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SUMMARY
The effects of genetic variation on complex traits act mainly through changes in gene regulation. Although
many genetic variants have been linked to target genes in cis, the trans-regulatory cascade mediating their
effects remains largely uncharacterized. Mapping trans-regulators based on natural genetic variation has
been challenging due to small effects, but experimental perturbations offer a complementary approach. Us-
ing CRISPR, we knocked out 84 genes in primary CD4+ T cells, targeting inborn error of immunity (IEI) disease
transcription factors (TFs) and TFs without immune disease association.We developed a novel gene network
inferencemethod called linear latent causal Bayes (LLCB) to estimate the network fromperturbation data and
observed 211 regulatory connections between genes.We characterized programs affected by the TFs, which
we associated with immune genome-wide association study (GWAS) genes, finding that JAK-STAT family
members are regulated by KMT2A, an epigenetic regulator. These analyses reveal the trans-regulatory cas-
cades linking GWAS genes to signaling pathways.
INTRODUCTION

A primary mission of human genetics is to discover genetic vari-

ation that is associated with disease. Genome-wide association

studies (GWASs) have identified thousands of variant-disease

pairs in recent years, spanning disease, behavioral, and molec-

ular phenotypes. Functional analyses of GWAS loci have re-

vealed that most GWAS single-nucleotide polymorphisms

(SNPs) are non-coding, demonstrating that the effects of genetic

variation on complex traits largely manifest through regulatory

variation.1,2 However, the identification of the molecular conse-

quences of non-coding SNPs has proven challenging. Recent ef-

forts have cataloged expression quantitative trait loci (eQTLs)

across diverse tissues and contexts.3–6 These eQTL studies
Cell Genomics 4, 100671, Novem
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have been very successful in identifying genetic variation that as-

sociates with expression variation of nearby genes in cis. How-

ever, except for a small number of examples, the trans-regulato-

ry cascade beyond the associated locus of these cis-acting

genetic variants remains largely unknown. Recent analyses of

the genetic architecture of complex traits have shown that the

bulk (60%–90%) of expression heritability is mediated through

a constellation of trans effects, which typically have small effects

individually but a large contribution in aggregate.7–9 These trans

effects are difficult to discover with natural genetic variation

because their effect sizes are small and may only exist in con-

texts that are missed in bulk tissue steady-state models of

gene expression.10–13 Thus, alternative approaches are needed

to map the trans-regulatory effects of cis-acting eQTLs.
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We previously mapped the trans-regulators of key autoim-

mune disease genes, including IL2RA, IL2, and CTLA4, in pri-

mary human CD4+ T cells using CRISPR knockouts (KOs).14,15

In contrast to natural genetic variation, experimental perturba-

tions enable the manipulation of gene expression in ways that

are unlikely to be permitted by natural selection.16 We therefore

sought to apply this approach to inborn error of immunity (IEI)

genes, which are associated with monogenic immune disease

spanning regulation and function.17 Although hundreds of these

genes have been reported, the transcriptional consequences of

their loss of function remain largely uncharacterized. We

selected 30 IEI transcription factors (TFs) for CRISPR ablation

in human CD4+ T cells to both characterize their function and

construct a regulatory network. CD4+ T cells have previously

been implicated as a causal cell type in the pathology of many

autoimmune traits, including rheumatoid arthritis, multiple scle-

rosis, and type 1 diabetes, among others.18–20 To enable charac-

terization of the properties of the IEI TFs as a whole, we selected

30 background TFs that are matched to the IEI genes in terms of

the constraint metric pLI (probability of loss-of-function intoler-

ance21) and expression level in CD4+ T cells but have not been

implicated in GWASs of immune phenotypes. We also included

24 upstream regulators of IL2RA, which we had previously per-

turbed using the same protocol,14 because these genes are likely

enriched formaster regulators of CD4+ gene regulatory networks

(GRNs). In total, we perturbed 84 genes from three gene sets,

which we used to construct a high-fidelity gene network relevant

to immune disease.

Building on recent advances in the causal inference litera-

ture,22,23 we developed a novel statistical method for estimating

causal GRNs from perturbation data. In contrast to differential

expression or correlation analyses, incorporating causal infer-

ence approaches enables the estimation of both direct and indi-

rect regulatory effects, where edges are interpreted as direct ef-

fects. We emphasize that in this work, the term ‘‘direct effect’’ is

used to convey that the effect of one gene on another is adjusted

for confounding pathways among other perturbed genes rather

than acting as a claim of physical interaction. Direct effects are

useful because they facilitate a coherent interpretation of gene

networks as directed probabilistic graphical models. Our

approach differs from many other gene networks in two key

ways: (1) because our network is derived from experimental per-

turbations, the edges are much more likely to be causal than the

edges in a network estimated from observational co-expression

data, where the constituent variation is often of an unknown gen-

esis, and (2) ourmethod enables the estimation of possibly cyclic

graphs rather than the common restriction to directed acyclic

graphs (DAGs).22,24–26 Human genetics has identified several ex-

amples of cyclic regulatory behavior,27 so the restriction of GRNs

to DAGs represents an artificial constraint that we circumvent

with appropriate statistical technology.

We report the causal, cyclic GRN derived from applying our

novel statistical method to the 84 CRISPR KOs. Because this

method is a Bayesian modification of the linear latent causal

(LLC) algorithm, we refer to our method as LLC Bayes (LLCB).

Using our network, we systematically characterized the proper-

ties of genes that distinguish background TFs from IEI TFs and

the IL2RA regulators. We show that although IEI TFs and
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IL2RA regulators are much more likely to have outgoing connec-

tions than background TFs, all the genes form a highly intercon-

nected network rather than distinct communities of disease and

background genes. Across the entire network, we found that IEI

TFs and IL2RA regulators are more likely to disrupt immune-spe-

cific signaling pathways than background TFs. We then identi-

fied nine coherent gene programs among the 84 KOs and their

downstream genes, which we characterized using enrichment

analyses to identify points of functional convergence in T cell

biology. In addition to downstream characterization, we used

GWAS summary statistic heritability analyses to estimate the

contribution of gene-program-linked SNPs to immune trait heri-

tability. This profiling highlighted the importance of a module

comprised of key JAK-STAT-IL-2 (interleukin-2) signaling regula-

tors and KMT2A, a global epigenetic regulator that we observed

to be upstream of classic IL-2 signaling TFs and receptors,

including IRF4, STAT5B, and IL2RA.

In summary, we perturbed a diverse set of genes to charac-

terize the immune regulatory landscape and develop novel sta-

tistical methodology to characterize the CD4+ T cell network

centered around immune disease genes. Our network reveals

the trans-regulatory cascade of these gene programs and eluci-

dates the transcriptional logic of immune GWAS loci.

RESULTS

Perturbation of IEI TFs and matched background TFs
To construct a network enriched for genes relevant to immune

disease in CD4+ T cells we perturbed 30 TFs from the IEI genes

implicated in Mendelian forms of immune disease.17 We also

included 30 background TFs that were not annotated for immune

function but were matched on gene constraint and expression to

the IEI TFs in order to characterize the properties that distinguish

IEI TFs. Lastly, to expand the breadth of our network, we inte-

grated data from 24 previously mapped IL-2RA regulators.14

(STAR Methods; Figure 1). We used CRISPR Cas9 ribonucleo-

proteins (RNPs) to perform arrayed perturbations in CD4+

T cells from three donors as described in Freimer et al.14 We vali-

dated the efficiency of our CRISPR editing by genotyping the 60

additional targeted loci, which indicated a high editing efficiency

(Figures S1A and S1B; Table S11). Using bulk RNA sequencing

(RNA-seq), we detected �13,000 genes that were expressed

highly enough for analysis (STAR Methods). As our data were

generated in two batches, we performed stringent quality control

of the RNA-seq data. We performed alignment and gene count

quantification using one pipeline on the 84 samples and per-

formed principal-component analysis (PCA) of the normalized

expression data. Pathway enrichment analysis revealed that

the first four PCswere associatedwith very broad biological phe-

nomena, including cell cycle regulation and ribosome activity.

Because the PCs also captured batch effects, we included the

first four PCs as covariates in downstream analyses. Regressing

out PCs has previously been shown to improve the inference of

gene networks.28

Next, we developed a statistical method to estimate the GRN

among the 84 genes. We extended the LLC method introduced

by Hyttinen et al.23 by recasting the statistical estimand in a

Bayesian framework, which enabled the incorporation of prior
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knowledge about the properties of biological networks. Briefly,

LLC proceeds in three steps. First, the total effect ji;j of a given

perturbation of gene Xi on another gene, Xj, is estimated on all

observed (non-perturbed) genes. These total effects are esti-

mated pairwise between all perturbed genes fXi: i ˛ Jg and all

observed genes fXj: j ˛Ug. Second, a system of equations

that relates c to the direct effects, b, using trek rules is con-

structed. Third, this system of equations is solved to deconvolve

c into b. The conditions that permit the identifiability of b for the

LLC method include a collection of single gene perturbations

among all nodes in the graph, which corresponds to our exper-

imental design, indicating that we have a sufficient number of

perturbations to identify b. Because most of the 84 genes are

TFs, the elements of b are likely to be greatly enriched for

physical binding interactions and other mechanisms of direct

transcriptional regulation. However, b may also capture post-

transcriptional regulation mechanisms that manifest as statisti-

cal direct effects on expression. In this experiment, we are

unable to account for the effects of genes that were not per-

turbed, suggesting that some effects of unmeasured genes

may be attributed to direct effects among the 84 perturbed

genes.
We extended the LLC framework in two ways (STAR

Methods). First, we regressed out the first four expression PCs

from the variance-stabilizing transform29 normalized expression

data. Second, we estimated b in a Bayesian framework where

we incorporated a graph prior, pðbÞ. We included a penalty on

the sum of the L1 norms of the columns of b, which penalizes

the number of incoming connections to a given gene. We

included this penalty because it is known that the distribution

of outgoing connections from a gene has more dispersion than

the distribution of incoming connections. Following recent ad-

vances in differentiable DAG search,22,30,31 we also included a

Gaussian prior over the norm of the spectral radius of b, which

enables indirect tuning of the degree to which b contains cycles.

