Science Advances

Supplementary Materials for

Computation-driven redesign of an NRPS-like carboxylic acid reductase improves activity and selectivity

Kun Shi et al.

Corresponding author: Hui-Lei Yu, huileiyu@ecust.edu.cn

Sci. Adv. **10**, eadp6775 (2024) DOI: 10.1126/sciadv.adp6775

This PDF file includes:

Figs. S1 to S13 Tables S1 to S7

Fig. S1. *In silico* site saturation mutagenesis. (A) 6-ACA as substrate. Points in orange square: 38 mutants selected for experiment validation. (B) AA as substrate.

Fig. S2. Validation of *in silico* **site mutations (selected from Fig. S1A) for reductase activity toward 6-ACA.** Data are presented as mean values +/- SD (n=3 independent experiments). Assays were conducted with 10 mM substrates.

Fig. S3. Structural comparison of the Rosetta-predicted mode between the *Mab***CAR3_WT and ACA-4 with the bound substrate 6-ACA.** (A) the active site of WT. (B) the active site of ACA-4, highlighting the predicted formation of new hydrophobic interactions and salt bridges. Yellow lines: salt bridge. Blue lines: hydrogen bond. Grey lines: hydrophobic interaction.

Fig. S4. The biosynthesis of HMD from 6-ACA using purified ACA-4 and other necessary enzymes.

Fig. S5. Time course for condensed crude enzymes-catalyzed conversion of AA to HMD with 50 mM substrate in a 10-mL reaction mixture (using ACA-1 and ACA-4). Data are presented as mean values +/- SD (n=3 independent experiments). The reaction mixtures contained 500 mM HEPES-Na buffer (pH 7.5), 50 mM substrate AA, 1 mM NADP⁺, 10 mM ATP, 120 mM MgCl₂, 120 mM Glucose, 1 mM PLP, 200 mM IPA, 100 mM PolyP₆; 8 mg/mL lyophilized enzyme powder of *Bm*GDH, 20 mg/mL lyophilized enzyme powder of PPK12, 50 mg/mL crude cell extract of *Mab*CAR3_ACA-1, 100 mg/mL crude cell extract of *Mab*CAR3_ACA-4, 240 mg/mL crude cell extract of *Sp*TA, 30 °C, 800 rpm.

Fig. S6. The GC-MS/GC analysis of the preparation of HMD. (A) Mass spectrometry analysis of HMD product. (B) Mass spectrometry analysis of HMD standard in NIST database. (C) The GC results for the preparation of HMD (5 min).

Fig. S7. The deamination activity of the 16 designs towards 6-ACA and AA. Data are presented as mean values +/- SD (n=3 independent experiments). Assays were conducted with 10 mM substrates.

Fig. S8. Structural comparison of the Rosetta-predicted mode between the *Mab***CAR3_WT and G418K with the bound substrate 6-ACA and AA. (A)** WT bound AA. (B) WT bound 6-ACA. (C) G418K bound AA. (D) G418K bound 6-ACA. Grey lines: hydrophobic interaction. Orange lines: salt bridge. Blue lines: hydrogen bond.

Fig. S9. $U_{\alpha,\omega-diacid}/U_{\omega-amino-acid}$ of G418K compared with wildtype (WT). Assays were conducted with 5 mM substrates. Error bars reflect the standard deviations from three replicates.

Fig. S10. Exploring substrate scope of a refined biocatalytic system (10 mL) for synthesizing various ω -amino fatty acids (C6-C9). (A) Reaction time-course for 6-ACA biosynthesis with crude enzymes. (B) Conversion of α, ω -diacids (C7-C9) to corresponding ω -amino fatty acids using crude *Mab*CAR3_G418K and other necessary enzymes (6 h). Data are presented as mean values +/- SD (n=3 independent experiments).

Fig. S11. Synthesis of 6-ACA derivative at the gram scale. Data are from one independent experiment.

Fig. S12. The GC-MS/GC analysis of the preparation of Boc- -Ahx-OH. (A) Mass spectrometry analysis of Boc- -Ahx-OH product. (B) Mass spectrometry analysis of Boc- -Ahx-OH standard in NIST database. (C) The GC results for the preparation of Boc- -Ahx-OH (14.9 min).

Fig. S13. Calibration curves for product and intermediate.

CARs	interface dE	NAC frequency
WT	-6.62	16.6%
L284D	-7.58	16.7%
L284E	-7.41	16.9%
L284F	-7.08	17.2%
L284G	-7.22	18.2%
L284I	-7.06	16.9%
L284N	-7.47	16.5%
L284Q	-7.66	16.1%
L284T	-7.23	15.8%
L284V	-7.14	15.3%
L284W	-7.08	17.4%
A303E	-7.17	19.1%
A303I	-7.04	17.3%
A303M	-7.41	16.7%
A303V	-7.46	17.3%
L306I	-7.20	19.7%
L306M	-6.97	16.9%
L306S	-7.09	19.8%
L306V	-7.22	20.5%
L342D	-7.62	15.3%
L342E	-7.26	19.6%
L342F	-6.99	17.0%
L342I	-7.00	19.3%
L342K	-6.96	16.2%
L342M	-7.03	21.4%
L342N	-7.51	17.6%
L342Q	-7.14	19.9%
L342R	-7.44	15.8%
L342V	-6.90	17.6%
L342W	-6.88	17.7%
G393A	-6.99	16.4%
G393D	-7.04	19.8%
G393E	-7.14	19.2%
G393Q	-7.18	19.8%
G395A	-7.41	15.6%
G395E	-7.17	19.4%
G418D	-6.99	15.5%
G418E	-6.98	17.3%
G426S	-6.94	21.3%

Table S1. Rosetta score (interface_dE) and NAC frequency of selected mutants from Fig. S1A.

