frequently overexpressed in tumors.52 Mutations

in the Long-Read POG cohort were indeed associated with

higher TERT gene expression (p = 0.0052; Figure 5E). As a TF,

TERT generally has low transcripts per million (TPM), which

makes measurement of ASE more challenging. However, exam-

ining the allele-specific data, we found more ASE for the allele

containing the mutations (Fisher’s exact test, p = 0.006), in part

due to the higher expression bringing more samples above the

TPM R 1 threshold used for calculating ASE (see STAR

Methods). We also found no cases where TERT had statistically

significant BAE. The TERT promoter is normally unmethylated,52

which is also observed in Long-Read POG normal blood sam-

ples (Figure S12C). We found that TERT promoter mutations

frequently overlapped tumor aDMRs but, interestingly, tended

to be found on the less methylated allele (Wilcoxon rank-sum

test, p = 0.13 for average allele-specific methylation in 12
Cell Genomics 4, 100674, November 13, 2024 9



Figure 5. Methylation in specific cancer genes

(A) DNA methylation at RET intragenic promoter CpGs, compared with patient blood and normal tissue (NT).

(B) RET gene expression compared with GTEx normal tissues in (left) the whole cohort, (center) samples with >25% intragenic promoter methylation (IPM) vs.

other samples (intragenic promoter unmethylated [IPU]), and (right) only those samples with an aDMR at the intragenic promoter (IPASM). Only samples with

TPM > 1 were used for expression comparison.

(C and D) The same analysis as in (A) and (B) but for CDKN2A. Note that in (A) and (C) the haplotags were swapped so that HP1 represents the hypermethylated

allele.

(E) TERT expression in samples with and without TERT promoter hotspot mutation at chr5:1,295,113 or chr5:1,295,135.

(F) Average allele-specific methylation of the core TERT promoter (153 CpGs in chr5:1,294,414–1,295,655). aDMRs are noted when an aDMR overlapping the

hotspot mutation coordinates was identified by the software DSS and average allele-specific methylation differed by at least 0.1 between alleles within the

defined core TERT promoter. All p values areWilcoxon rank-sum test. Boxplots represent median, upper, and lower quartiles; whiskers represent 1.53 IQR. TPM,

transcripts per million.
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mutated cases; Figure 5F). In tumor cells, the TERT promoter is

reported to be frequently methylated, but there has been some

debate about whether TERT mutations and promoter methyl-

ation are mutually exclusive, and this has been explored in cell
10 Cell Genomics 4, 100674, November 13, 2024
lines.53 Our allele-specific data show that TERT promoter muta-

tion and promoter methylation may indeed co-occur in a single

patient tumor, but that these two alterations may be on different

alleles.



Table 2. Promoter methylation of HR genes in cases with HRD

POG ID Tumor type Analysis cohort Gene Fraction of methylated sites LOH status HRDetect

POG425 BRCA breast and ovarian BRCA1 0.922 LOH 0.998

POG507 BRCA breast and ovarian BRCA1 0.951 LOH 0.999

POG804 BRCA breast and ovarian BRCA1 0.961 LOH 0.999

POG356 BRCA breast and ovarian RAD51C 0.739 LOH 0.992

POG846 OV breast and ovarian RAD51C 0.554 LOH 0.998

POG894 OV breast and ovarian RAD51C 0.587 LOH 0.999

POG277 LUNG other BRCA1 0.804 HET 0.007

POG1041 MISC other BRCA1 0.765 LOH 0.319

POG650 HNSC other BRCA1 0.657 LOH 0.635

POG785 HNSC other RAD51C 0.576 HET 0.032

POG266 CHOL other RAD51C 0.554 HET 0.103

POG044 CNS-PNS other RAD51C 0.552 HET 0.001
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Epigenetic inactivation of DNA repair genes
HRD is especially prevalent in breast and ovarian cancers,54 and

its presence is relevant for therapeutic selection. HRD can arise

due to inactivation of DNA repair genes by a combination of mu-

tations and promoter methylation. We evaluated the promoter

methylation frequencies of 51 homologous recombination (HR)

genes in a combined breast (n = 40) and ovarian (n = 8) cohort

(see STAR Methods). Three breast cancer samples showed

BRCA1 promoter hypermethylation (Table 2). RAD51C promoter

hypermethylation was observed in one breast and two ovarian

cancer samples (Table 2). All six samples exhibited high HRDe-

tect scores (R0.7; see STAR Methods) consistent with an HRD

phenotype (Figure 6A). No deleterious somatic or pathogenic

germline mutations were found in five HR genes (BRCA1,

BRCA2, ATM, PALB2, and RAD51C) in these samples, suggest-

ing that silencing of BRCA1 and RAD51C was likely the primary

cause of the observed HRD (Figure 6A).

Compared to the rest of the cohort, samples with BRCA1 or

RAD51C promoter hypermethylation showed reduced gene

expression. This is consistent with methylation-induced tran-

scriptional silencing (Figure 6B). Haplotype-specific methylation

data revealed that the methylation was confined to a single allele

in the HRD tumors with BRCA1 (Figure 6C) and RAD51C (Fig-

ure 6D) promoter hypermethylation. Together with the observed

LOH of the other allele, this is consistent with biallelic inactivation

of these genes. Matched bloodwas available for all threeBRCA1

and one of the RAD51C cases. In all instances, the promoter al-

leles were unmethylated in the blood, suggesting that the tumor

promoter methylation was a somatic event (Figures 6C and 6D).

HRD is observed in other cancers, albeit at lower frequencies.

However,BRCA1 andRAD51C promoter hypermethylation have

been reported only in sporadic breast and ovarian cancer

cases.55,56 In this cohort, we identified promoter hypermethyla-

tion of BRCA1 and RAD51C in a further three cases each

(Table 2). Two of the samples with BRCA1 promoter hyperme-

thylation showed LOH ofBRCA1 and exhibited moderate HRDe-

tect scores, suggesting potential HRD. In the remaining four

samples, the other allele was intact and unmethylated, and the

HRDetect score was low (Table 2), likely due to incomplete

inactivation of the gene (Figure S13).
Outside of Lynch syndrome, inactivation of mismatch repair

(MMR) genes and consequent MSI arise in sporadic cancers,

usually from a combination of somatic MMR gene mutations or

somatic hypermethylation at the promoter region. However,

constitutional epimutations that result in germline promoter

hypermethylation have been reported.57 Our cohort included a

patient, POG986, with lung squamous cell carcinoma and with

multiple other previous primary cancer diagnoses, suggestive

of Lynch syndrome. Previous clinical hereditary cancer multi-

gene panel sequencing was uninformative, but targeted methyl-

ation testing of blood performed after short-read POG analysis

showed constitutional methylation of MLH1, confirming Lynch

syndrome. Long-read sequencing data from this study further

confirmed monoallelic hypermethylation in the blood with no

causative sequence variants (Figure 6E). In the tumor,

somatic LOH of MLH1 resulted in the loss of the wild-type

MLH1 allele, with hypermethylation on the remaining tumor allele

(Figures 6E and 6F, POG986). Another tumor, endometrial can-

cer in patient POG041, showed hypermethylation on both tumor

alleles of MLH1 (Figure 6F). MMR deficiency was confirmed by

immunohistochemical testing. No matched blood sample was

long-read sequenced, but the absence of a germline mutation

and the presence of biallelic methylation in the tumor suggest

that the MLH1 promoter methylation was a somatic event in

this case.

Genomic and epigenomic architecture of
extrachromosomal DNA
We hypothesized that the added methylation and phasing

information obtained from long reads would enable the recon-

struction of both the genomic and the epigenomic structure of

extrachromosomal DNA (ecDNA). Using AmpliconArchitect58

on the short-read WGS data, we predicted the presence of 76

ecDNAs in 42/189 (22.2%) samples (Figure S14A; Table S1). A

total of 1,283 genes were detected on the ecDNAs in our cohort,

with 262 (20.4%) occurring on more than one ecDNA (Table S7).