We performed inference using pathfinder, a recently developed

approach to inferring posteriors using pseudo-Hessian opti-

mizers applied to a variational inference objective.32 We chose

a variational inference approach rather thanMarkov chainMonte

Carlo (MCMC) becauseMCMC approaches have been shown to

be computationally very intensive when sampling over large

discrete graph structures.25,26,33,34 We termed this statistical

method LLCB. We validated LLCB theoretically using simula-

tions of cyclic GRNs (STAR Methods).
Cell Genomics 4, 100671, November 13, 2024 3
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Figure 2. The gene network of the 84 perturbed genes

(A) Estimate of the directed network that describes how the 84 perturbed genes interact. The radius of each point is proportional to the degree of that gene. Arrows

are used to indicate directionality of the edges, such that an arrow pointing into a gene indicates that it is being regulated by another gene. For emphasis, the

opacity of the edges from or to inborn error of immunity transcription factors is increased, and all other edges are displayed with greater transparency. Positive

values in the color scale indicate that the parent gene is a positive regulator of the child gene.

(B) A sub-network centered around STAT1.

(C) A scatterplot of the indegree and outdegree of each of the 84 genes.

(D) Association analyses between gene properties and their indegree, outdegree, and total degree.
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Network inference from LLCB reveals that the gene
groups are highly interconnected
We then used LLCB to estimate the causal CD4+GRN among the

84 genes (Figures 2A and 2B). We identified 350, 211, and 151

total edges (out of 6,972 possible) when thresholding
��bij��

at 0.020, 0.025, and 0.030, respectively (Figures 2A–2C;

Table S1). We reported the network after thresholding on b

because filtering on local false sign rates (LFSR)35 resulted in
4 Cell Genomics 4, 100671, November 13, 2024
very dense networks (67% network density at LFSR < 5 3

10�3), reflecting the challenges in the estimation of uncertainty

in graph structures.

To assess whether edges in this network estimate could be

validated through orthogonal approaches, we compared our

network estimate to three other estimates of the same network

constructed from different sources. First, we constructed a

GRN using ATAC-seq data that we previously generated for
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the 24 IL-2RA regulators, permitting validation of a subset of the

network. We gathered all possible enhancers of the 84 genes in

CD4+ T cells using the predicted enhancer-gene pairs from the

activity-by-contact (ABC)36 model and cross-referenced the

enhancer-gene pairs with differentially accessible chromatin

(DAC) that we previously identified. We defined the children of

a gene i based on those genes that had ABC enhancers that in-

tersected with the DACs from the KO of gene i, and we refer to

this network as the ABC-DAC GRN (Table S2). We observed a

strong enrichment (�43) of edges in the LLCB estimate for the

same edges in the ABC-DAC GRN, and this enrichment was

robust to different
��bij�� thresholds (Figure S2). Second, we used

an external estimate of the T cell regulatory network reported

in Green et al.,37 which was estimated using curated pathway in-

formation and co-expression data. We similarly observed an

enrichment of our edges in this external network (Figure S3).

Finally, we performed a similar analysis using the ABC model

paired with CD4+ chromatin immunoprecipitation (ChIP)-seq

data, where we also observed a strong enrichment of our edges

(Figure S4; STARMethods). Collectively, these three validations,

derived from orthogonal data sources and modalities, show that

our network estimate is replicable and reflective of biological

properties.

We then asked whether the topological properties of genes

distinguished the three gene groups. We computed the number

of outgoing edges (‘‘outdegree’’), the number of incoming edges

(‘‘indegree’’), and the total number of edges connected to a node

(‘‘total degree’’) for each node, and we observed that the IEI TFs

and IL2RA regulators were strongly enriched for outdegree, and

the control TFs were relatively depleted (Figure 2C).We observed

no outgoing connections andmany incoming connections for the

receptor IL2RA, which is expected for a non-TF gene. This result

was likely facilitated by our inclusion of the downstream effectors

of IL2RA signaling within the graph, such that downstream ef-

fects were more likely to be attributed to these genes, such as

STAT5A/B and JAK3, rather than IL2RA itself. To identify the

properties of genes that associated with their centrality in the

graph, we performed negative binomial regressions for three

measures of node centrality, including gene group status, gene

expression at baseline, and gene constraint as covariates. We

defined gene constraint using the quantity Shet, estimated using

a recently developed empirical Bayes approach called Gene-

Bayes.38 Shet is defined as the degree of selection acting against

heterozygous loss-of-function variants in a given gene and is

more predictive of functional and clinical importance than related

measures, including pLI and LOEUF (loss-of-function observed/

expected upper bound fraction).21 We observed that even after

adjusting for Shet and expression, IL2RA regulators and IEI TFs

were strongly enriched for outgoing connections relative to con-

trol TFs but were not enriched for incoming connections (Fig-

ure 2D). Taken together, these data suggest that constraint is

muchmore strongly associatedwith the number of outgoing con-

nections from a gene than the number of incoming connections

and that IEI regulators exhibit more outgoing connections than

control genes despite being matched for constraint.

We asked whether edges were enriched between genes that

were members of the same gene group. To generate a null dis-

tribution, we permuted the edges of the network 2,000 times
while preserving the gene degree distributions (STAR Methods).

Of the edges in the unpermuted network, 37% had the same

parent and child node gene group. Of the permuted networks,

8% had more edges within groups than in the original (unper-

muted) network, indicating that the three gene groups do not

cluster distinctly in the unpermuted network (Figure S5).

We then estimated indirect effects between pairs of genes,

defined as the difference between the total effects and the direct

effects Dij = jij � bij. The indirect effects can be interpreted as

the sum of all effects of gene i on gene j that are not mediated

through the direct effect bij and thus may include proximal indi-

rect effects comprised of short (<3 genes involved) paths be-

tween the two genes or potentially distal effects from long,

possibly cyclic paths. These indirect effects may include in-

stances of both transcriptional regulation and post-transcrip-

tional indirect effects. We observed that the bulk of variation in

total effects (R2 = 99%) is explained by direct effects (Figure S6),

suggesting that direct effects between two genes are much

larger than indirect effects. This observation is consistent with

the intuition that indirect effects, which are defined as the prod-

uct of several direct coefficients, are likely to be small unless all

of the direct effects along the path are very large. Indeed, if all

direct effects are less than 1.0 in magnitude, then the product

is guaranteed to be no larger than the smallest direct effect

included in the path.We observed that the largest indirect effects

were mediated by length-2 cycles with two large direct effects

(Figure S7). For example, we observed that KLF2 andMYB regu-

late each other in a length-2 negative feedback loop, which may

help prevent aberrant proliferation.

trans-eQTL-derived networks have limited overlap with
the perturbation-derived network
To compare our network estimate to one constructed from nat-

ural genetic variation, we first obtained the unfiltered trans-eQTL

summary statistics from Yazar et al.,6 which contains the largest

catalog of CD4+ eQTLs mapped to date. We observed that only

24 of the 84 perturbed genes had at least one cis-eQTL (q

value < 0.01). Among these genes, 10 were background TFs, 8

were IEI TFs, and 6 were IL2RA regulators. We did not observe

a significant association between the gene group and whether

the gene had a cis-eQTL. The 24 genes with cis-eQTLs were

much less constrained than the 60 without (difference in mean

Shet = �0.07, 95% confidence interval [CI]: (�0.15, 0.01)),

corroborating our prior observations that eQTL discovery is

biased toward genes tolerant to loss-of-function variation.16

Notably, the average Shet for the perturbed genes is greater

than the average for all genes (difference in mean Shet = 0.12,

95% CI: (0.10, 0.15)), which may limit overlap with eQTL-derived

networks. None of the 24 cis-eQTL genes had a trans-eQTL,

even at liberal significance thresholds (q value < 0.30), indicating

that this eQTL catalog was incapable of recapitulating any of the

edges in our GRN. To evaluate whether the absence of trans-

eQTLs among the 24 genes was the result of trans-eQTL network

sparsity, we tabulated the number of trans-eGenes in CD4 naive

and effector cells at q values <0.30, resulting in 12,185 trans-

eGenes out of 16,025 tested genes. This implies that the proba-

bility of observing 24 randomly selected genes with no trans-

eQTLs is 1.3 3 10�15, indicating that trans-eQTL sparsity alone
Cell Genomics 4, 100671, November 13, 2024 5
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cannot explain this observation. Collectively, these observations

indicate that these TFs are strongly depleted of trans-eQTLs,

potentially due to selective constraint, suggesting that mapping

trans-regulators of highly constrained TFs with natural genetic

variation is very underpowered at current sample sizes.

Immune GWAS genes are enriched for regulation from
IEI TFs and IL2RA regulators
Next, we expanded our network analyses to include all 12,803

other genes that were expressed highly enough for analysis

(STAR Methods), which we refer to as non-perturbed genes. We

estimated the effects of the 84 perturbed genes on the non-per-

turbedgenesusing twomethods.First,weuseda traditional differ-

ential expression approach using DESeq2,29 where we regressed

the normalized expression of each gene against a design matrix

that includedan indicator for the perturbation statusof the sample,

thedonor identity, and the first four expressionPCs.Next,weused

mashr39 to perform statistical shrinkage of the differential expres-

sion estimates.We refer to these results asDEG-mashr estimates.

Tomodel theeffects ofmultipleupstreamTFsat the same time,we

developed a novel statistical estimator of the bipartite graph (BG),

which models the effects of the 84 perturbed genes on the 12,803

non-perturbedgenes jointly ina single linearmodel. Incontrast toa

differential expression approach, the BG model is less likely to

detect redundant causal pathways. We term this approach the

BG model (Figure 3A; STAR Methods).

