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1 Supplementary Methods
We consider a sample with n unrelated individuals. Each individual has K correlated
quantitative traits. Let Yi = (yi1, . . . , yiK)T denote the phenotype vector for the ith
individual, where yik denotes the kth trait value of the ith individual. We divide the
sample into two parts. The first part includes Y1, . . . ,Yn1 with no missing pheno-
type. The second part includes Yn1+1, . . . ,Yn with at least one missing phenotype for
each individual. Let Y

(−K)
i = (yi1, . . . , yi,K−1)T denote the ith individual’s pheno-

type vector without the Kth phenotype. Without loss of generality, we assume that
Y

(−K)
n1+1 , . . . ,Y

(−K)
n have no missing phenotypes and Yn1+1,K , . . . , Yn,K have missing

values.
We propose to use Gaussian copula to model the correlation among these K

traits and let Fk(yk; αk) and fk(yk; αk) be the cumulative distribution function (cdf)
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and probability density function (pdf) of yk. Usually, we assume yk follows normal
distribution with N(yk; θk, σ2

k), αk = (θk, σ2
k), for quantitative traits.

Let µj = Fj(yj ; αj), j = 1, 2..., K, CR = ΦR(Φ−1(µ1), . . . , Φ−1(µK)) denotes the
joint distribution of (µ1, . . . , µK) where Φ−1 is the inverse cumulative distribution
function of a standard normal distribution and ΦR is the joint cumulative distribution
function of a multivariate normal distribution with mean vector zero and covariance
matrix equal to the correlation matrix R. Thus, CR is the cdf of Y = (y1, . . . , yK)T ,
denoted as H(y1, . . . , yK). Specifically, the distribution of Y will degenerate to a
multivariate normal distribution when the marginal distributions of Y are normal
based on the Gaussian copula model.

Given the joint distribution function of Y , the corresponding density function can
be obtained by taking derivatives with respect to CR [1]. When the trait is continuous,
the joint density function of Y can be written as:

h(y1, . . . , yK) = cR(µ1, . . . , µK)
K∏

k=1
fk(yk; αk) (1)

where cR(µ1, . . . , µK) = |R|− 1
2 exp{ 1

2q
T (IK − R−1)q} and µj = Fj(yj ; αj), q =

(q1, . . . , qK) is a vector of inverse-normal scores qj = Φ−1(µj), and IK is a
K-dimensional identity matrix. Specially, the conditional density of yK given
y1, . . . , yK−1 can be written as:

h(yK |y1, . . . , yK−1) = cR(µ1, . . . , µK)fk(yk; αk)∫
cR(µ1, . . . , µK)dFk(yk; αk)

(2)

When the K traits include K1 discrete and K2 = K − K1 continuous traits, the
joint density function can be obtained as follows. Let µ2 = (µK1+1, . . . , µK) where
µj = Fj(yj ; αj) for j = K1 + 1, . . . , K and µj1 = Fj(yj−; αj) and µj2 = Fj(yj ; αj)
where Fj(yj−; αj) is the left-hand limit of Fj at yj which is equal to Fj(yj − 1; αj)
for j = 1, . . . , K1. The joint density of Y is given by:

h(y1, . . . , yK) =
K∏

k=K1+1
fk(yk; αk) ×

2∑
j1=1

· · ·
2∑

jK1 =1
(−1)j1+···+jK1

× C∗
R(µ1,j1 , · · · , µK1,jK1

, µK1+1, . . . , µK) (3)

where

C∗
R(µ1,µ2) =(2π)− K1

2 |R|− 1
2

∫ Φ−1(µ1)

−∞
· · ·

∫ Φ−1(µK1 )

−∞

× exp
{

−1
2(y1, q2)R−1(y1, q2)T + 1

2q
T
2 q2

}
dy1

for µ1 = (µ1, . . . , µK1) and q2 = (qK1+1, · · · , qK).
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For example, when K = 3 and K1 = 1, the joint distribution Y = (y1, y2, y3) can
be written as:

h(y1, y2, y3) =
3∏

k=2
fk(yk; αk)

{∫ Φ−1(1−ξ1)