Importantly, 97 of these genes were oncogenes, 33 (34.0%) of

which were recurrent in our cohort. ZNF703 recurred most

frequently, being present in ecDNAs in five samples. The pres-

ence of at least one ecDNA correlated with an increased
Cell Genomics 4, 100674, November 13, 2024 11



Figure 6. Integrative analyses

(A–D) BRCA1 (A) and RAD51C (B) HRDetect scores (left) and expression values (right) for breast and ovarian samples with or without promoter methylation in

BRCA1 or RAD51C. Samples with deleterious alterations in five key HR genes (BRCA1, BRCA2, ATM, PALB2, and RAD51C) are colored orange (somatic) and

green (germline and somatic). Haplotype-specific DNA methylation frequencies at the BRCA1/NBR2 (C) and RAD51C (D) promoter regions in HRD samples

(HRDetect score R 0.7) with promoter methylation. Germline refers to a matched blood sample from the same individual.

(E) Haplotype-specific DNA methylation at the MLH1 promoter in a lung squamous cell carcinoma sample with MLH1 germline epimutation.

(legend continued on next page)
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genomic complexity score (two-sided Student’s t test; adjusted

p = 5.17 3 10�7) and a trend toward an increased HRD score

(two-sided Student’s t test; adjusted p = 0.0548), which may

be partially explained by the increased representation of breast

cancers in the ecDNA+ cohort (Figure S14B).

We examined allelic methylation patterns within promoter re-

gions for genes predicted to reside on ecDNAs, as a potential

mechanism of ecDNA-specific dysregulation. We identified one

breast cancer case with multiple aDMRs within an �4 Mb

ecDNA, surrounding NRG1. Two aDMRs overlapped promoter

regions for separate isoforms of the gene (Figure 6G). NRG1 is

a known cancer gene in breast cancer.59–62 Wewere able to vali-

date 4/5 of the breakpoints predicted by AmpliconArchitect by

manual review of the long-read data (see STAR Methods). We

were further able to assign the ecDNA to a single haplotype

based on the nanopore long-range phasing and to confirm that

the entire event fell within one phase block (Figure 6H; see

STAR Methods). Both aDMRs in NRG1 promoter regions

showed hypermethylation of the amplified (ecDNA) allele.

Furthermore, across the entire ecDNA region, the density of

aDMRs was significantly greater within NRG1 than in any other

region of the ecDNA (Figure 6I). Although NRG1 was expressed

only from HP1, and was focally amplified in the genome, it was

not overexpressed relative to other breast cancer samples within

the cohort (Figure S14C). This finding suggests a regulatory

mechanism by which an ecDNA-mediated amplification may

be countered by promoter methylation of the amplified gene.

DISCUSSION

We present the Long-Read POG cohort, a set of 189 tumor sam-

ples of diverse tumor types sequenced via the ONT sequencing

platform. As the samples in this cohort have accompanying

short-read DNA and RNA sequence data and associated clinical

information, our study offers potential for advancing the under-

standing of SVs, viral integration, DNAmethylation, and allelic in-

formation pertinent to cancer pathogenesis and diagnosis.

Long-read sequencing data enabled software-based calling of

known oncogenic fusions and showed reasonable concordance

with short-read SV calls genome wide. When examined, discor-

dance was largely due to the much lower coverage of long reads

or the inability to map breakpoints in the short reads. Long-read

data enabled reconstruction of complex SV events that were un-

detected or mischaracterized in short-read data. Furthermore,

long-read data enabled the direct detection of MSI expansions

as SVs,22,23 as well as the detection of ‘‘tyfona’’ signatures in sar-

coma and melanoma as previously described.24 Complex pat-

terns of HPV integration could also be deconvoluted, along

with their impact on surrounding cancer gene expression, as

has been recently explored in cervical cancer.63,64 Currently,
(F) Haplotype-specific DNA methylation frequencies at the MLH1 promoter regio

(top) and in a uterine endometrioid carcinoma sample with somatic MLH1 promo

(G) Haplotype-specific methylation and copy number for NRG1 in breast cancer s

aDMRs are highlighted in yellow.

(H) Haplotype-phased long reads mapped to the ecDNA region.

(I) Circos plot of the NRG1-containing ecDNA, highlighting DMRs and methylatio

binned counts of aDMRs, showing substantial enrichment at the 50 end of NRG1
there is limited availability of somatic SV callers for the nanopore

platform, but with the aid of datasets such as the Long-Read

POG cohort, development of additional calling approaches

will allow for improvement in this area. Our initial results

unraveling the biology of a putative ecDNA in POG816 using

long-read sequencing have been promising, suggesting future

research could include a more comprehensive exploration of

the remaining ecDNAs identified in short-read sequencing in

this cohort.

Long-range phasing of variants using long reads facilitates the

coverage of the vast majority of genes within single haplotype

blocks. This enables phasing of double hits in tumor suppressors

to ascertain biallelic loss of function. Moreover, when combined

with short-read RNA data, phasing can link deleterious variants

with ASE, providing further confirmation of multiple hits to tumor

suppressors. We observed widespread recurrent ASE across tu-

mors, as exemplified by the widespread ASE ofDUSP22. The re-

expression in tumors of genes that are typically developmentally

restricted, such as DUSP22, has been suggested to be a poten-

tial source of neoantigen therapeutic targets.65

The ability of nanopore sequencing to provide methylation

data within standard WGS without additional sequencing or

bisulfite conversion is a significant advantage. We showed that

methylation is associated with tissue of origin, suggesting the

potential for tumor type classification.66 Long-range phasing of

methylation facilitates the exploration of aDMRs. Although we

confirmed that the majority of aDMRs are driven by CNVs, we

also observed epigenetic dysregulation in copy-neutral regions.

Recurrent sites of aDMRs showed an enrichment for PRC1 and

two binding sites, congruent with their well-known role in stem

cell regulation and cancer.47–49 In rare cases, this can be due

to germline altered methylation, exemplified by the identification

of germline inactivating MLH1 methylation in a patient with

clinically confirmed Lynch syndrome. This phenomenon has

been described in both familial and sporadic Lynch syndrome

patients, alongwith acquired hypermethylation ofMLH1 in endo-

metrial cancers.67 Long-read sequencing could be applied to

identify causative epigenomic alterations in Lynch and other syn-

dromes. Examination of the tumor microenvironment can be

accomplished by deconvolving cell types from RNA-seq data,

and we have included CIBERSORT results created from short-

read RNA-seq for this cohort. Similar methods can be applied

to methylation (5-mC) derived from long-read tumor sequence

data, such as MethylCIBERSORT.68

We observed recurrent aDMRs in the intragenic promoters of

RET and CDKN2A, with methylation being associated with

increased expression of the canonical transcript. We further

observed ASE-associated gene body methylation of DUSP2.

The effect of intragenic promoter methylation on transcription

is complex and bidirectional.69–71 Gene bodies frequently
n in a lung squamous cell carcinoma sample with MLH1 germline epimutation

ter methylation (bottom).

ample POG816. The 30 amplification was included within an ecDNA. Promoter

n states. Inner track: gene annotations, with NRG1 highlighted. Outer tracks:

.
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become methylated during active transcription,69,70 which may

silence intragenic promoters via transcription interference.69–71

Conversely, intragenic promoter methylation can increase ca-

nonical transcript expression by reducing competition for RNA

polymerase (Pol) binding or through regulating transcription

elongation,69 with evidence that this methylation regulates

some oncogenes in cancer.72,73 Further analysis of intragenic

promoter methylation in RET and CDKN2A is needed to deter-

mine whether this change is a mere consequence of active tran-

scription or a key regulator of expression. A wider survey of

genes showing allele-specific gene body methylation either in

this cohort or in others may also help to elucidate this phenom-

enon. Promoter methylation in the oncogene NRG1 in one case

was also notable for being ecDNA specific, a phenomenon that

has not been well characterized to date.74

Our study expounds the significant role of gene promoter hy-

permethylation in HRD tumors, which often lack a clear underly-

ing causative mutation.75,76 Notably, the presence of BRCA1

and RAD51C promoter methylation was associated with a clini-

cally relevant HRD phenotype when accompanied by a second

hit, typically by LOH. Interestingly, BRCA1 promoter hyperme-

thylation was observed in melanoma and head and neck cancer,

in addition to breast and ovarian cancers, where it has been typi-

cally described.55,56 This suggests that HRD gene promoter

methylation may be involved in a broader spectrum of tumors,

a clinically important finding, as deficiency in HR is associated

with sensitivity to platinum chemotherapies and PARP inhibitor

therapies.77,78

Limitations of the study
Coverage forWGTA of tumors using short-read sequencing typi-

cally targets 803–1203, whereas in this study we typically

sequenced one PromethION flow cell per sample, for an average

of 263. However, despite this lower coverage, we were able to

recover all clinically relevant fusions, phase the majority of so-

matic small mutations affecting TSGs, and derive a number of

complex results from phasing of methylation and expres-

sion data.