Among the non-perturbed genes, 7,299 (57%) had an

incoming edge from at least one KO. Among the non-perturbed

genes with at least one incoming edge, the median number of

incoming edges was 5. The median number of downstream ef-

fects from the BG model was 251.5, ranging from 52 (EGR3) to

2,634 (MED12). Estimates from both the DEG-mashr and BG

approaches (Tables S3, S4, and S5) revealed the striking enrich-

ment of IL2RA regulators among the genes with the largest num-

ber of downstream connections (Figure 3B). We observed that

MED12 and CBFB regulated more genes than any canonical

T cell TF. MED12 is a subunit of the mediator complex, which

transmits signals from enhancer-bound TFs to RNA polymerase

II bound at the promoter.40,41 Despite its large effects, MED12

has never been reported in any autoimmune GWAS, nor does

it have a known cis-eQTLs in CD4+ T cells,6 underscoring the

value of perturbations for characterizing its function.

To our surprise, we also observed that three of the background

TFs (DR1, YBX1, and BPTF) regulated more genes than any of

the IEI TFs. The widespread effects of these three background

TFs highlight the value of large-scale searches for upstream reg-

ulators, even in cell types with well-annotated signaling path-

ways. Consistent with their large effects, these three TFs were

highly constrained (Shet estimates of 0.38, 0.17, and 0.30 for

DR1, YBX1, andBPTF). AlthoughBPTF had no outgoing connec-

tions to the other 83 knocked out genes, it had an incoming

connection from STAT1, suggesting that it may partially mediate

the effect of STAT1 on downstream genes. Among the 7,299

downstream genes with at least one incoming connection, there

were 10 genes with at least 26 incoming connections (Figure 3C),

including genes involved in the DNA damage response (ZMAT3),

cell cycle regulation (CCND2), granzymes (GZMA,GZMB), and a

T cell costimulatory receptor (CD2).
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Next, we asked which properties of the 12,803 non-per-

turbed genes were associated with regulation from the three

gene groups. We performed a series of negative binomial re-

gressions of the incoming connections to non-perturbed

genes, including six gene annotations as covariates (Fig-

ure 3D). We observed that non-perturbed autoimmune

GWAS genes were much more likely to be enriched for regu-

lation from IEI TFs (�20% enrichment) and IL2RA regulators

(�30% enrichment). Shet was negatively associated with

incoming connections in three of the four regressions, consis-

tent with our prior observation that gene constraint is more

strongly associated with the number of outgoing connections

from a gene than the number of incoming connections to the

gene. We also observed that eQTL trans-eGenes were

strongly enriched for incoming connections in each regres-

sion, suggesting that trans-eGenes reside in the periphery of

the network with many incoming connections. Using GTEx,

we also identified genes that were only expressed in whole

blood and asked whether regulation of blood-specific genes

varied by the three gene groups. We observed that blood-

specific genes were much more likely to be regulated by IEI

TFs (�20% enrichment) and IL2RA regulators (�40% enrich-

ment) than background TFs. Collectively, these observations

highlight that although background TFs have similar graph

centrality to IEI TFs, they are much less likely to disrupt cell-

type-specific transcriptional pathways.

Gene modules link groups of genes to a shared function
Next, we asked whether there were groups of the 84 perturbed

genes with similar effects on downstream pathways among the

12,803 non-perturbed genes. Hierarchical clustering of the

DEG-mashr results revealed the presence of nine gene modules

(Figure 4), which we also grouped into a coarser set of super-

modules. We remark that although the perturbed genes within

each of thesemodules aremutually exclusive, the non-perturbed

genes may overlap. To identify pathways that were regulated by

these gene modules, we performed systematic enrichment ana-

lyses using KEGG genetic, signaling, and immune pathways42

(Figure 5A; Figures S8–S10; Table S6).

The perturbed genes inmodule 1 included 14 IEI TFs, 19 back-

ground TFs, and two IL2RA regulators (RELA and YY1). The per-

turbed genes in modules 1–2 were primarily IEI and background

TFs, and modules 3–4 were primarily IL2RA regulators. We

observed that module 1A was enriched for the disruption of

mitogen-activated protein kinase (MAPK) and p53 signaling.

Module 1B included T-bet (TBX21), a TF that is required for inter-

feron-gamma production and the T helper type 1 cell (Th1)

phenotype,43 and three members of the Rel family (NFAT5,

RELB, and REL), subunits of nuclear factor kB (NF-kB), a TF

complex that plays a role in T cell activation.44 Surprisingly,

this cluster also included four background TFs without any anno-

tated immune function (ZNF329, ZNF791, ZBTB14, and

ZKSCAN1). ZBTB7B has been observed to be required for

CD4+ commitment and interacts with NF-kB,45 but many other

members of the ZBTB family, including ZBTB14, remain rela-

tively uncharacterized. The high proportion of shared effects be-

tween ZBTB14, T-bet, and the Rel family proteins suggests that

ZBTB14 may have similar function to ZBTB7B.
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Figure 3. The landscape of downstream effects

(A) The statistical model used to relate the 84 perturbed genes to the expressed genes.

(B) The distribution of the number of downstream effects for each of the 84 genes, stratified by gene group. Genes that are outliers with respect to their gene group

distribution are labeled.

(C) The distribution of indegree for each of the non-perturbed genes. Outlier genes are labeled.

(D) Association between the properties of downstream genes and the gene set of the upstream regulators. Coefficients are estimated with negative binomial

regressions of the gene-set-specific indegree. Downstream gene annotations are indicated on the y axis, and the facets are used to indicate the gene set of the

upstream regulator. *The 306 denotes the total number of RNA-seq observations, which includes 84 genes perturbed in three donors and 54 samples from control

guides.
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Genes in super-module 2 were enriched for effects on cell

cycle regulation and apoptosis. Modules 3–4 were much

more strongly enriched for IL2RA regulators than clusters 1–

2. Consistent with their annotation, every gene in modules 3–

4 had downstream effects on the JAK-STAT and chemokine

signaling pathways. Surprisingly, KMT2A, a methylation writer,

clustered in the same module as JAK3, STAT5A, STAT5B,

IRF4, and IL2RA. Although translocations of KMT2A have

been shown to cause lymphoid malignancy,46 it has no anno-
tated function in non-mutated cells in the JAK-STAT pathway.47

We then examined the structure of module 4 (Figure 5B),

observing that KMT2A is upstream of IRF4, STAT5A, and

IL2RA and directly regulates several downstream effector cyto-

kines through pathways not mediated by the other perturbed

genes.

Several modules were strongly enriched for cell cycle and

proliferation pathways. To determine if there was a uniform ef-

fect on in vitro expansion within any of the modules, we
Cell Genomics 4, 100671, November 13, 2024 7



Gene modules identified from shared downstream effects
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Figure 4. The discovery of gene modules

Hierarchical clustering is used to identify clusters of shared downstream effects. The upstream gene members within each module are labeled in the left-handed

margin of the plot, and the gene group of each gene is indicated by the text color. The total number of genes in the module, including both upstream and

downstream effects, is included under the list of genes.
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quantified the number of live cells per KO compared to control

cells where the guide RNA targeted the safe-harbor locus

AAVS1 from the respective donor. Nearly all members of mod-

ule 2A, which was enriched for cell cycle effects, showed a

mean increase in cell counts across three donors as the result

of the perturbation. Collectively, the module had a 1.14-fold

increase in live cells when knocked out compared to the con-

trols, suggesting that genes in 2A function as proliferation

repressors (Figures 5C; Table S12). Concordant with these

observations, a recent report described the proliferation-pro-

moting effects of disruption of a module 2A member, TET2,

in chimeric antigen receptor (CAR)-T cells.48 Our analyses

suggest that other members of 2A may have similar properties

to TET2 and thus may represent a group of genes that could

be perturbed to alter engineered T cell function. Several up-

stream members of 2A upregulated three of four CDKN genes,

which inhibit cyclin-dependent kinases and potentially lead

to reduced cycling (Figure S11). Thus, our inference of

gene modules recapitulates known regulators of immune

signaling pathways and identifies novel members of these

modules.
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Heritability analyses link gene modules to immune
disease risk
We then asked whether SNPs that were linked to the nine gene

modules were enriched for the heritability of autoimmune traits.

We included GWAS summary statistics for 10 phenotypes from

a combination of Finngen and disease-specific consortia.49,50

After linking SNPs to each of the nine modules using the ABC

method,36 we used linkage disequilibrium (LD) score regres-

sion2,51 to estimate the contribution of these SNPs to the herita-

bility to eight autoimmune traits and two allergy traits (STAR

Methods; Table S7). As a reference point, we also included a

group of SNPs linked to genes that were not regulated by any

of the 84 genes, which we term module 0. To adjust for con-

founding genomic annotations, we included the LD score

baseline model. We observed that module 4 SNPs were potent

contributors generally, as half of the traits analyzed were en-

riched (Figures 6A and S12; Table S8). Across the traits, there

was substantial heterogeneity in the effects of modules. For

example, only 4A and 2B SNPs were associated with psoriasis

heritability, while 1A, 2B, 3A, 3B, and 4A all contributed to

rheumatoid arthritis heritability. In the baseline module 0, only
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Figure 5. Gene module characterization

(A) Enrichment analyses of KEGG genetic, immune, and signaling pathways for each of the 84 perturbed genes, stratified by gene module. The JAK-STAT

pathway is highlighted with a dashed red box. The color bar maximum is set to 4.

(B) The JAK-STAT sub-network, which is organized such that cytokine genes are at the bottom and upstream regulators are at the top.

(C) Effects of KOs in the gene modules on a proliferation assay. Each point represents an individual gene perturbation sample plotted as the log2 fold change

sample count as compared to AAVS1 KO control samples from the same donor (*p < 0.05 and ****p < 0.001; n = 3 donors per KO, the number of KOs per cluster is

reflected in Figure 4).
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multiple sclerosis was enriched. Remarkably, module 1B

contributed little to heritability enrichment of any trait despite

including TBX21.