−∞

1√
2π|R|

exp
{

−1
2(y1, q2, q3)R−1(y1, q2, q3)T + 1

2(q2, q3)(q2, q3)T

}
dy1

}y1=0

×
{

1 −
∫ Φ−1(1−ξ1)

−∞

1√
2π|R|

exp
{

−1
2(y1, q2, q3)R−1(y1, q2, q3)T + 1

2(q2, q3)(q2, q3)T

}
dy1

}y1=1

(4)

where ξ1 = P (y1 = 1) and 1 − ξ1 = P (y1 = 0). From (4), we can easily derive the
conditional probability of y1 given y2, y3:

P (y1 = 0|y2, y3) =
∫ Φ−1(1−ξ1)

−∞

1√
2π|R|

exp
{

−1
2(y1, q2, q3)R−1(y1, q2, q3)T + 1

2(q2, q3)(q2, q3)T

}
dy1

(5)
and

P (y1 = 1|y2, y3) =

1 −
∫ Φ−1(1−ξ1)

−∞

1√
2π|R|

exp
{

−1
2(y1, q2, q3)R−1(y1, q2, q3)T + 1

2(q2, q3)(q2, q3)T

}
dy1

(6)

The conditional distribution of yiK given yi1, . . . , yi(K−1) can be written as:

h(yiK |yi1, . . . , yi(K−1)) =∑2
j1=1 · · ·

∑2
jK1 =1(−1)j1+···+jK1 C∗

R(µ1,j1 , · · · , µK1,jK1
, µK1+1, . . . , µK)fK(yiK ; αK)∑2

j1=1 · · ·
∑2

jK1 =1(−1)j1+···+jK1
∫ 1

0 C∗
R(µ1,j1 , · · · , µK1,jK1

, µK1+1, . . . , µK)dµK

(7)

2 Supplementary Results
We investigate the performance of our methods when the number of phenotypes varies
in a broader range from K = 4 to K = 15 (Supplementary Figure 1). Our meth-
ods have similar or better performance than PIM and PHENIX for most of K. Our
method performs better than or similarly to PIM and PHENIX when the number of
phenotypes ranges from 5 to 14. PHENIX and PIM only outperform our method when
the number of phenotypes is 4 or 15. The phenotypes in Supplementary Figure 1 are
generated from multivariate normal distributions, which satisfy the key assumptions
of PHENIX and PIM. However, when phenotypes are generated from multivariate
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gamma distributions or a mixture of multivariate normal, multivariate gamma, and
beta distributions, the performance of PHENIX and PIM declines even further, as
these scenarios violate the key multivariate normal assumption required for their
effectiveness (data not shown).

To compare the performance of our methods with the Gaussian copula method
using the EM algorithm (Copula-EM) for phenotype imputation [2], three and seven
phenotypes are generated from multivariate normal distributions and multivariate
gamma distributions, respectively, with h2 = 0.05 and ρ = 0.5, while varying the
sample size from 100 or 200 to 600.

When the phenotypes follows multivariate normal distributions, our methods out-
perform Copula-EM consistently for the three-phenotype case and show even greater
improvement when the sample size is 100 for the seven-phenotype case. When pheno-
types follows multivariate gamma distributions, our methods outperform Copula-EM
at larger sample sizes, such as 500 for seven phenotypes or 600 for three phenotypes.
This indicates that our methods are particularly robust when dealing with multivari-
ate normal distributions, excelling in both small and large sample sizes. Although our
methods are effective for non-normal data, they require a sufficiently large sample
size to maintain their advantage over Copula-EM in these situations (Supplementary
Figure 2.
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Fig. 1 The imputation correlation of five methods (PHENIX, PIM, C-MSE, C-(0-1) and C-QL) for
phenotypes simulated from a multivariate normal distribution at h2 = 0.05, ρ = 0.5, n = 1000 with a
varying number of phenotypes from K = 4 to K = 15 is shown. The y-axis represents the correlation
between the imputed and the true values of phenotypesfor each method.
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Fig. 2 The imputation correlation of four methods (Copula-EM, C-MSE, C-(0-1) and C-QL) sim-
ulated from a multivariate gamma distribution at h2 = 0.05 with different correlation of the traits
for a range of positive and negative values where the correlation of the imputed values with the true
values is plotted on the y axis for each method.
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