Phasing of reads in tumors can face challenges from the pres-

ence of structural and copy number variation (especially LOH)

and may benefit in future from more sophisticated phasing

methods such as LongPhase.79 However, we have shown that

this effect is relatively small, most likely due to the presence of

both haplotypes in reads derived from the non-tumor cells pre-

sent in a typical biopsy.

At this time, software for calling somatic small variants from

nanopore data is highly experimental and unpublished and

claims lower accuracy than short-read sequencing. As we

already had access to high-quality somatic small variant calls

from high-coverage short-read sequence data, we did not

explore somatic small variant calling from the long-read data.

We anticipate that somatic small variant calling from nanopore

sequencing will improve as new algorithms are developed, as

the platform continues to improve in accuracy, and with higher

sequence coverage.

This study used the ONT R9 pore sequencing chemistry. The

ONT platform continues to rapidly iterate, with improvements

in pore structure, library preparation, and base calling. We antic-
14 Cell Genomics 4, 100674, November 13, 2024
ipate that the newer R10 pore chemistry will also improve the ac-

curacy of resolution of mechanisms of tumorigenesis, and

continued studies with newer versions of the chemistry would

be of benefit to the community.

Conclusion
In conclusion, we present a comprehensive cohort of tumors

sequenced on the nanopore platform. Our initial findings suggest

a role for long-read sequencing in personalized cancer medicine

through the phasing of somatic mutations, deconvolution of

structural variation, identification of tumors driven by HRD, and

discovery of allele-specific methylation of cancer genes. The

single long-read approach has advantages for clinical use,

including providing both sequence and methylation information

with comparatively simple library preparation and rapid

turnaround times.80 Additional tumor long-read sequencing is

warranted as a complement to the established short-read

sequencing paradigm to understand its use in biomarker-driven

clinical trials and identifying targeted treatment options. We pro-

vide this dataset, complemented by clinical information and

short-read sequencing data, as a valuable resource for bench-

marking, annotation, and fostering continuous improvement in

cancer research and clinical practice.
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Biological samples

In-house sequenced human tumor and

normal samples; see Table S1

This study; Pleasance et al.2 N/A

Critical commercial assays

NEBUltra-II kit New England Biolabs Cat#E7646A

Deposited data

Long-read sequence bams This study EGA: EGAS00001001159

Raw methylation data This study GEO: GSE270257

Methylation normal tissue data, see

Table S8

Bernstein et al.,81 ENCODE,82

and Loyfer et al.83
GEO: GSE186458

Software and algorithms

Minimap2 (2.15) Li84 https://github.com/lh3/minimap2

Ploidetect (1.3, 1.4.2) https://www.biorxiv.org/content/10.1101/

2021.08.06.455329v1

https://github.com/lculibrk/Ploidetect

Strelka2 (2.9.10) Kim et al.85 https://github.com/Illumina/strelka

Mutect2 (GATK 4.2.0.0) https://www.biorxiv.org/content/10.1101/

861054v1

https://gatk.broadinstitute.org/hc/en-us/

articles/360037593851-Mutect2

ABySS (1.3.4) Simpson et al.86 https://github.com/bcgsc/abyss

Trans-ABySS (1.4.10) Simpson et al.,86 Birol et al.87 https://github.com/bcgsc/transabyss

Manta (1.6.0) Chen et al.88 https://github.com/Illumina/manta

Delly (0.8.7) Rausch et al.89 https://github.com/dellytools/delly

MAVIS (2.2.1; 3.1.0) Reisle et al.90 https://github.com/bcgsc/mavis

SNPEff (5.0) Cingolani et al.91 https://pcingola.github.io/SnpEff/

BioBloomTools (2.0.11b) Chu et al.21 https://github.com/bcgsc/biobloom

STAR (v2.5.2b-XS and Sambamba 0.7.1;

2.7)

Dobin et al.92 https://github.com/alexdobin/STAR

RSEM (1.3.0) Li & Dewey93 https://github.com/deweylab/RSEM

CIBERSORT (1.6.2) Newman et al.94 https://cibersortx.stanford.edu/

SAVANA (1.0.3) https://github.com/cortes-ciriano-lab/

savana

nanomonSV (0.5.0) Shiraishi et al.20 https://github.com/friend1ws/nanomonsv

CuteSV (1.0.12) Jiang et al.95 https://github.com/tjiangHIT/cuteSV

Sniffles (2.0.7; 1.0.12) Sedlazeck et al.,96 Smolka et al.97 https://github.com/fritzsedlazeck/Sniffles

RepeatMasker (4.1) Smit et al.98 https://github.com/rmhubley/

RepeatMasker

Custom Viral Integration Workflow https://doi.org/10.1101/2023.11.04.

564800

https://github.com/vanessa-porter/

callONTIntegration

BEDTools (2.30.0, 2.23) Quinlan & Hall99 https://github.com/arq5x/bedtools2

IMPALA https://www.biorxiv.org/content/10.1101/

2023.09.11.555771v1

https://github.com/bcgsc/IMPALA

SnpSift (5.1day) Cingolani et al.91 https://github.com/pcingola/SnpSift

MBASED (1.34) Mayba et al.100 https://bioconductor.org/packages/

release/bioc/html/MBASED.html

Bcftools (1.15) Danecek et al.101 https://samtools.github.io/bcftools/

bcftools.html

MEME suite (5.4.1) Grant et al.102 https://meme-suite.org/meme/
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NanoMethPhase (1.2.0) Akbari et al.103 https://github.com/vahidAK/

NanoMethPhase

DSS (2.46) Akbari et al.,103 Park & Wu104 https://www.bioconductor.org/packages/

release/bioc/html/DSS.html

SignIT (RC1) https://github.com/eyzhao/SignIT

AmpliconArchitect (1.2) Deshpande58 https://github.com/virajbdeshpande/

AmpliconArchitect

CNVkit (0.9.10.dev0) Talevich105 https://github.com/etal/cnvkit

CycleViz (0.1.2) https://github.com/AmpliconSuite/

CycleViz

Circos (0.69.9) Krzywinski et al.106 https://circos.ca/

IGV (2.14.1) Robinson et al.107 https://igv.org/

Annotatr (1.16.0) Cavalcante & Sartor108 https://bioconductor.org/packages/

release/bioc/html/annotatr.html

Custom plotting code in R and Python This study https://github.com/bcgsc/long_read_pog

Other

Raw and processed data This study https://www.bcgsc.ca/downloads/

nanopore_pog/
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

This study uses patient samples from the POG program, registered under clinical trial number NCT02155621, approved by the

University of British Columbia – BC Cancer Research Ethics Board (H12–00137, H14–00681, H20-02317), and approved by the

institutional review board. POG IDs (‘‘POGXXXX’’) were assigned to each case as deidentified codes, the identity of which were

known only to the research group. Consent age range and patient sex is included in Table S1. Information on race, ethnicity and

ancestry is not explicitly collected as part of the POG program and is therefore not available for this study.

METHOD DETAILS

Sample selection and clinical data analysis
As described in Pleasance et al.,6 patients were referred by their treating oncologist in British Columbia, Canada, and enrolled based

on criteria including locally advanced or metastatic cancer, predominantly having received one or more lines of therapy in the

metastatic setting, ECOG %1, life expectancy >6 months, and the ability to undergo biopsy procedures. Samples with availability

of sufficient nucleic acid material after short-read sequencing, were considered for nanopore sequencing. Additionally, samples

were preferred if estimated tumor content (excluding surrounding cells such as normal and immune) was >40%, which was true

for 97% of samples (Table S1). Tumor tissue was collected as snap-frozen material and the matched normal was blood in all cases

except for one hematologic malignancy (POG1022), for which the normal was a matched skin sample.