We also observed that module 2A, which was strongly en-

riched for effects on cell cycle regulation pathways, was en-

riched for the regulation of atopic dermatitis GWAS genes.

Next, we annotated the fine-mapped signals from the dermatitis

GWAS. Of the 44 credible sets, 34 were linked to genes. Of these

34 hits, four were regulated by module 2A TFs, including SATB1,
IL22, LTK, and EZH1 (Figure 6B). Given the putative effects of

module 2A on cell proliferation, we then cross-referenced these

four genes with cell proliferation annotation pathways. LTK is a

receptor with tyrosine kinase activity and may contribute to pro-

liferation through activation of the phosphatidylinositol 3-kinase

(PI3K) signaling pathway.52 Similarly, IL22 has also been re-

ported to regulate PI3K signaling.53 Taken together, these ana-

lyses highlight the value of unbiased module discovery for iden-

tifying specific pathways that contribute to trait heritability. We
Cell Genomics 4, 100671, November 13, 2024 9



Gene module contributions to the heritability of autoimmune and allergy phenotypes

Module 2A TFs are upstream of four of the lead genes in dermatitis GWAS
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(A) Estimated t coefficients from LD score regression are plotted for each genemodule and phenotype.Module 0 is defined as genes that were not included in any

module but are still expressed in CD4+ T cells.

(B) Exemplar analysis annotating the fine-mapped genes from a Finngen dermatitis GWAS based on their presence in module 2A.
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illustrate how module 2A TFs regulate a subset of dermatitis

GWASgenes that have been implicated in PI3K signaling, a com-

mon proliferation pathway.

The transcriptional logic linking the JAK-STAT module
to immune GWAS genes
Given the substantial contribution of module 4 to autoimmune

and allergy phenotype heritability and its large effects on T cell

differentiation, we integrated ChIP-seq and ATAC readouts to

elucidate the regulatory structure of module 4 (STAR Methods).

We observed that KMT2A was a positive regulator of IL-17F

and IL-21 expression, two Th17-secreted factors (Figure 7A).

Notably, IL-17F had a striking decrease in expression (�5.9

log2 fold change) upon KMT2A KO. We also observed concor-

dant decreases in chromatin accessibility near (5.7 and 40 kb up-

stream of the transcription start site [TSS]) IL-17F and IL-21 upon

KO of KMT2A via ATAC-seq. We then intersected the DAC re-

gions from the KMT2A KO condition with each of the KOs within

module 4 and observed thatSTAT5B shared several differentially

expressed sites, including possible distal enhancer regions up-

stream of IL-17F (Figure S13). An additional Th17-secreted fac-

tor, IL-22, also had a shared region between the two conditions,

although the transcript was only differentially expressed in the

STAT5B KO. The STAT5B KO also abrogated chromatin acces-

sibility 5.7 kb upstream of the IL-17F promoter, in a region bound

bySTAT5B in CD4+ T cell ChIP-seq (Figure 7B). BecauseKMT2A

is a methyltransferase that deposits activating methylation

marks on H3K4, we then asked whether H3K4me3 was present

at the same locus in activated Th17s, finding broad H3K4me3

within the region (Figure 7B). These observations led us to sug-

gest the following mechanism for the regulatory logic of module

4: KMT2A, a global epigenetic regulator of transcription, collab-

orates with downstream factors, including members of JAK-

STAT, to positively regulate IL-17F by modulating a putative IL-

17F-specific enhancer.

These observations suggest that cis-regulatory elements near

KMT2A may harbor autoimmune risk variants. To assess this

hypothesis, we examined recent biobank GWASs in the UK Bio-

bank (UKB),54,55 Finngen,49 and Biobank Japan56 (BBJ) for vari-

ants associated with autoimmune phenotypes near KMT2A. The

A allele of rs45480496, a common variant (minor-allele frequency

[MAF] of 21% in TOPMed57) 36 kb from the TSS of KMT2A, is

suggestively associated with autoimmune disease (‘‘diseases

marked as autoimmune origin,’’ odds ratio [OR] = 1.04, p =

2 3 10�7) in Finngen and was also reported as a suggestive hit

in a BBJ-UKB meta-analysis58 (‘‘autoimmune multi-trait,’’ OR =

1.08, p = 23 10�6). A meta-analysis of these two signals results

in genome-wide significance (p = 2 3 10�12; Figure S14) for this

variant. We then looked for functional evidence linking

rs45480496 to KMT2A. Although rs45480496 has not yet been

reported as an eQTL forKMT2A, lookup of the SNP in a promoter

Hi-C capture in immune cells59 revealed that it resides in a regu-
Figure 7. The transcriptional logic linking module 4 to GWAS loci

(A) The sub-network of module 4 and Th17 cytokines.

(B) Locus plot including tracks describing the functional characteristics of the re

Methods) or ATAC-seq data from Freimer et al.14 Gray boxes indicate significantly

(adjusted p value [padj] < 0.05, n = 3 donors per KO). The y axis displays normali
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latory element that interacts with the promoter of KMT2A in

megakaryocytes, naive CD4s and CD8s, and effector CD4s

and CD8s. Concordant with these observations, lookup of

rs45480496 in RegulomeDB60 indicated that it is in an active

enhancer in Th17s. The haplotype that rs45480496 tags also in-

tersects with a predicted KMT2A enhancer in CD4+ T cells from

the ABC model.36 Although the variant-to-gene predictions from

OpenTargets61 suggest that other causal genes are possible in

this locus, we remark that these predictions are made without

knowledge of the causal cell type for a given phenotype. Collec-

tively, these data report a novel risk locus for autoimmune traits

upstream of KMT2A within a putative KMT2A enhancer.

DISCUSSION

Human genetics has been remarkably productive in discovering

complex-trait-associated SNPs. There are now several re-

sources to map the effects of these SNPs to molecular pheno-

types in cis; however, the development of maps of the regulatory

cascades of these SNPs has progressed much more slowly.

Enabled by recent innovations in large-scale perturbation tech-

nologies, we are now able to systematically perturb large

numbers of genes in primary human cell contexts. These pertur-

bations complement natural genetic variation approaches to

mapping trans-regulators, as they facilitate the examination of

biological variance that is unlikely to be observed in healthy cells.

After network inference with LLCB, we observed 211 trans-reg-

ulatory causal connections in our upstream GRN, none of which

were reported in the largest catalog of CD4+ eQTLs performed to

date.6

To infer the gene network, we developed LLCB, which builds

upon recent advances in the structure learning literature to esti-

mate a graph with edge weights that are interpretable as direct

effects. This stands in contrast to the majority of effect estimates

reported in the functional genomics literature, which primarily

report estimates fromdifferential expression analyses performed

separately in each perturbed gene. These estimates confer re-

sults that are difficult to interpret because they do not attempt

to adjust for confounding pathways in theGRN, which are known

to be highly abundant in biological networks.We use LLCB to es-

timate the topology and effect size of these confounding path-

ways. We found that direct effects were generally much larger

than indirect effects in magnitude and that the largest indirect ef-

fects were mediated by local feedback cycles.

Using experimental perturbations, we investigated the proper-

ties of IEI TFs, which are infrequently mutated in natural genetic

variation. We performed a series of systematic analyses that

delineate the commonalities and differences among the IEI

TFs, background TFs, and IL2RA regulators. Consistent with

our previous report,14 we found that the IL2RA regulators were

potent regulators of downstream effects. Both the IEI TFs and

IL2RA regulators were enriched for being upstream and much
gion. Each track is constructed from publicly available ChIP-seq data (STAR

different regions between the respective KO and AAVS1 control KO ATAC data

zed counts.
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more likely than background TFs to disrupt autoimmune GWAS

loci and whole-blood-specific genes even after adjustment for

gene constraint. We also observed that the topology of the reg-

ulatory network is strongly associated with selective constraint.

Shet was among the best predictors of the topological properties

of the perturbed genes: Shet was strongly associated with the

number of outgoing connections of a gene but not the number

of incoming connections. This is reflected in the dense down-

stream network identified for the IL2RA regulators with overall

high levels of constraint compared to the other TF groups. Over-

all, the difference in enrichment based on Shet suggests that the

centrality of genes is best expressed as a multi-dimensional

construct. This further highlights the value of estimating GRNs

with directed edges, as opposed to estimating undirected

graphs from observational co-expression data, as the richer

graphical structure enables much more granular topological

analyses.

Utilizing the novel connections in the GRN, we report

several observations that improve annotation of canonical im-

mune pathways. We observed that three of the background

TFs (DR1, BPTF, and YBX1) regulated more downstream

genes than any of the 30 IEI TFs, including TBX21, a master

regulator of Th1 differentiation. After identifying gene modules

and their downstream pathways, we observed multiple novel

members of canonical gene modules, including KMT2A, in

the JAK-STAT pathway. We observed that KMT2A, a methyl-

transferase that deposits activating methylation marks, modu-

lated the expression of canonical IL-2 signaling TFs. KMT2A

collaborated with these TFs to upregulate IL-17F, a pro-in-

flammatory cytokine that is secreted by Th17s, indicating

that KMT2A is an underappreciated regulator of the IL2-

JAK-STAT axis and Th17 regulation. Meta-analysis of biobank

autoimmune GWASs revealed a novel risk locus in a Th17

enhancer upstream of KMT2A. Given the success of JAK in-

hibitors in treating a subset of patients with autoimmunity,62,63

our pathway analysis could offer an expanded set of candi-

date drug targets.

Limitations of the study
Although we have demonstrated that our regulatory network is

useful for the discovery of novel immune pathway biology and

that it is validated by orthogonal data modalities, our study is

not without limitations. While CD4+ T cells play a role in many im-

mune pathologies, the construction of networks in more cell

types and cellular contexts would undoubtedly result in

increased discovery, as would the inclusion of additional pertur-

bations. The restriction to transcriptional regulation also inhibits

the interrogation of post-translational regulation, which makes

the interpretation of edges from genes where post-translational

regulation is important challenging. For example, STAT proteins,

which are known to be sensitive to phosphorylation, may regu-

late more genes than is estimated in our transcriptional network.