Position	Residue	Number of residues		
284	WVTQNEDGFIL	11		
303	AVMI	4		
306	LIM	3		
342	ED	2		
393	EGDQA	5		
418	GED	3		
426	SG	2		
*Total 7020 mutants in the library				

 Table S2. Candidate residues in the combinatorial mutation library.

*Total 7920 mutants in the library.

Name	Combinatorial mutations
ACA-1	284D303M306I342E393A
ACA-2	284D306M342E
ACA-3	284D303I306I342E418D
ACA-4	284I306M342E393E
ACA-5	284D306M342E393A418E
ACA-6	284D306M342E393E
ACA-7	284E306M342E393A426S
ACA-8	284F306I342D393E
ACA-9	284F306M342D393E
ACA-10	303M306I342D393E
ACA-11	303M306M342D393Q
ACA-12	284D306M342D393E
ACA-13	306I342D418D
ACA-14	284E303I306I342E393E
ACA-15	284D303M306I342E393A418D
ACA-16	284Q306M342E418E426S
ACA-17	284D303I306I342D393E418E
ACA-18	284F306I342E393Q

 Table S3. Combinatorial mutations selected for experiment characterization.

*WT: 284L/303A/306L/342L/393G/418G

Substrates	U_{ACA-1}/U_{WT}	U_{ACA-4}/U_{WT}
butanedioic acid	7.23	10.9
4-aminobutyric acid	0.77	1.10
glutaric acid	6.59	1.86
5-aminovaleric acid	4.00	4.51
AA	10.3	1.76
6-ACA	28.1	37.6
pimelic acid	3.55	0.92
7-aminoheptanoic acid	10.8	32.4
octanedioic acid	3.79	1.08
8-aminocaprylic acid	6.40	12.6
azelaic acid	3.02	1.36
9-aminononanoic acid	1.83	4.16
sebacic acid	1.93	1.58
10-aminodecanoic acid	1.70	3.63
undecandioic acid	3.54	1.57
11-aminoundecanoic acid	0.81	1.68
dodecanedioic acid	2.01	1.55
12-aminododecanoic acid	1.22	1.98

 Table S4. Fold changes in specific activity of the MabCAR3 mutants compared to the wild type with different substrates.

Assays were conducted with 5 mM substrates.

CARs	AA		6-ACA	
	interface_dE	NAC (%)	interface_dE	NAC (%)
WT	-11.07	15.3	-6.62	16.6
A303K	-13.53	16.8	-6.47	10.5
G418S	-13.23	15.3	-6.81	14.3
G418K	-12.68	16.3	-6.37	14.6
L342R	-13.88	15.7	-7.44	15.8
L342K	-14.67	16.2	-6.96	16.2
G395H	-13.13	16.0	-6.63	11.6
G426H	-13.69	16.4	-5.95	21.5
V344K	-14.58	17.0	-6.52	13.8
G418R	-12.76	14.6	-6.44	17.3
L306H	-12.63	18.0	-6.83	11.1
L306K	-12.92	15.1	-6.50	15.3
L306R	-12.81	16.8	-6.56	13.3
G395C	-12.12	16.0	-6.11	18.0
G395K	-15.13	13.7	-6.59	11.3
G418N	-12.10	16.8	-6.87	13.5
G418H	-11.34	17.5	-6.59	11.7

Table S5. Rosetta score (interface_dE) and NAC frequency of selected mutants from Fig. 7A.

Table S6. The biosynthesis of HMD from 6-ACA using different CARs (WT, ACA-1 and ACA-4) and other necessary enzymes.

CARs	HMD (mM)
WT	1.4 ± 0.3
ACA-1	19.9 ± 0.9
ACA-4	22.8 ± 1.1

Reaction mixtures (200 μ L) contained 100 mM HEPES-Na buffer (pH 7.5), 50 mM substrate 6-ACA, 1 mM NAD(P)H, 10 mM ATP, 60 mM MgCl₂, 60 mM Glucose, 0.5 mM PLP, 100 mM IPA, 50 mM PolyP, 20 μ g of *Bm*GDH, 80 μ g of PPK12, 146 μ g of CARs, 180 μ g of *Sp*TA, 30 °C, 1000 rpm, 18 h. Data are presented as mean values +/- SD (n=3 independent experiments).

Enzyme	Organism	Uniprot ID	Plasmid	Cloning site	Mass
MabCAR3	Mycobacterium abscessus	A0A1M9KYS5	pET-30b	NdeI/XhoI	129 kDa
<i>Sp</i> TA	Silicibacter pomeroyi	Q5LMU1	pETDuet-1	NdeI/XhoI	51 kDa
PPK12	Erysipelotrichaceae bacterium	A0A3D5XRJ5	pET-28a	NdeI/XhoI	36 kDa
BsSfp	Bacillus subtilis	P39135	pCDFDuet-1	BamHI/NotI	26 kDa
<i>Bm</i> GDH	Bacillus megaterium	P40288	pET-28a	BamHI/Hin dIII	28 kDa

Table S7. Enzymes (wild-type) used in this work.