Overall survival was evaluated from the date of advanced disease diagnosis, defined as the date of incurable, advanced or

metastatic disease as determined by radiology or clinical finding if progression was documented with subsequent imaging,

whichever was earlier. Kaplan-Meier survival analysis was performed as of August 1, 2023 using the R packages survival

(v2.42.3) and survminer (v0.4.2).

Sample preparation and sequencing
Extraction and size selection

Nucleic acids for this study were obtained from previously purified samples from tissues accompanied by tumor estimates as

described in Pleasance et al.2 Purification was performed with an A-Line Evo-pure kit automated on a Hamilton Nimbus96 robot.

The overall workflow and automated steps are shown in Figures 1C and S1B. Briefly, frozen tissue sections were immersed in

420 mL of RLT Plus buffer (QIAGEN) containing tris(2-carboxyethyl)phosphine (a reducing agent; TCEP) and a unique sample tracking

DNA plasmid, and gently agitated overnight at room temperature. Lysates were transferred from 2mL tubes to wells of a 1.2mL plate

(Thermo Scientific, AB1127) to which was added 400 mL of 5x bind buffer (80 mL beads in 320 mL isopropyl alcohol). Following a

5 min incubation at room temperature lysates were cleared on a Magnum FLX magnet place (Alpaqua Inc) for 6 min and the pro-

tein-containing supernatant removed. The beads, with bound nucleic acids, were washed by pipetting 10 times in wash buffer

and returned to the magnet. Beads were washed three times in 70% ethanol then dried for 10 min. 40 mL nuclease-free water
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was added to the dried beads and returned to the magnet. The eluted total nucleic acids were transferred to a 96-well storage plate

and aliquots taken for quantification using Invitrogen Qubit 4 Fluorometer (Thermo Fisher Q33226).

For samples with concentrations below 166 ng/mL or in volumes greater than 30 mL, 5000 ng of Total Nucleic Acid (TNA) was trans-

ferred to a 1.5 mL DNase/RNase free tube and concentrated without heat on the Savant SpeedVac Plus (SC210A) to a maximum

volume of 30 mL. This 5000 ng sample in 30 mL was topped up with 10 mL of Qiagen Buffer EB (Cat.19086). The samples were

then run on the SAGE Science Blue Pippin instrument using the High Pass Plus Cassette (BPPLUS 10) with a maximum of 4 samples

per run. The start range was selected at 15,000 base pairs and the end range was selected at 150,000 base pairs yielding a targeted

size of 82,500 base pairs. Following the run completion, each sample was eluted in 80 mL and each sample elution well was then

washed with 80 mL of 10 mM Tris, 1mM EDTA containing 0.1% Tween to maximize sample recovery. The total volume of 160mL

was then concentrated without heat to 50 mL using the SpeedVac Plus. Each sample was then quantified using the Invitrogen Qubit

4 Fluorometer (Q33226) and normalized to 2000 ng in 47.5 mL for PromethION genome sequencing.

Library construction and sequencing

Library construction and sequencing followed the Oxford Nanopore Technologies Genomic DNA by Ligation (SQK-LSK110) proto-

col. DNA libraries starting with 2 mg of sample per library. No shearing was performed. The NEBUltra-II kit, (New England Biolabs,

Ipswich, MA, USA, cat. no. E7646A) was used for end-repair and A-tailing. NEBNext quick ligase (E6056S) was used to ligate the

Oxford Nanopore sequencing adapter. A final size selection of 0.4:1 ratio beads:library (PCRClean – DX Aline Biosciences L/N

06180316) was done to select against smaller molecules. These library preparation steps were performed on Hamilton Nimbus96

liquid handlers. An example deck layout, in this case for the bead purification step, is shown in Figure S1C. DNA libraries were loaded

in R9.4.1 pore flow cells on PromethION 24 instrument running software version 19.06.9 (MinKNOW GUI v4.0.23). Sequencing was

carried out for 72 h. DNase I (Invitrogen cat no. AM2222) nuclease flushwas performed after 24–48 h by reloading the flow cell with the

same library mix.

Basecalling and primary analysis

Basecalling was performed using the guppy basecaller fromOxford Nanopore Technologies, using the ‘‘super-accurate’’ model. Pri-

mary analysis was carried out using a NextFlow workflow, which is provided at https://github.com/bcgsc/long_read_pog. Small var-

iants were called using clair3109 (v0.1-r8) and phased using WhatsHap as included with clair3. Structural variants were called using

sniffles96,97 (1.0.12b) and cuteSV95 (1.0.12). Methylation (5-mC) was called using nanopolish13 (0.13.3) and phased using

nanomethphase.103

Short-read data analysis
Short-read data from the Illumina platform was generated as described in Pleasance et al.2 Reads were aligned to the human refer-

ence genome (hg38) using Minimap284 (v2.15). Regions of copy number variation and losses of heterozygosity were identified using

Ploidetect (https://www.biorxiv.org/content/10.1101/2021.08.06.455329v1) (v1.3.0 and v1.4.2). Tumor content (estimated propor-

tion of DNA derived from tumor cells vs. normal cells in the sample) and average ploidy observed in the sequenced tumor were deter-

mined based on manual review of Ploidetect results, copy number plots and allelic ratios. Twomeasures of copy number complexity

were computed: the fraction of the genome falling in non-ploidy copy segments, and the genome complexity which is the arithmetic

mean of the fraction non-ploidy and the fraction of the total genome size falling in non-ploidy segments, computed based on Ploi-

detect copy number results with segments less than 10kb merged. Somatic single nucleotide variants (SNVs) and small insertions

and deletions (indels) were identified using Strelka285 (v2.9.10) and Mutect2 (https://www.biorxiv.org/content/10.1101/861054v1)

(in GATK v4.2.0.0). Events assigned PASS by both callers were included, as well as indels called by Strelka2 only with QSS>=50.

Tumor mutation burden (TMB) was computed as total called somatic SNVs and indels per megabase. Somatic structural variants

(SVs) in DNA data were identified using assembly-based tools ABySS (v1.3.4)86 and Trans ABySS (v1.4.10)86,87 and alignment-based

tools Manta (v1.6.0)88 and Delly (v0.8.7),89 with consensus calls merged using MAVIS90 (v2.2.1). SVs were filtered to exclude those

with identical genomic breakpoints in multiple samples, to remove from the somatic call set germline variants and some technical

artifacts. SV events were considered high quality (HQ) if they were called by more than one tool and if a contig could be assembled

that aligned across the candidate genomic breakpoint, otherwise they were classed as low quality (LQ). Variants were annotated to

genes using SNPEff91 (v5.0) with the Ensembl database110 (v100). MSI samples were identified with MSIsensor111 (v2.0.1). Microbial

detection was performed using BioBloomTools (v2.0.11b).21

RNA-Seq reads were aligned using STAR92 (v2.5.2b-XS and Sambamba 0.7.1) and expression was quantified using RSEM93

(v1.3.0) based on gene models from Ensembl v100. Immune cell deconvolution of RNA-Seq TPM data was performed with

CIBERSORT94 using absolute scores without quantile normalization.

Structural variation characterization
We conducted two distinct analyses. We performed tumour-only SV calling for all tumors (n = 189). For the subset of tumors with

matched normal, (n = 43), we performed somatic SV calling. A literature review was conducted as of May 2023 of existing long reads

somatic SV callers, and callers were selected based on the criteria that they had detailed documentation and were continually being

maintained over the last year. We identified two somatic SV callers meeting these criteria: SAVANA(v1.0.3) (https://github.com/

cortes-ciriano-lab/savana) and nanomonSV(v0.5.0).20 CuteSV(v1.0.12)95 and Sniffles(v2.0.7)96,97 were used as germline SV callers

for the tumour-only analysis. Callers were run with default parameters and a minimum size threshold of 50 bp. Intrachromosomal
e3 Cell Genomics 4, 100674, November 13, 2024
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breakend notation for SAVANA calls were transformed to different SV type calls according to VCF4.2 conventions. Passing SAVANA

and nanomonSV events fulfilling a minimum tumor variant allele frequency (VAF) of 0.05 with no event support in the matched normal

were subsequently used for downstream analysis.