The use of a bulk expression readout, although more sensitive to

genes with low expression than single-cell assay transcriptome

analysis, also precludes the analysis of more granular cell types

and contexts, which are easier to assess in parallel using single-

cell profiling methodologies, including Perturb-seq and single-

cell eQTL studies.
Conclusion
In conclusion, we describe the GRN of key CD4+ T cell regula-

tors. This network enabled both the broad characterization of

the properties of immune disease genes and the discovery of

novel regulatory connections between TFs and signaling path-

ways that modulate immune disease genes. We anticipate that

our approach can be applied in other cell types and contexts

to generate maps of the molecular consequences of regulatory

variation of disease genes.
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5. Võsa, U., Claringbould, A., Westra, H.-J., Bonder, M.J., Deelen, P., Zeng,

B., Kirsten, H., Saha, A., Kreuzhuber, R., Yazar, S., et al. (2021). Large-

scale cis- and trans-eQTL analyses identify thousands of genetic loci

and polygenic scores that regulate blood gene expression. Nat. Genet.

53, 1300–1310. https://doi.org/10.1038/s41588-021-00913-z.

6. Yazar, S., Alquicira-Hernandez, J.,Wing, K., Senabouth, A., Gordon,M.G.,

Andersen, S., Lu, Q., Rowson, A., Taylor, T.R.P., Clarke, L., et al. (2022).

Single-cell eQTL mapping identifies cell type–specific genetic control of

autoimmune disease. Science 376, eabf3041. https://doi.org/10.1126/

science.abf3041.

7. Liu, X., Li, Y.I., and Pritchard, J.K. (2019). Trans Effects on Gene Expres-

sion Can Drive Omnigenic Inheritance. Cell 177, 1022–1034.e6. https://

doi.org/10.1016/j.cell.2019.04.014.

8. Boyle, E.A., Li, Y.I., and Pritchard, J.K. (2017). An Expanded View of Com-

plex Traits: From Polygenic to Omnigenic. Cell 169, 1177–1186. https://

doi.org/10.1016/j.cell.2017.05.038.

9. Price, A.L., Helgason, A., Thorleifsson, G., McCarroll, S.A., Kong, A., and

Stefansson, K. (2011). Single-Tissue and Cross-Tissue Heritability of Gene

Expression Via Identity-by-Descent in Related or Unrelated Individuals.

PLoS Genet. 7, e1001317. https://doi.org/10.1371/journal.pgen.1001317.

10. Connally, N.J., Nazeen, S., Lee, D., Shi, H., Stamatoyannopoulos, J.,

Chun, S., Cotsapas, C., Cassa, C.A., and Sunyaev, S.R. (2022). The

missing link between genetic association and regulatory function. Elife

11, e74970. https://doi.org/10.7554/eLife.74970.

11. Elorbany, R., Popp, J.M., Rhodes, K., Strober, B.J., Barr, K., Qi, G., Gilad,

Y., and Battle, A. (2022). Single-cell sequencing reveals lineage-specific

dynamic genetic regulation of gene expression during human cardiomyo-

cyte differentiation. PLoS Genet. 18, e1009666. https://doi.org/10.1371/

journal.pgen.1009666.

12. Strober, B.J., Elorbany, R., Rhodes, K., Krishnan, N., Tayeb, K., Battle, A.,

and Gilad, Y. (2019). Dynamic genetic regulation of gene expression dur-

ing cellular differentiation. Science 364, 1287–1290. https://doi.org/10.

1126/science.aaw0040.

13. Nathan, A., Asgari, S., Ishigaki, K., Valencia, C., Amariuta, T., Luo, Y., Be-

ynor, J.I., Baglaenko, Y., Suliman, S., Price, A.L., et al. (2022). Single-cell

eQTL models reveal dynamic T cell state dependence of disease loci. Na-

ture 606, 120–128. https://doi.org/10.1038/s41586-022-04713-1.

14. Freimer, J.W., Shaked, O., Naqvi, S., Sinnott-Armstrong, N., Kathiria, A.,

Garrido, C.M., Chen, A.F., Cortez, J.T., Greenleaf, W.J., Pritchard, J.K.,

andMarson, A. (2022). Systematic discovery and perturbation of regulato-

ry genes in human T cells reveals the architecture of immune networks.

Nat. Genet. 54, 1133–1144. https://doi.org/10.1038/s41588-022-01106-y.

15. Mowery, C.T., Freimer, J.W., Chen, Z., Casanı́-Galdón, S., Umhoefer,

J.M., Arce, M.M., Gjoni, K., Daniel, B., Sandor, K., Gowen, B.G., et al.

(2024). Systematic decoding of cis gene regulation defines context-

dependent control of the multi-gene costimulatory receptor locus in hu-

man T cells. Nat. Genet. 56, 1156–1167. https://doi.org/10.1038/

s41588-024-01743-5.

16. Mostafavi, H., Spence, J.P., Naqvi, S., and Pritchard, J.K. (2022). Limited

overlap of eQTLs and GWAS hits due to systematic differences in discov-

ery. Preprint at bioRxiv. https://doi.org/10.1101/2022.05.07.491045.

17. Bousfiha, A., Moundir, A., Tangye, S.G., Picard, C., Jeddane, L., Al-Herz,

W., Rundles, C.C., Franco, J.L., Holland, S.M., Klein, C., et al. (2022). The

2022 Update of IUIS Phenotypical Classification for Human Inborn Errors

of Immunity. J Clin Immunol. J. Clin. Immunol. 42, 1508–1520. https://doi.

org/10.1007/s10875-022-01352-z.

https://doi.org/10.1016/j.xgen.2024.100671
https://doi.org/10.1016/j.xgen.2024.100671
https://doi.org/10.1126/science.1222794
https://doi.org/10.1038/ng.3404
https://doi.org/10.1038/nature24277
https://doi.org/10.1126/science.aaz1776
https://doi.org/10.1126/science.aaz1776
https://doi.org/10.1038/s41588-021-00913-z
https://doi.org/10.1126/science.abf3041
https://doi.org/10.1126/science.abf3041
https://doi.org/10.1016/j.cell.2019.04.014
https://doi.org/10.1016/j.cell.2019.04.014
https://doi.org/10.1016/j.cell.2017.05.038
https://doi.org/10.1016/j.cell.2017.05.038
https://doi.org/10.1371/journal.pgen.1001317
https://doi.org/10.7554/eLife.74970
https://doi.org/10.1371/journal.pgen.1009666
https://doi.org/10.1371/journal.pgen.1009666
https://doi.org/10.1126/science.aaw0040
https://doi.org/10.1126/science.aaw0040
https://doi.org/10.1038/s41586-022-04713-1
https://doi.org/10.1038/s41588-022-01106-y
https://doi.org/10.1038/s41588-024-01743-5
https://doi.org/10.1038/s41588-024-01743-5
https://doi.org/10.1101/2022.05.07.491045
https://doi.org/10.1007/s10875-022-01352-z
https://doi.org/10.1007/s10875-022-01352-z


Article
ll

OPEN ACCESS
18. Marrack, P., Kappler, J., and Kotzin, B.L. (2001). Autoimmune disease:

why and where it occurs. Nat. Med. 7, 899–905. https://doi.org/10.1038/

90935.

19. Attfield, K.E., Jensen, L.T., Kaufmann, M., Friese, M.A., and Fugger, L.

(2022). The immunology of multiple sclerosis. Nat. Rev. Immunol. 22,

734–750. https://doi.org/10.1038/s41577-022-00718-z.

20. Sun, L., Su, Y., Jiao, A., Wang, X., and Zhang, B. (2023). T cells in health

and disease. Signal Transduct. Targeted Ther. 8, 235–250. https://doi.

org/10.1038/s41392-023-01471-y.

21. Karczewski, K.J., Francioli, L.C., Tiao, G., Cummings, B.B., Alföldi, J.,
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Human Peripheral Blood Leukopaks STEMCELL Technologies 70500

Chemicals, peptides, and recombinant proteins

Cas9 protein (MacroLab, Berkeley – –

Lonza P3 buffer Lonza, catalog no. V4XP-3032

EasySepTM Human CD4+CD127lowCD25+

Regulatory T cell Isolation Kit

STEMCELL Technologies 18063

ImmunoCultTM Human CD3/CD28/CD2

T cell Activator

STEMCELL Technologies 10990

Critical commercial assays

RNA lysis buffer (Zymo, #R1060-1-100). Zymo R1060-1-100

Zymo-Quick RNA micro prep kit (#R1051) Zymo R1051

Turbo-DNAse (Fisher Scientific, AM2238) Zymo AM2238

RNA Clean & Concentrator-5 kit (Zymo,

#R1016)

Zymo R1016

QuantSeq FWD kit (Lexogen) Lexogen K0152x96-2-0162

Deposited data

RNAseq data for IEI and background TFs GEO GSE271788

RNAseq data from Freimer et al.14 GEO GSE171737

Oligonucleotides

Custom crRNAs (Dharmacon) for CRISPR

KO

– See Table S9

Primers for genotyping – See Table S10

Dharmacon Edit-R CRISPR-Cas9 Synthetic

tracrRNA

Dharmacon U-002005-20

Single-stranded donor oligonucleotides

(ssODN): TTAGCTCTGTTTACG

TCCCAGCGGGCATGAGAGTAACA

AGAGGGTGTGGTAATATTAC

GGTACCGAGCACTATCGATACAAT

ATGTGTCATACGGACACG

IDT custom oligo N/A

Software and algorithms

Figure generation Github https://github.com/weinstockj/RNAseq-

perturbation-CD4-pipeline

LLCB code Github https://github.com/weinstockj/LLCB

Other

96-well electroporation cuvette plate Lonza VVPA-1002
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Primary human T cells were isolated from blood samples procured from STEMCELL technologies. Healthy male and female donors

were utilized without selection for age, weight or for ethnicity.

METHOD DETAILS

Cell isolation and expansion
Primary CD25�CD4+ effector T cells were isolated from fresh Human Peripheral Blood Leukopaks (STEMCELL Technologies,

#70500) from healthy donors, after institutional review board–approved informed written consent (STEMCELL Technologies).
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Peripheral blood mononuclear cells (PBMCs) were washed twice with a 1X volume of EasySep buffer (DPBS, 2% fetal Bovine Serum

(FBS), 1mM pH 8.0 EDTA). The washed PBMCs were resuspended at 200E6 cells/mL in EasySep buffer and isolated with the

EasySep Human CD4+CD127lowCD25+ Regulatory T cell Isolation Kit (STEMCELL Technologies, #18063), according to the manu-

facturer’s protocol. Cells were seeded at 1x106 cells/mL in complete RPMI-1640 supplemented with 10% FCS, 2 mM L-Glutamine

(Fisher Scientific #25030081), 10 mM HEPES (Sigma, #H0887-100ML), 1X MEM Non-essential Amino Acids (Fisher, #11140050),

1 mM Sodium Pyruvate (Fisher Scientific #11360070), 100 U/mL Penicillin-Streptomycin (Sigma, #P4333-100ML), and 50 U/mL

IL-2 (Amerisource Bergen, #10101641) and stimulated with 6.25 mL/mL ImmunoCult Human CD3/CD28/CD2 T cell Activator

(STEMCELL Technologies, #10990). Cells were cultured at 37�C with 5% CO2. Following activation and electroporation, cells

were split 1:2 every other day to maintain an approximate density of 1x106 cells/mL.

Cas9 RNP preparation and delivery
Custom crRNAs (Dharmacon) and Dharmacon Edit-R CRISPR-Cas9 Synthetic tracrRNA (Dharmacon, #U-002005-20) were resus-

pended in Nuclease Free Duplex Buffer (IDT, #11-01-03-01) at 160uM stock concentration. In a 96 well plate, each crRNA was com-

bined with tracrRNA at a 1:1 M ratio and incubated at 37�C for 30 min. Custom crRNA sequences are included in Table S9. Single-

stranded donor oligonucleotides (ssODN; sequence: TTAGCTCTGTTTACGTCCCAGCGGGCATGAGAGTAACAAGAGGGTGTGGT

AATATTACGGTACCGAGCACTATCGATACAATATGTGTCATACGGACACG, 100uM stock) was added to the complex at a 1:1 M ra-

tio and incubated at 37�C for 5min. Finally, Cas9 protein (MacroLab, Berkeley, 40 mMstock) was added at a 1:2M ratio and incubated

at 37�C for 15 min. The resulting RNPs were frozen at �80�C until the day of electroporation. 48 h following effector T cell activation,

the cells were pelleted at 100x g for 10min and resuspended in room temperature Lonza P3 buffer (Lonza, catalog no. V4XP-3032) at

1.5x106 cells per 20 ml P3. The cells were combined with 5 ml aliquots of the thawed RNPs, transferred to a 96-well electroporation

cuvette plate (Lonza, #VVPA-1002) and nucleofected with pulse code EH-115. Immediately following electroporation, the cells were

gently resuspended in 90 ml warmed complete RPMI with IL-2 and incubated at 37�C for 15 min. After recovery, the cells were

cultured in 96 well plates at 1x106 cells/mL for the duration of the experiment. To prevent edge effects, the guides were randomly

distributed across each plate and the first and last column of each plate was excluded, being filled instead with PBS to prevent

evaporation.

RNA isolation and library preparation
8 days after T cell isolation and activation, the cells were pelleted and resuspended at 1x106 cells per 300 ml of RNA lysis buffer (Zymo,

#R1060-1-100). Cells were pipette mixed and frozen at �80 until RNA isolation was performed. RNA was isolated using the

Zymo-Quick RNA micro prep kit (#R1051) according to the manufacturer’s protocol with the following modifications: After thawing

the samples, each tube was vortexed vigorously to ensure complete lysis prior to loading into the extraction columns. In lieu of the kit

provided DNAse, RNA was eluted from the isolation column after the recommended washes and digested with Turbo-DNAse (Fisher

Scientific, #AM2238) at 37�C for 20 min. Following digestion, RNA was purified using the RNA Clean & Concentrator-5 kit (Zymo,

#R1016) according to the manufacturer’s protocol. The resulting purified RNA was submitted to the UC Davis DNA Technologies

and Expression Analysis Core to generate 30 Tag-seq libraries with unique molecular indices (UMIs). Barcoded sequencing libraries

were prepared using the QuantSeq FWD kit (Lexogen) for multiplexed sequencing on an Hiseq 4000 (Illumina).

Genotyping of arrayed KOs
On the day of cell collection for RNAseq, genomic DNA was isolated using DNA QuickExtract (Lucigen, #QE09050) according to the

manufacturer’s protocol. Primers were designed to flank each sgRNA cut site (Table S10). Amplicons of the region were generated by

adding 1.25 mL each of forward and reverse primer at 10uM to 5 mL of sample in QuickExtract, 12.5 mL of NEBNext Ultra II Q5 master

mix (NEB, Cat #M0544L), and H2O to a total 25 mL reaction volume. Touchdown PCRwas used with the following cycling conditions:

98�C for 3 min, 15 cycles of 94�C for 20 s followed by 65�C–57.5�C for 20 s (0.5�C incremental decreases per cycle), and 72�C for

1 min, and a subsequent 20 cycles at 94�C for 20 s, 58�C for 20 s and 72�C for 1 min, and a final 10 min extension at 72�C. Amplicons

were diluted 1:200 and Illumina sequencing adapters were then added in a second PCR reaction. Indexing reactions included 1 mL of

the diluted PCR1 sample, 2.5 mL of each the forward and reverse Illumina TruSeq indexing primers at 10 mMeach, 12.5 mL of NEB Q5

master mix, and H2O to a total 25 mL reaction volume. The following PCR cycling conditions were used: 98�C for 30 s, followed by

98�C for 10 s, 60�C for 30 s, and 72�C for 30 s for 12 cycles, and a final extension period at 72�C for 2 min. Samples were

pooled at an equivolume ratio and SPRI purified prior to sequencing on an Illumina MiSeq with PE 150 reads. Analysis with

performed with CRISPResso253 (v2.2.7) CRISPRessoBatch –skip_failed –n_processes 4 –exclude_bp_from_left 0 –exclude_bp_

from_right 0 –plot_window_size 10.

Cell proliferation quantification
One replica plate of cells from each donor was run on the Attune NxT Flow Cytometer (Thermo Fisher) within 24 h of cell lysis for RNA

extraction. The lymphocyte count was collected for each well using an equi-volume amount of sample. Counts were normalized to

the mean AAVS1 lymphocyte count for the respective donor and experiment. Samples with a total Lymphocyte_count <1000 were

excluded from the analysis, removing one donor sample from SP110, EPAS1, and ZBTB14 KOs.
e2 Cell Genomics 4, 100671, November 13, 2024
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QUANTIFICATION AND STATISTICAL ANALYSIS

RNA-seq alignment and gene count quantification
Adapters were trimmed from fastq files with cutadapt.64 Low-quality bases from reads were trimmed using the Phred algorithm im-

plemented in seqtk (https://github.com/lh3/seqtk). Readswere then aligned with STAR65 andmapped to GRCh38. Gene counts from

deduplicated reads were quantified using featureCounts.66 Sample quality control reports were generated with Fastqc (https://www.

bioinformatics.babraham.ac.uk/projects/fastqc/), rseqc,67 and Multiqc.68

Gene filtering and PCA analysis
Genes were first filtered to those with at least 10 counts in at least five samples. PCA was then performed on the variance stabilizing

transformed29 (vst) counts of the 500 most variable genes. Three outlier samples were excluded and then the above process was

repeated. The PCs were then assessed for association with batch effects and very broad cellular pathways. PCs 1–2 associated

with batch effects, and PCs 3–4 were associated with cell cycle state, suggesting that PCs 1–4 should be included as covariates

or otherwise adjusted for in downstream analysis.

Differential expression analysis
Differential expression analysis was performed using DESeq2,29 including donor identity, PCs 1–4, and the KO as predictors of the

response. Donor identity and PCs 1–4 were included as covariates to mitigate their confounding effects on gene expression. We

emphasize that the statistical estimand in this analysis the total effect of the perturbation of a given gene on the readout gene.

This effect may include several indirect paths between the perturbed gene and the readout gene.

We usedmashr39 to perform shrinkage of the effect sizes of the differentially expressed genes. This yielded an estimate of the local

false-sign rate (LFSR), which is the posterior probability that the true effect has a different sign (positive or negative) than the sign that

is most compatible with the posterior distribution. We used a threshold of LFSR <5 x 10�3 as a significance threshold.

LLCB
We formulate the GRN as a graphG = ðX;bÞ, where the P nodes X1;.;Xp are each a vector of the vst normalized gene expression

values. We restrict this analysis to the 84 KO’d genes reflecting the importance of satisfying the identifiability condition described in

Hyttinen et al. b is the adjacency matrix describing the direct linear effects between genes, where the rows encode the parent genes

and the columns encode the children genes. We then construct a covariate matrix W where the columns W1;.W l indicate l cova-

riates to regress out.We then orthogonalizeX based onW with the transformation ~X = X +X � ðI � ðW tWÞ� 1WÞ, whereX = 1NxP+
ðX1;.XpÞ. We add back in the column means X to roughly preserve the original scale of X. InW, we include the donor identity and

first four PCs as covariates.