Post-processing of SVs was conducted with MAVIS (v.3.1.0).90 We filtered SVs found in the sex and unknown chromosomes,

collapsed duplicate SVs, and merged/clustered SVs by breakpoint proximity (100 bp) and type. Insertion end coordinates were

calculated by adding the length of the inserted sequence alongside the confidence interval range. SVs called somatic but appearing

in paired normals were categorised as false positives and filtered out. SVs were annotated using events from the Database of

Genomic Variants (DGV)112 and frequent events seen in normal WGS using MAVIS. SVs were also annotated based on

RepeatMasker (v4.1).98

Events were considered to match known fusions if the SV had both breakpoints within 10 bases upstream or downstream of the

reported breakpoints and were classified as the same SV type. Events selected for manual review were those that overlap a gene

found in OncoKB113 and which did not have breakpoints overlapping within a repetitive element in RepeatMasker. To visualise so-

matic events in regions of interest, we took the SAVANA SV calls alongside the Ploidetect(v1.3.0) copy number calls into

ShatterSeek.114

Corresponding short-read somatic MAVIS post-processed SVs from BreakDancer, DeFuse, Manta, Delly, Trans-ABySS, and

ChimeraScanwere compared to nanopore SVs. Somatic cohort wide level calls were analyzed for any SVs spanning coding elements

of oncogenic genes within OncoKB. SVs were considered similar if they clustered within 100 bp of each other. To resolve complex

events, we pulled out all reads surrounding the region of the hypothesised event, and took themajority of the readswhich supported a

certain interpretation. Afterward, we conducted a local assembly of the reads involved in the structural variants (determined by all

reads that support an event in the proximal distance of the complex event. Finally, we assessed whether the regions by subsetting

for HQ Illumina events and nanopore events, look for those which predict a non-synonymous coding change from short reads and

those events which overlap known tumor suppressors or oncogenes. We manually reviewed the transcriptomic data for evidence of

irregular splicing patterns and expression profiles through sashimi plots.

Viral integration
HPV viral breakpoints were detected as described by Porter et al.115 and using the workflow from GitHub (https://github.com/

vanessa-porter/callONTIntegration). Briefly, Sniffles (1.0.12) was used to call breakpoints as translocations between the human

chromosomes and the HPV genomes using the following specifications to maximize the accuracy for detected HPV integration

breakpoints: max_distance = 50, max_num_splits =�1, report_BND, num_reads_report =�1, min_support = 5, and min_seq_size =

500. Breakpoints were iteratively grouped together into HPV integration events if they had one or more reads that overlapped be-

tween the breakpoints as indicated in the VCF, or mapped within 500 kb of each other as measured using BEDTools (v. 2.30.0).99

The first condition ensured that breakpoints appearing distant to each other relative to the reference genome but were physically

linked through fusion rearrangements, could be paired together. The second condition ensured breakpointsmapping near each other

but lacked a read long enough to link them together. The collection of HPV breakpoints that were grouped together through these two

methods were referred to as an integration event. All read names belonging to an integration event were retained for later analyses.

Integration event structures were determined using the read alignment patterns as described by Porter et al., 2023 (https://doi.org/

10.1101/2023.11.04.564800). The collection of HPV breakpoints that were grouped together through these two methods were

referred to as an integration event. All read names belonging to an integration event were retained for later analyses. Integration event

loci were defined as the integration breakpoints within an event that map within 500 kb of each other, as determined using BEDTools

(v. 2.30.0). Therefore, integration events spanningmultiple chromosomes or large genomic expanses would havemultiple integration

event loci. The integration event loci were used for regional analyses such as determining neighboring genes. The multi-breakpoint

event was analyzed using the workflow found here: https://github.com/vanessa-porter/comSVis, which sectioned the event using

the collection of all SV breakpoints that were phased within the event. The mean depth between the breakpoints was then calculated

using BEDTools (v. 2.30.0) for visualisation.

Phasing
Individual phasing statistics were calculated for each phased VCF usingWhatsHap stats. ReadN50 is the length at which reads of the

same or greater length represent 50% of the genome. To estimate the phasing rate across tumor suppressor genes, we determined

the number of protein-coding genes (GENCODE v43) that are contained within a single phase block for each sample using bedtools

intersect, restricting overlapping genes to those that had a 100% overlap with a given phase block. Putative biallelic somatic variants

with potential biological or clinical significance were identified from the POGgenomic reports. Tumor suppressor genes were defined

by the COSMIC Cancer Gene Census. Long reads were colored by predicted haplotype usingWhatsHap haplotag, and all candidate

biallelic variants were manually reviewed in IGV.

Allele specific expression
The IMPALA pipeline (https://github.com/bcgsc/IMPALA; https://www.biorxiv.org/content/10.1101/2023.09.11.555771v1) was

used to detect ASE genes in the POG cohort (n = 172), which uses tumor RNA-seq data and phased variants generated from tumor

long reads. STAR aligner92 (v2.7) is used to align the RNA reads to the genome before performing variant calling using Strelka (v2.9).
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This generates allelic read counts for each variant. Heterozygous SNPs are filtered for and annotated with haplotype information

and gene annotation using the phased variants and SnpEff91 (v5.0) respectively. SnpSift (v5.1d) formats the allelic read count and

annotations as preprocessing for ASE detection. RSEM93 (v1.3) is used to quantify expression of RNA-seq data and filter out genes

with expression lower than 1 TPM.

MBASED100 (v1.34) is the main software used to calculate ASE. Biallelic genes are expected to have an allelic read count ratio of

0.5. MBASED performs a beta-binomial test on each phased SNP to assess the statistical deviation away from the expected 0.5 ratio.

Afterward, MBASED utilises meta-analysis with haplotype information to aggregate SNP-level data to gene-level major allele fre-

quency data. P-value is adjusted with Benjamini-Hochberg method. Genes with major allele frequency above 0.65 and adjusted

p-value below 0.05 are classified as allelically expressed.

Post-processing of theallele specific expression is doneby integrating additional information todetermine thepotential causeof the

allele specific expression. CNV data from Ploidetect, allelic methylation data from NanoMethPhase and somatic variant calls can be

used as optional inputs for IMPALA software. Bedtools (v2.23) intersect is used to intersect ASE data with CNV states, allelic methyl-

ation and somatic calls. Additionally, SnpEff is used to annotate and filter for nonsense variants in ASE gene as a potential genetic

mechanism. Lastly, bcftools (v1.15)101 consensus is used to generated consensus sequence of both allele based on the phased var-

iants and FIMO from theMEME suite (v5.4.1)102 detects transcription factor binding sites on both alleles and find differences between

the allele. Disruption of transcription factor binding sites could lead to ASE. The final output of the workflow is a summary table with

allelic information in addition to the cis-acting elements which can be used for downstream analysis to identify genes of interest.

Methylation analysis
For non-allelic methylation analysis we used nanopolish methylation frequency results. As normal methylation data, 267 WGBS

datasets from various tissue/cell types were gathered from Epigenomics Roadmap,81 ENCODE,82 and Loyfer et al.83

(GSE186458). To analyze overall methylation at different genomic regions, we used bedtools intersect to overlap CpG methylation

frequency data to Repeats, TF binding sites (also includes CTCF binding sites), andCGIs from the UCSC table browser,116 promoters

(1500 bp upstream and 500 bp downstream of TSS in Ensembl100 transcripts GRCh38.p13110), 500bp up and downstream of polyA

sites from PolyA_DB 3,117 and enhancers from GeneHancer v5.14.118 For tSNE, we used CGIs, Promoters, CTCF binding sites, and

Enhancers regions with standard deviationR 0.2 of themeanmethylation between tumor types or biopsy sites. For both phased and

unphased data, if the methylation was at strand level, for each CpG site we aggregated the number of reads asmethylated and num-

ber of all reads from both strands to calculate consensus methylation frequency.