We define KOj as the indices indicating the samples in which X j was intervened upon and we setOj = f1;.;Ng � KOj. We define

C as the indices in which safe-harbor AAVS1 control samples were used. For all j = 1;.;P we recode ~X ij = 0 for all i˛ KOj. This

reflects our belief that the CRISPR KOs were effectively forcing the normalized functional transcript abundance to 0, i.e., we assume

perfect interventions.

We then estimate b in two steps: 1. Estimate the total effects jij between every pair of genes ði; jÞ˛P x P; 2. Estimate b from c

using a modification of the LLC algorithm.23 To estimate jij, we first center and scale ~X j based on its mean and standard de-

viation in the control samples C. Then, we use OLS to estimate the total effect of ~Xi on ~Xj, limiting the samples used to fKOi;Cg,
such that we exclude all instances in which the child node ~Xj has been KO’d. This analysis results in the matrix of

estimated total effects, bc . We emphasize that these coefficients are on a correlation scale because of the standardization

procedure.

We assume asymptotic stability23 over the true b, which is equivalent to assuming that the largest eigenvalue is less than 1.

Because we know b is asymptotically stable, the following decomposition of true effects into direct effects is coherent:

jij =
X

p˛Pðxi/xjÞ

Y
ðxl/xmÞ˛p

blm

This relationship indicates that total effect of a gene i on gene j is the sum of all possible paths between them, where the value of an

individual path is defined by the product of direct effects along that path.

To estimate b from bj, we use the LLC procedure Algorithm 1:

This procedure results in Pmatrices Tj of size ðP � 1Þ x ðP � 1 Þ and P column vectors Yj. We then concatenate fYjgj = 1;.;P verti-

cally into a column vector Y of length P x ðP � 1Þ and we form the block matrix T =

2
4T1 / 0

« 1 «
0 / Tp

3
5

We then define the likelihood as the probability of Y conditional on T and parameters b and sp. T and Y represent a system of linear

equations relating the total effects c to the direct effects b. For a given gene l we define the set of rows in T corresponding to
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experimental observations where we perturb a putative parent of l and record the effect on l as L. For each row of T and Y where the

lth gene is the child node, we specific the likelihood as:

YL

��TL ;b;sl � Np� 1ðTL � vecðbÞ;slIÞ
Including a child node specific dispersion parameter sl allows for heterogeneity in the residual variance across the genes.

Because we have prior knowledge of what realistic gene networks look like, we specify the prior in three parts as follows:

vecðbÞ � NP�ðP� 1Þð0; l1Þ

rðbÞ � Nð0; l2Þ
where rðbÞ is defined as the spectral radius of b, i.e., the maximum eigenvalue of b. We estimate the maximum eigenvalue of b using

power iteration. We incorporate a prior on the spectral radius because it is an upper bound over the NOTEARS DAG penalty,22 which

is a differentiable penalty that enables DAG search in a continuous optimization framework. Importantly, we encode this prior as a

‘‘soft-constraint’’ with the Gaussian density to weakly penalize the divergence of b from the space of DAGs while still allowing for

cyclic elements.

Over the columns of b, i.e., b�j we place a sparsity inducing L1 prior:X
j˛ f1;.Pg

��b�j
��
1
� Nð0; l3Þ

The purpose of this term in the prior is to reflect our belief that the indegree of a gene should be relatively small; we know that genes

are not directly regulated by hundreds of TFs. In contrast, a given TF may regulate hundreds of downstream genes, so we do not

penalize the rows of b. Overall – this prior encodes the following three prior beliefs: 1. The effects should be somewhat small on a

partial correlation scale; 2. The maximum eigenvalue should not be very large to penalize graphs with many cycles; 3. The indegree

for each gene should be relatively small, while the outdegree should not be penalized.

On the dispersion terms, sp, we place a LogNormalð� 3;5Þ prior. We estimate P total dispersion terms because there may hetero-

geneity in the residual variance of the total effects across the KO’d genes.

Causal network posterior inference
We use pathfinder32 to estimate the posterior. Briefly, pathfinder is a variational inference algorithm that optimizes the joint log prob-

ability of the model using L-BFGS, i.e., the maximum a posteriori objective. Along this optimization trajectory, it constructs a surro-

gate posterior at each point using the estimate of the hessian from L-BFGS as the precision of the surrogate posterior. Then, at each

point, the evidence lower bound (ELBO) is evaluated. The variational approximation resulting in the largest ELBO is then returned as

the posterior estimate. We compute seven runs of this optimization procedure in parallel, and then use importance resampling to

combine the fits. We initialize b based on the component-wise sum of the MLE estimate of b and a vector of Gaussian noise i.e.,

binit = 0:1 � bMLE + 0:1 � z;z � Nð0;1Þ.

Causal network posterior uncertainty quantification
We compute a pseudo-posterior inclusion probability (PIP) we defined as PIPðbijÞ = Pð��bij�� > eÞ. We set e = 0:05:We also computed

local-false sign rates (LFSR) estimates: LFSRðbijÞ = minðPðbij > 0Þ;PðbijÞ < 0Þ. We note that these summary statistics, although likely

proportional to the ‘true’ values, are likely somewhat uncalibrated given that a) we do notmodel the underling discrete graph structure
e4 Cell Genomics 4, 100671, November 13, 2024
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G separately from the parameters b and b) calibrated inference in a network setting has been shown empirically to be extremely

challenging.

Simulation of a cyclic network in a steady state
We start by simulating a given expression vector of P genes as X0 � LogNormalð1:00;0:10Þ. Then, for a given adjacency matrix bwe

model the effect of a perturbation on the kth gene as setting b�k = 0, i.e., we remove the incoming edges to this node and set the

value of this node to 0. We denote this perturbed adjacency matrix as ~b. We then sample the ‘‘steady-state’’ limit as lim
t/N

Xt =

XoðI � ~bÞ� 1: We assessed the performance of our algorithm on a b corresponding to a cyclic network (Supplemental Methods 1).

ABC-DAC GRN
We extracted the CD4+ enhancer to gene predictions from the ABC model36 and we intersected them with the differential ATAC

peaks from Freimer et al., which were generated on samples where the 24 IL2RA regulators were KO’d. For the ith gene we included

i/j as an edge in this graph if one its differential ATAC peaks intersected with an ABC enhancer for gene j, suggesting that pertur-

bation of gene i was perturbing a cis regulatory element for gene j. We then calculated the enrichment of these edges among those

detected in the IL2RA regulator sub-network of causal network estimate.

HBase validation network
We downloaded the HumanBase37 predicted ‘‘T-Lymphocyte’’ network from https://hb.flatironinstitute.org/download. We down-

loaded the version of the network with only the top edges included. We then estimated enrichment in the same manner as with

the ABC-GRN network.

ABC-ChIP GRN
We downloaded ChIP-seq tracks for nine factors (NFKB1, ETS1, FOXP3, REL, RELA, STAT5B, IRF4, TBX21, YY1) encoded by the

KO’d genes where the data were available in human CD4+ cells from the ChIP-seq atlas. We then intersected these peaks with

enhancer to gene predictions from the ABC model. For the ith gene we included i/j as an edge in this graph if one its ChIP peaks

intersected with an ABC enhancer for gene j. We refer to the network defined from these edges as the ABC-ChIP GRN.

Comparison to CD4+ Trans-eQTLs
Full trans-eQTL summary statistics were obtained from Yazar et al.6 from correspondence with the authors. For each of the 84 per-

turbed genes, we then intersected those with the cis-eQTL summary statistics in CD4+ effector and naive cells, finding that only 24 of

the 84 genes had at least one cis-eQTL. Among these 24, we then searched for a trans effect of these cis-eQTLs at various q-value

thresholds (5%, 10%, 20%, 30%) of the trans-eQTL summary statistics; we included a range of liberal q-value thresholds in order to

construct trans-eQTL derived networks at a permissive range of network densities. We defined an edge in the trans-eQTL network as

a cis-eQTL for one of the perturbed genes that also was a trans-eQTL for another of the perturbed genes.

Bipartite graph model of downstream gene expression
We refer to a ‘‘downstream’’ gene as those that were measured among the 12,803 genes that were highly expressed but not among

the perturbed genes. We form a matrix Y with 12,803 columns containing the vst normalized gene expression data. We define a ma-

trix X with the expression values of the 84 perturbed genes. We applied the same normalization data procedure as in our causal

network estimation such that both X and Y are vst transformed data that is orthogonal to covariates (donor identity, PCs 1–4).

We specified the following likelihood for the ith measurement of the jth downstream gene:

Yij � N
�
Xibj;sj

�
Over the bj we place the following prior bj � Npð0;a�SbÞ, where Sb is defined as the asymptotic steady state covariance implied by

our point estimate from the causal network model, i.e., Sb = ðI � bbÞ� 1SeðI � bbÞ. This prior encodes the belief that similar effects

among the 84 genes in the causal network will increase the likelihood of similar downstream effects. Because we used a conjugate

prior the posterior has an analytic form

bj

���X;Yj � NN

�
tj �L� 1XtYj;s

2
j diag

�
L� 1ÞÞ

where L = ðSb + tj � XtXÞ and tj =
1
s2
j

.

We set a = 0:1 0 in practice, although in principle empirical Bayesian approaches or other criteria could be used to set this hyper-

parameter. We estimate the residual variance parameter s2j using maximum likelihood and we use LFSR as our variable selection

criteria.
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Pathway analysis
Downstream enriched pathways were identified for each perturbation using pathfindR (v1.6.4).69 For each upstream gene perturbed,

outgoing edges within the BG model were used as input for pathfinder, with a significance threshold of LFSR <5 x 10�3. Gene sets

were limited to KEGG,42 Reactome,47 andGO-BP52 and theminimumgene set size and enrichment threshold were set to 10 and 0.05

respectively. Pathways were prioritized for visualization based on the number of genes within the module with enrichment for the

pathway, median fold enrichment across all members of the module, and relevance to T cell biology.