To detect aDMRs in each sample, the phased haplotype 1 and 2 results fromNanoMethPhase were used and DMRswere called in

each sample using NanoMethPhase dma module with default options with DSS R package version 2.46.0103,104. Detected DMRs

were further filtered to keep DMRs with |diff.methyl (delta methylation)| R0.15. To filter detected aDMRs in tumor samples and

keep only tumour-specific aDMRs, in addition to ignoring aDMRs that overlap to more than one matched normal sample, we

excluded aDMRs showing partial methylation in more than 1% of the normal WGBS samples. Partial methylation is an indication

of allelic methylation because only one allele is methylated and overall methylation at the region will be �50%. To explore partial

methylation, for each WGBS sample, we used CpGs with at least five mapped reads and at each detected aDMR we counted the

number of CpGs with partial methylation (methylation frequency between 0.35 and 0.65). We also excluded aDMRs overlapping

within a 10 kb window of known imprinted genes and regions to exclude aDMRs stemming from imprinting.119 An aDMR with

0.35–0.65 methylation is then considered partially methylated if it had at least five CpGs in the WGBS sample and more than

60% of the CpGs showed partial methylation. To overlap detected aDMRs to genomic regions we used bedtools intersect -e -f

0.5 -F 0.5. TF enrichment for recurrent genes with aDMR at their promoter was evaluated using the Enrichr ChEA 2022 database120

(https://maayanlab.cloud/Enrichr/). CIBERSORT version 1.6.2 was used to infer immune infiltrate proportions using gene

expression data.

HRDetect and HR gene promoter methylation
We used HRDetect, a tool which aggregates different mutational signatures including single base substitution signatures, structural

variant signatures and microhomology-mediated deletions, to predict HRD in our samples. HRDetect scores were computed from

short-read sequencing data using a logistic regression model with the same intercept and coefficients as those reported in the pre-

viously trained model, without adjustment.121 The intercept was �3.364 and the coefficients were 1.611, 0.091, 1.153, 0.847, 0.667,

and 2.398, respectively, for the six HRD signatures: (i) SBS3, (ii) SBS8, (iii) SV signature 3, (iv) SV signature 5, (v) the HRD index, and (vi)

the fraction of deletions with microhomology. The contribution of previously reportedmutational signatures in the Catalog of Somatic

Mutations in Cancer (COSMIC v3.1, https://cancer.sanger.ac.uk/cosmic/signatures) was calculated using Monte Carlo Markov

Chain (MCMC) sampling (https://github.com/eyzhao/SignIT). Short-read MAVIS calls that were detected by more than one tool

and for which the contig could be assembled were included in the analysis and the contribution of the previously reported SV muta-

tional signatures was calculated usingMCMC sampling (https://github.com/eyzhao/SignIT).122 The HRD index was computed as the

arithmetic sum of loss of heterozygosity, telomeric allelic imbalance, and large-scale state transitions scores. The microhomology

fraction was determined as the proportion of deletions which were larger than three base pairs and demonstrated overlappingmicro-

homology at the breakpoints.77 All signatures were log transformed and normalized so that each feature had a mean of 0 and stan-

dard deviation of 1.121
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Promoter methylation of the following HR genes, selected based on their established roles in homologous recombination repair,

were investigated to examine associations with high HRDetect score:BARD1, BLM, BRCA1, BRCA2, BRIP1, DNA2, EXO1,MRE11A,

NBN, PALB2, RAD50, RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RBBP8, WRN, XRCC2, XRCC3, ATM, BAP1, CUL3,

EME1, ERCC1, ERCC4, FBXO18, GEN1, HELQ,MUS81, PARPBP, PCNA, POLD1, POLK, POLN, PSIP1, RAD51AP1, RECQL5, RIF1,

RMI1, RMI2, RPA1, RPA2, RPA3, RTEL1, SLX1A, SLX4, TOP3A, TP53BP1, and USP11. Promoter is defined as 1500 bp upstream

and 500 bp downstream of TSS. Methylation frequencies from Nanopolish in the promoter regions of 51 HR genes in the tumors and

in publicly available matched tissues (https://epigenomesportal.ca/ihec/) were compared. ’Methylated’ site in the promoter is

defined as that methylation of the site being >1 SD from themean normal methylation level in thematched tissue and then the fraction

of methylated sites in the gene promoter is computed.

Extrachromosomal DNA characterization
To identify potential ecDNAs from short-read WGS data, we ran PrepareAA (v0.1203.1) with CNVkit105 (v0.9.10.dev0) for copy

number calling followed by AmpliconArchitect58(v1.2) with default settings (–gain 4.5 and –cnsize_min 50000). For ecDNA

structure visualization, we first used CycleViz (v0.1.2; github.com/AmpliconSuite/CycleViz) to obtain breakpoints predicted by

AmpliconArchitect for ecDNAs with only one predicted substructure, followed by circos106 (v0.69.9), in which we overlaid additional

methylation data obtained from long-read WGS data.

To validate the structure of select ecDNAs predicted by AmpliconArchitect,58 which uses short-read WGS data, we manually re-

viewed supplementary reads from the long-read WGS data in IGV107 (v2.14.1). Specifically, we looked for reads mapping to both

sides of each predicted breakpoint +/� 100 bp. We assigned an ecDNA to a specific haplotype based on whether reads mapping

to SVs associated with the ecDNAmapped to reads within the haplotype-phased bam file. Specifically, we extracted SVs associated

with the ecDNA from the output of AmpliconArchitect, found these SVs in the long-read WGS data from Sniffles (v1.0.12b), and then

mapped these reads to both tumor haplotype bam files. For further validation of the assignment of an ecDNA to a specific haplotype,

we viewed the ecDNA in IGV to confirm amplified regions co-localized with the ecDNA regions of AmpliconArchitect.

We used annotatr108 (v1.16.0) in R (v4.0.2) to extract gene promoters overlapping both ecDNA regions and DMRs obtained from

the allele-specific methylation pipeline prior to filtering out CNVs (see also Allele-specific methylation). We selectedNRG1 in a breast

cancer sample, for further analysis as it is a known cancer gene in breast cancer,59–62 had multiple DMRs falling within it, including

two in promoter regions, and had >0.5 methylation frequency for one haplotype and <0.5 methylation frequency for the other haplo-

type for each promoter DMR. Plots for NRG1 methylation were constructed in R with tidyverse123 (v2.0.0) and patchwork

(v1.1.2.9000)124 functions with ggbio125 (v1.38.0) and EnsDB.Hsapiens.v86 (v2.99.0) for gene annotation.

We compared NRG1 and other genes within the NRG1 pathway (ERBB2, ERBB3, and AKT1) between the sample containing the

NRG1 ecDNA (n = 1) to other breast cancers within the cohort (n = 39) in terms of RNA expression in TPM. Permutation tests were

used to assess significance between the ecDNA sample and the rest of the breast cancers in the cohort using the coin126 (v1.4-2)

package and Bonferroni multiple testing correction. We also reviewed ASE results for NRG1 in the sample of interest (see also

Allele-specific expression).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis was performed using R or Python or using the statistics provided by specific software, with packages and

software as noted in the method details section. Statistical details of experiments including tests used, sample size and p-values

can be found in the results section, figures and/or figure legends. Tests were two-tailed, considered significant at p < 0.05 and

multiple test corrected as noted.

ADDITIONAL RESOURCES

Clinical trial registry: https://clinicaltrials.gov/study/NCT02155621.
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Event Type SAVANA nanomonSV 
SAVANA and 
nanomonSV HQ Illumina LQ Illumina 

HQ and LQ 
Illumina 

Insertion 2(1-4) 58(39-79) 58(39-83) 3(2-7) 93(51-118) 99(52-128) 

Deletion 48(25-77) 111(66-175) 119(71-183) 135(98-211) 710(565-758) 862(661-997) 

Inversion 43(20-69) 45(25-79) 57(29-89) 48(29-82) 161(142-182) 212(186-269) 

Translocation 22(8-32) 45(25-474) 33(20-47) 27(14-46) 190(170-219) 227(197-259) 

Duplication 41(23-84) 35(15-80) 49(25-108) 35(15-78) 258(231-287) 297(253-374) 

 
 
Table S2. Summary of event counts for somatic SVs, related to Figure 2. Values are presented 
as median (interquartile range, 25th–75th percentile) per sample. LQ = Low Quality. HQ = High 
Quality. 
 
  



 

POG ID Known Event, (exon, exon) Event Type 
Nanopore Caller 
Support 

Nanopore 
Coverage 
(Tumour, 
Normal) 

Illumina 
Coverage 
(Tumour, 
Normal) 

POG792 FUS::DDIT3 (e5:e2) Translocation cuteSV, Sniffles 36, N/A 85, 41 

POG239 MYB::NFIB (e13:e11) Translocation cuteSV, Sniffles 34, N/A 89, 45 

POG806 EWSR1::PATZ1 (e8:e1) Inversion cuteSV, Sniffles 22, N/A 81, 43 

POG615 PAX3::FOXO1 (e7:e2) Translocation cuteSV, Sniffles 25, N/A 110, 51 

POG633 ATG7::BRAF (e18:e9) Translocation cuteSV, Sniffles 26, N/A 97, 55 

POG662 SS18::SSX1 (e18:e9) Deletion cuteSV, Sniffles 15, N/A 76, 37 

POG846 NF1::NF1 (e1:e58) Deletion 

cuteSV, Sniffles, 
nanomonSV, 
SAVANA 34, 15 74, 33 

POG877 EML4::ALK (e13:e20) Inversion cuteSV, Sniffles 27, N/A 83, 42 

 
 
Table S3. Clinically-relevant fusion events and their causal SVs, as called in Illumina data, 
related to Figure 2. All 8 were recapitulated in the lower-coverage ONT data.   
  



 
 
 
 
 

POG_ID Event coordinate 
Gene(s) 
affected Event type Caller support 

Nanopore 
coverage 
(Tumour, 
Normal) 

Illumina 
coverage 
(Tumour, 
Normal) Additional comments 

POG1002 chr3:128627052-128657344 RPN1 Inversion SAVANA 38, 16 100, 39 
Breakpoints in low 
complexity region 

POG782 chr3:128627052-128657344 RPN1 Inversion SAVANA 38, 29 82, 41 
Breakpoints in low 
complexity region 

POG137 chr17:39761616-39795054 IKZF3 Deletion SAVANA 32, 27 90, 43 
Lack of breakpoint 
evidence 

POG415 chr2:141175402-141277302 LRP1B Deletion nanomonSV 29, 12 94, 42 
Breakpoints in low 
complexity region 

POG117 chr16:18846588-18861404 SMG1 Inversion nanomonSV 38, 28 100, 44 
Manually interpreted as 
a complex event 

POG279 chr22:19361162-19366286 HIRA Inversion 
SAVANA, 
nanomonSV 26, 18 89, 41 

Manually interpreted as 
a complex event 

 
 
Table S4a. Structural variant events called only in ONT (not in Illumina), including notes from 
manual review, related to Figure 2. Only those overlapping cancer genes were reviewed and 
included.  
 
 
 

POG ID Event coordinate 
Gene(s) 
Affected Event Type 

Caller 
support 

Nanopore 
Coverage 
(Tumour, 
Normal) 

Illumina 
Coverage 
(Tumour, 
Normal) 

Additional 
comments 

POG684 chr22:41164024- 41165548 EP300 Deletion Delly, Manta 21, 23 85, 42 Low coverage 

POG303 chr16:72803442-chr4:94786616 
ZFHX3: 
BMPR1B Translocation Delly, Manta 37, 20 90, 46 Low coverage 

POG117 chr3:59901866-59938284 FHIT Deletion Delly, Manta 38, 28 100, 44 
No Nanopore 
read support 

POG117
* chr2:140878162-chr20:15528198 

LRP1B: 
MACRO
D2 Translocation Delly, Manta 38, 28 100, 44 Low coverage 

 
*This event was called two times in the same biopsy sequenced twice, at different times. 
 
Table S4b. Structural variant events called only in Illumina (not in ONT), including notes from 
manual review, related to Figure 2. Only those overlapping cancer genes were reviewed and 
included. In 3/4 cases, this was due to low coverage of the ONT sequencing. 
 



POG_ID 
Gene 
Involved Chr 

Position 
start 

Insert 
sequence 
size (bp) Callers Classification Results of manual review 

POG049 EGFR 7 55167011 91 nanomonSV False positive 
Breakpoints are situated in low mapability regions. Presence of multiple insertion signals 
from 100-500 bp. Event read support in the matched normal. 

POG100 IRF4 6 396649 109 nanomonSV False positive 
Breakpoints are situated in low mapability regions. Presence of multiple signals from 100-
200 bp. Event read support in the matched normal. 

POG1022 RPTOR 17 80876485 193 nanomonSV False positive 
No read support signal based on visual manual review. Likely an inferred event from 
assembly. Event read support in the matched normal. 

POG111 KDM2B 12 121524684 342 nanomonSV True positive Improperly classified as an inversion by Illumina read support 

POG147 PTPRD 9 9985459 223 nanomonSV True positive No proximal Illumina calls to breakpoints. 

POG295 TEK 9 27207649 245 nanomonSV True positive No proximal Illumina calls to breakpoints. 

POG360 HDAC4 2 239069542 206 nanomonSV False positive Deletion signal picked up nearby insertion 

POG410 HLF 17 55282951 59 nanomonSV False positive 
No read support signal based on visual manual review. Likely an inferred event from 
assembly. 

POG530 TMPRSS2 21 41474575 539 nanomonSV False positive 
Breakpoints are situated in low mapability regions. Presence of multiple insertion signals 
from 100-200 bp. Event read support in the matched normal. 

POG566 ARHGAP26 5 142957710 270 nanomonSV True positive No proximal Illumina calls to breakpoints. 

POG649 MAP3K13 3 185454242 238 nanomonSV False positive 
Breakpoints are situated in low mapability regions. Presence of multiple insertion signals 
from 100-500 bp. Event read support in the matched normal. 

POG649 NTRK3 15 88039266 76 nanomonSV True positive Missed by Illumina callers. 

POG704 LRP1B 2 141689497 141 nanomonSV False positive 
No read support signal based on visual manual review. Likely an inferred event from 
assembly. 

POG804 IGF1R 15 98908279 319 nanomonSV True positive No proximal Illumina calls to breakpoints. 

 
 
Table S5. Insertion events involving an OncoKB gene unique to Nanopore with manual review comments, related to Figure 2. 



 

POG_ID gene chr pos ref alt Mutant allele ASE ASE major allele 

POG044 TERT chr5 1295135 G A HP2   

POG084 PLEKHS1 chr10 113751834 C T HP2   

POG109 PLEKHS1 chr10 113751834 C T HP1 BAE  

POG130 AP2A1 chr19 49766782 T G HP1   

POG137 ADGRG6 chr6 142385069 G A Unphased ASE HP1 

POG153 ADGRG6 chr6 142385069 G A HP2   

POG170 ADGRG6 chr6 142385069 G A Unphased ASE HP2 

POG211 TERT chr5 1295113 G A HP1 ASE HP1 

POG217 ADGRG6 chr6 142385069 G A HP1   

POG415 TERT chr5 1295113 G A HP1 ASE HP1 

POG446 PLEKHS1 chr10 113751834 C T HP1 BAE  

POG497 TERT chr5 1295113 G A HP1   

POG574 TERT chr5 1295113 G A HP2   

POG574 AP2A1 chr19 49766783 C T HP2   

POG580 TERT chr5 1295113 G A Unphased ASE HP1 

POG581 AP2A1 chr19 49766798 C T HP2 BAE  

POG581 TERT chr5 1295113 G A HP1 ASE HP1 

POG637 AP2A1 chr19 49766781 C T HP1   

POG637 TERT chr5 1295113 G A HP1   

POG673 TERT chr5 1295135 G A HP2 ASE HP2 

POG680 TERT chr5 1295135 G A HP1   

POG680 AP2A1 chr19 

49766726, 
49766727, 
49766743 G A HP2 ASE HP2 

POG693 TERT chr5 1295113 G A HP1   

POG777 TERT chr5 1295113 G A HP1 ASE HP1 

POG830 PLEKHS1 chr10 113751834 C T Unphased   

POG1068 TERT chr5 1295113 G A HP2   
 
 
Table S6. TERT mutations in long-read POG cohort and associated expression and allele-
specific methylation, related to Figure 5.  