LD score regression analyses
We first defined gene sets corresponding to each of the nine modules (1A-C, 2A-C, 3A-B, 4) and module 0, which we defined as the

set of genes that were expressed highly enough for analysis but were not associatedwith any of the KO’d genes (at an LFSR threshold

of 5 x 10�3). For each of these 10 gene sets, we then linked SNPs to these genes (S2G) using seven possiblemethods following Dey at

al,70 including approaches that link SNPs based purely on physical distance to the nearest gene, fine-mapped eQTLs, promoter Hi-C

capture, the ABC model, among others.

For each of the 10 phenotypes analyzed (Table S7) we obtained the GWAS summary statistics and performed LD score regression

analysis. We included the LD score baselinemodel v2.1 in the regression. We used the publicly available European ancestry LD score

estimates for the HapMap SNPs available from:

gs://broad-alkesgroup-public/LDSCORE/Dey_Enhancer_MasterReg/processed_data.

ATAC and ChIPseq data visualization
Bigwigs for each of the tracks were downloaded from ChIP-Atlas. ATAC bigwigs and differentially expressed regions were procured

from Freimer et al. and a representative donor was used for visualization of each perturbation effect at the IL17F locus. Visualization

was performed with rtracklayer (v1.52.1) and ggplot2 (v3.4.1). APRIS gene structure was used for gene annotation with gggenes

(v0.5.0). Differentially accessible chromatin regions were defined in Freimer at al.,14 Supplementary Data 2.

Bigwig files were obtained for visualization from the following ChIP-Atlas sources: STAT5B KO ATAC- SRX10558086, KMT2A KO

ATAC- SRX10558079, AAVS1 KOATAC- SRX10558063 (all ATAC samples fromCD4+ T cells treated with IL-2), H3K4me3ChIP- acti-

vated Th17 ChIP71 (stimulated with anti-CD3/CD28 beads and IL-2)- SRX16500373 (GSM6376841), STAT5B ChIP72 (treated with

IL-2)- SRX041293 (GSM671402).
e6 Cell Genomics 4, 100671, November 13, 2024
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Direct effects vs total effects for network reconstruction  
We first simulated a cyclic gene regulatory network to define a ground truth. We chose a graph 
structure with five nodes connected in a cycle (Supplementary Note Figure 1) and set all the edge 
weights to 0.5, resulting in the following adjacency matrix: 

 

𝜷 =

[
 
 
 
 

0 0 0 0 0
0 0.5 0 0 0
0 0 0.5 0 0
0 0 0 0.5 0

0.5 0 0 0 0.5]
 
 
 
 

 

 
We then simulated an initial expression observation: 
 

𝑿(𝟎)~𝐿𝑜𝑔𝑁𝑜𝑟𝑚𝑎𝑙(1.00, 0.10) 
 
Then, given 𝛽 we model the effect of a perturbation on the 𝑘𝑡ℎ gene as setting the 𝑘𝑡ℎ column of 

𝛽 to 0, i.e., we remove all incoming connections. We denote this modified adjacency matrix as �̃�. 

To simulate the effect of a “knock-out”, we also set 𝑿𝒌
(𝟎)

= 0. We then draw the expected “steady-

state” as: 

lim
𝑡→ ∞

𝑿(𝒕) = 𝑿(𝟎)(𝑰 − �̃�)
−1

 

 
We then used LLCB to estimate the network (as defined by direct effects matrix 𝜷) and compared 
this estimate to a total effect derived network. To estimate total effects, we simply performed 
the first step of LLCB without performing the deconvolution step. We repeated this simulation 10 
times, varying across the number of simulated technical replicates within each donor. We defined 
the graphs by simply thresholding the effect estimates above 0.3, whereas the true edges all had 
weights of 0.5.  
 

 
Supplementary Note Figure 1 | The ground truth graph 
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Overall, we observed that although the two approaches (estimating total effects or estimating 
direct effects) had similar power (Supplementary Figure 2), the direct effect estimates 
substantially reduced false discovery. For example, the total effect network had an average FDR 
of 28% with a single technical replicate per donor as compared to an average FDR of 3% for the 
direct effect estimates. Power remained comparable (89% for direct effects vs 91% for total 
effect, Supplementary Note Figure 2).   
 

 
Supplementary Note Figure 2 | False discovery rate comparison from simulated data 

 
Supplementary Note Figure 3 | Power comparison from simulated data 

Overall, this is consistent with an intuition where total effect analyses are a very powerful 
approach; total effects analyses will discover the majority of true connections. However, they are 
quite prone to the false discovery of edges because the true underlying graph structure is 
ignored, resulting in several redundant correlations. 
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On the association between upstream gene groups and downstream 
non-perturbed genes 
We used the following model: 

𝑌𝑖𝑘~𝑁𝐵(𝑔−1(𝜂𝑖𝑘), 𝜓𝑘) 

𝑔(𝐸(𝑌𝑖𝑘)) = 𝜂𝑖𝑘 = 𝑋𝑖𝛽𝑘 

NB represents a mean-variance parameterization of the negative binomial distribution, 𝑌𝑖𝑘  is the 
number of incoming connections from the 𝑘𝑡ℎ gene group (i.e., Background TFs / IEI TFs / IL2RA 
Regulators / IEI or IL2RA Regulators) for a given 𝑖𝑡ℎ non-perturbed gene, and 𝑋𝑖  is a design matrix 
with an indicator for the intercept and a series of covariates describing the 𝑖𝑡ℎ non-perturbed 
gene including the following terms: 
 

1. The 𝑆ℎ𝑒𝑡 estimate of the 𝑖𝑡ℎ gene 
2. An indicator for whether the 𝑖𝑡ℎ gene is an IEI gene (Reference = Not an IEI gene) 
3. Expression of the 𝑖𝑡ℎ gene measured in control samples (i.e., CRISPR K/O targeted to 

AAVS1 locus) 
4. The number of incoming connections to the 𝑖𝑡ℎ  gene from background TFs 
5. An indicator for whether the 𝑖𝑡ℎ gene is a trans-eGene in eQTLgen 
6. An indicator for whether the 𝑖𝑡ℎ gene is an immune GWAS gene, has reported through 

PICS 
7. An indicator for whether the 𝑖𝑡ℎ gene is only expressed in blood as defined through 

analysis of GTEx samples 
 
Each of the four sub-panels in Figure 3D plots the estimated 𝛽𝑘 along with the respective 
uncertainties for the four gene groups.  



Supplementary Figures 
 

Figure S1 | CRISPR editing efficiency by gene group, related to Figure 2. A Percent of reads with 
indels, stratified by individual gene. B Percent of reads with indels, aggregating by gene group.  

 

  



Figure S2 | Enrichment of LLCB posterior mean edges in the ABC-DAC validation network, 
related to Figure 2 

 

Figure S3 | Enrichment of LLCB posterior mean edges in the HBase T-cell network, related to 
Figure 2 

 

 

 

 

 

 

 

 



Figure S4 | Enrichment of LLCB posterior mean edges in the ABC-ChIP validation network, 
related to Figure 2. The ABC-ChIP network was defined through intersecting ChIP-seq peaks of 
TFs in CD4+ cells with enhancer-gene predictions from the ABC model.   

 

  



Figure S5 | Permutation test of the number of edges between genes that share the same gene 
group, related to Figure 2. A set of 2,000 null permutations of the network were generated by using 
the rewiring algorithm to preserve the node degree. Within each permutation, the number of edges 
with the same gene group were counted. The observed value is denoted by the red vertical line, and 
the empirical 2.5% and 97.5% quantiles from the permuted data are denoted by vertical dashed 
lines.  

 

 

  



Figure S6 | Comparison of direct to total effects among the 84 KO’d genes, related to Figure 2. 
The x-axis is defined as the posterior mean estimates of the adjacency matrix estimated by LLCB. 
Units are in terms of standard deviations of normalized gene expression. The y-axis is estimated 
through the processing procedure described in Methods.  

 

 

S7 | The largest indirect effects are mediated by cycles of short length, related to Figure 2 

 

 

 



Figure S8 | Enrichment of module effects on KEGG signaling pathways, related to Figure 5. 
Enrichment analyses were performed with pathfindR.  

 

 

  



Figure S9 | Enrichment of module effects on KEGG signaling pathways, related to Figure 5. 
Enrichment analyses were performed with pathfindR.  

 

  



Figure S10 | Enrichment of module effects on KEGG immune pathways, related to Figure 5. 
Enrichment analyses were performed with pathfindR.  

 



Figure S11 | Network plot demonstrates the effect of the cluster 2A upstream regulators on 
cell-cycle genes, related to Figure 5. The network using edges estimated from the BG model are 
plotted. Colors indicate the effect size and arrows indicate the direction of effect. The genes on the 
left-hand side are among the 84 KO’d genes, and the genes on the right are genes that are listed 
among the KEGG cell cycle pathway genes.  

 

  



Figure S12 | Marginal heritability estimates from LD score regression, related to Figure 6. LD 
score regression was used to estimate the heritability enrichment of SNPs linked to genes in each 
module for each phenotype. SNPs were linked to genes using the ABC predictions in T cells.  

 



Figure S13 | KMT2A and STAT5B jointly regulate chromatin accessibility at the IL17F locus (A) 
and IL21 locus (B), related to Figure 7.  For A and B, locus plot including tracks describing the 
functional characteristics of the region. Each track is constructed from publicly available ChIPseq 
data (methods) or ATAC-seq data from Freimer et al. Grey boxes indicate significantly different 
regions between the respective KO and AAVS1 control KO ATAC data (padj < 0.05, n = 3 donors per 
KO). The Y-axis displays normalized counts.   

A 

 

B 

 



Figure S14 | Meta-analysis of autoimmune GWAS from Shirai et al. and Finngen v8, related to 
Figure 7. The KMT2A locus plot is displayed with a chromHMM75 track from Th17 cells. The 
predicted enhancers of KMT2A from the ABC model in CD4+ T cells are shown in red arcs at the 
bottom.  
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