 
 
Figure S1. Cohort and sequencing information, related to Figure 1. (A-B) Overall survival for 
Long-read POG cohort by tumour type from date of advanced disease (A) and from date of biopsy 
(B). (C) Workflow for Nanopore sample preparation highlighting steps automated on the Nimbus96 
liquid handler. (D) Nimbus96 robot deck layout for magnetic bead purification. 
  



 
 
Figure S2. Per-sample counts of all SV calls (including germline) by type for all tumours, 
related to Figure 2. (A) Consensus calls between cuteSV and sniffles. (B) SV calls further broken 
down by caller across the cohort (cuteSV vs sniffles, vs calls shared between both callers).  
  



A 

 
 
B 

 
 
Figure S3. Insertion events called in long-read data but not in short-read, related to Figure 2. 
(a) Putative false positive intronic 90 bp insertion event on EGFR at chr7:55167011 in POG049 called 
by nanomonSV with no visible read based support for a 90 bp event. (b) Intronic 328 bp insertion 
event on KDM2B at chr12:121524684 called by nanomonSV in POG111, miscalled by Illumina as a 
111,113 bp inversion around chr12:121413571-121524684.  



 
 
Figure S4. SV distributions and examples, related to Figure 2. (A) Number of somatic SV events 
per sample in different call sets. POG111 and POG147 stand out as having much more inversions 
called in the long-read data than all other cases. POG884 and POG986 stand out as having much 
more insertions called. (B) Nanopore-only insertion calls in an MSI-H sample POG986, annotated with 
RepeatMasker. Other repetitive elements such as Alu elements within RepeatMasker are demarcated 
as “other”   



 
Figure S5. Examples of complex SVs, related to Figure 2. (A-C) Shatterseek images of patient 
POG147 (A) and patient POG111 (B,C) with the ‘Sniffles’ structural variant profiles (top of subplots), 
and Ploidetect copy number calls (bottom of subplots). Duplication-like SVs are coloured blue, and 
deletion-like SVs are coloured orange, and highlight the tyfona-like structural variant profile of 
chromosome 5 (A) and chromosome 8 (B,C). 
  



 
 
Figure S6. HPV integration events, related to Figure 2. (a) Gene expression in HPV-integrated 
samples. (b) Focal chromothripsis-like event at HPV integration site. 
 
  



 
 
Figure S7. Factors affecting phasing in long-read sequenced tumours, related to Figure 3. (A) 
Effect of germline factors on phasing rate per-gene. SNP density (left) and proportion of the gene 
body made up of repeats (right) both correlate weakly with phasing rate. (B) Effects of somatic small 
variants (represented by TMB) on phasing. Neither phase block N50 nor completeness of phasing 
were significantly correlated. (C) Effect of somatic rearrangements (measured by genomic complexity) 
on phasing. Both phase block N50 and completeness of phasing were correlated, slightly more so 
than SNP density and repeats.  
 
  



 
 
Figure S8. ASE in genes with nonsense mutations, related to Figure 3. (A) ASE status of genes 
containing nonsense mutations. (B) ASE genes with nonsense mutations by major and minor 
expressed allele. P values are Wilcoxon rank sum test. 
  



 
 
Figure S9. Phasing of methylation information, related to Figure 4. (A) Allelic methylation of 
CpGs across DUSP22. Lighter points indicate hypomethylated alleles across the region and darker 
indicate hypermethylated alleles. Bottom, gene tracks for the top ten expressed transcripts. (C) 
DUSP22 gene body methylation of tumour, blood and normal whole genome bisulfate sequencing 
samples at the sample and allelic level respectively (left two figures). Expression of alleles showing 
gene body hypermethylation in comparison to those showing hypomethylation (right). (D) Allelic 
expression of DUSP22 for the major and minor allele of tumor samples compared to GTEx samples 
with more than 20 reads to determine major allele frequency. Allelic expression is shown across 
tissues of origin for cancers and normals and the color of each point indicates the cancer type. 
Wilcoxon rank-sum test p-values and significance labels are shown above plots (P<0.0001: ****, 
P<0.001: ***, P>0.05: ns). All samples with loss of heterozygosity or deletions in this gene were 
filtered out.  



 

 
 
Figure S10. Average methylation at a range of regulatory regions in POG cases with either IDH 
activating or TET-inactivating mutations, related to Figure 4.  



 
 
Figure S11. Allele-specific DMRs, related to Figure 4. (a) Number of allele-specific DMRs in 
matched blood and tumour type samples. (b) Upset plot demonstrating mapping of tumour-specific 
allelic DMRs to different genomic regions. (c) Recurring transcription factor (TF) binding sites with 
tumour-specific allelic DMR. The plot represents the top 30 TFs with the highest proportion of their 
binding sites recurrently overlapped to tumour-specific allelic DMR.  
  



 
 
Figure S12. Methylation of specific cancer genes, related to Figure 5. (A) CDKN2A intragenic 
promoter methylation of balanced tumour, loss of heterozygosity (LOH) tumour, blood and normal 
reference samples at the sample (left) and allelic (centre) level. Expression of balanced and LOH 
tumor samples in comparison to Genotype-Tissue Expression (GTEx) reference expression data for 
all tissues (right). P-values are Wilcoxon rank-sum test. WGBS, whole genome bisulfite sequencing. 
(B) CDKN2A intragenic promoter methylation and expression for balanced and LOH samples (left). 
Percentile score for immune cell populations inferred by CIBERSORT in comparison to CDKN2A 
expression per sample (right). Spearman R values and corresponding p-values are shown. (C) 
Average fraction of methylated bases at each CpG in TERT promoter region in POG blood normals.  
  



 
 
Figure S13. Methylation at tumour suppressor promoters, related to Figure 6. (a) Somatic 
mutation status and promoter methylation in BRCA1 and RAD51C. (b) Allele-specific methylation in 
the BRCA1 promoter region in three cases, POG277, POG1041, POG650. (c) Allele-specific 
methylation in the RAD51C promoter region in three cases, POG785, POG266, POG044. 
 
 
  



 
 
Figure S14. Summary of ecDNAs detected across cohort, related to Figure 6. (A) Proportion of 
ecDNA+ and ecDNA- samples stratified by cancer type and biopsy site. Results obtained from 
running 189 samples through AmpliconArchitect, a short-read WGS ecDNA detection tool. (B) 
Molecular correlates of ecDNAs (n = 189). Two-sided Student’s t-tests were used to judge 
significance with Bonferroni multiple testing correction. (C) Expression in transcripts per million (TPM) 
for NRG1 pathway genes for ecDNA-containing breast cancer sample shown in red (n=1) compared 
to other breast cancer samples in the cohort (n=39). Significance assessed via one-vs-all permutation 
tests, with Bonferroni multiple testing correction. 


	XGEN100674_proof_v4i11.pdf
	Long-read sequencing of an advanced cancer cohort resolves rearrangements, unravels haplotypes, and reveals methylation lan ...
	Introduction
	Results
	The Long-Read POG cohort
	Nanopore sequencing reveals novel complex SVs
	Oncoviral integrations detected by long reads impact surrounding gene expression
	Long-range phasing enables resolution of double hits to tumor suppressors
	Long-range variant phasing facilitates the detection of ASE and linkage to genomic events
	DNA methylation derived from nanopore sequencing can reveal global methylation patterns and reflect tissue of origin
	Patterns of allele-specific methylation in promoters and gene bodies are uncovered by long-range phasing
	Epigenetic inactivation of DNA repair genes
	Genomic and epigenomic architecture of extrachromosomal DNA

	Discussion
	Limitations of the study
	Conclusion

	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Acknowledgments
	Author contributions
	Declaration of interests
	Supplemental information
	References
	STAR★Methods
	Key resources table
	Experimental model and study participant details
	Method details
	Sample selection and clinical data analysis
	Sample preparation and sequencing
	Extraction and size selection
	Library construction and sequencing
	Basecalling and primary analysis

	Short-read data analysis
	Structural variation characterization
	Viral integration
	Phasing
	Allele specific expression
	Methylation analysis
	HRDetect and HR gene promoter methylation
	Extrachromosomal DNA characterization

	Quantification and statistical analysis
	Additional resources



	XGEN100674_illustmmc.pdf
	Supplemental Data Tables and Figures
	Long-read sequencing of an advanced cancer cohort resolves rearrangements, unravels haplotypes, and reveals methylation landscapes


