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Introduction  
 
This document provides additional technical information about certain aspects of the QEMSCAN data 
processing for the analysis of the 73002 continuous core thin sections. For this study, we used an 
updated version of the SIP list used by Bell et al. (2020) that was specifically established for lunar 
samples, referred to as the ‘Lunar SIP list’. Table S1 outlines some of the changes made to the original 
Lunar SIP list required due to the subdivision of the broad single lunar glass composition into different 
more detailed glass types (i.e., volcanic, or feldspathic or mafic impact derived glasses).   
 
Clasts within the samples were separated using a combination of count rate thresholds and processors 
within the QEMSCAN software. Figure S1 provides an overview of the steps involved using count rate 
to identify the edges of clasts. Categorisers in the QEMSCAN software were used to split clasts into 



different clast types based on composition. To do this, compositional definitions for the different clast 
types had to be entered. These included: monomineralic clasts (i.e. plagioclase, pyroxene, olivine and 
ilmenite), felsites, agglutinates, basaltic clasts, basaltic glasses and a number of categories classifying 
the breccia clasts based on the proportion of mafic and feldspathic glass present. Details of the 
definitions used can be found in Table S2.  
 
Additionally, compositional plots of pyroxene (Fig. S2) and plagioclase (Fig. S3) using electron 
microprobe (EPMA) data are provided for each thin section. These were plotted using the same data 
available in tabular form in the accompanying data repository (DOI: 
https://doi.org/10.48420/c.7090330).  
 
Included at the end of this document is a brief overview of the materials stored in the accompanying 
data repository (DOI: https://doi.org/10.48420/c.7090330). This includes full resolution, digital 
microscope images, back-scatter electron (BSE) images and maps, and QMESCAN mineral phase maps 
for all four thin sections.  
 

 
 
Figure S1. Schematic flow diagram detailing the steps involved with using count rate to identify the 
edges of clasts and help separate touching clasts.  



 
Table S1. Compositional ranges of elements in major minerals and glass compositions in updated version of Lunar SIP list (Bell et al., 2020). Element ranges 
are defined using a maximum and minimum concentration. The concentration is relative to a maximum of 125%, imposed by the QEMSCAN software to 
accommodate low counting statistics. Within the mineral definition, elements are either set as “Must haves” or “May contain”. This is to distinguish between 
elements that are essential to that mineral definition (i.e. “Must haves”) and additional elements (generally lower in concentration) that may sometimes 
occur within that mineral but are not essential (i.e. “May contain”). Ratios between two elements can also be incorporated into mineral definitions, e.g. Ca/Al 
ratio. Minimum and maximum values for common major elements are provided. In some cases these elements may not be essential to all mineral definitions 
and so these values are represented by italics if they are a “May contain” element. Additional “May contain” elements are shown below each mineral 
definition with values in brackets denoting the maximum concentration allowed. The “May contain” elements often represent noise within the spectra rather 
than a true occurrence of an element, but their inclusion is required within the mineral definition in order to provide a match.  
 

  
Very Low-Ti Glass Low-Ti Glass High-Ti Glass Bytownite Feldspathic Glass Pigeonite Mafic Glass 

  Min Max Min Max Min Max Min Max Min Max Min Max Min Max 

O 0 25 0 25 0 25 4.5 20 5 21.5 2.9 38.7 0 30 
Na 0 2.7 0 2.7 0 2.7 0 3.3 - - - - - - 
Mg 5.3 15 2.3 15 1.9 15 0 2.3 0 10 0 20 0 12.1 
Al 2 8 2 9.2 2 10.2 18.8 35 14.6 35 0 4.4 0 17.7 
Si 24 36.1 19 36.1 17.7 36.1 23 41 21 41 23.4 43 25 101.4 
Ca 4.96 19.1 4.96 21.1 2.7 20.5 15 32.1 14.1 30 4.9 22 0 30 
Fe 15 34.2 15 34.2 14.4 33.6 0 4.9 2 20 5.1 42 0 31.1 
Ti 0 2 2 10 9.8 20 0 2.7 - - 0 3.5 0 6.1 
K 0 3.4 0 3.4 0 4 0 10.2 - - 0 3.6 0 5 
Cr 0 4.4 0 4.4 0 4.4 0 2.7 - - 0 4.2 - - 

Mn 0 3.2 0 3.2 0 3.2 0 2.5 - - 0 3.3 - - 
Ca/Al 1 10 1 10 1 10 - - - - - - - - 

 May Contain: May Contain: May Contain: May Contain: May Contain: May Contain: May Contain: 

  

P(3), S(2.5), Cl(2.6), V(3.1), 
Co(4.9), Ni(3.3), Cu(4.3), 
Zn(4.4), As(5.8), Y(6), 
Zr(3.4), Nb(3.8), Ru(7.7), 
Rh(4.7), Pd(4.9) 

P(2.4), S(2.8), Cl(3), V(3.5), 
Co(4.9), Ni(3.3), Cu(4.3), 
Zn(4.4), As(5.8), Y(6), Zr(4), 
Nb(3.8), Ru(7.7), Rh(4.7), 
Pd(4.9), Ag(5.2) 

P(3.5), S(2.5), Cl(2.8), 
V(3.8), Co(4.9), Ni(3.3), 
Cu(4.3), Zn(4.4), As(7.4), 
Y(6), Zr(3.9), Nb(3.8), 
Ru(7.7), Rh(4.7), Pd(6.8), 
Ag(5.5) 

F(2.1), P(5.7), Cl(2.5), 
V(2.9), Co(3.1), Ni(4), 
Cu(3,8), Zn(4), As(4.9), 
Y(7), Zr(3.3), Nb(3.2), 
Ru(3.9), Rh(4.8), Pd(4.6) 

Y(7), Ag(6), Sn(7), Sb(12.1), 
Te(15), La(7), Ce(7), 
W(10.4), Re(10), Os(10), 
Ir(11), Pt(11), Au(10), 
Pb(9), Bi(10), Th(7), U(9) 

P(2.3), S(2.4), Cl(2.2), 
V(2.6), Co(4.3), Ni(3.2), 
Cu(5.5), Zn(5.3), As(6.9), 
Y(6), Zr(4.1), Nb(3.6), 
Ru(4.1), Rh(5.3), Pd(4.5), 
Ag(4.9) 

Co(5.7), As(5.4), Y(7.1), 
Ru(7.4), Sn(7.6), Sb(15), 
Te(8.9), Ba(10.6), La(6.9), 
Ce(5.6), W(6.2), Re(6.2), 
Os(8.7), Ir(8.8), Pt(10.1), 
Au(9.2), Pb(9.5), Bi(9.3) 



 
Table S2. Compositional definitions input into the categorisers in the QEMSCAN software to separate clats into different clast types. The “AreaPercent” 
function refers to the area percentage of a particular mineral within an individual clast. The terms “Short List” and “Long List” refer to the secondary mineral 
lists; the Long List being the full list of mineral definitions and the Short List being all mineral definitions grouped into broader mineral groups. The phase 
names detailed here are the customised names used in the Lunar SIP list modified after Bell et al. (2020). Clasts are matched on a first order basis, and so the 
order given here matches the order within the categoriser. Definitions were established on an iterative basis whilst referring to images of the clasts falling 
within each definition to make sure the definitions are suitable. 

 QEMSCAN categoriser definition 
Plagioclase AreaPercent(“Short List”.Feldspar)>90 
Olivine AreaPercent(“Short List”.Pyroxene)>85 
Pyroxene AreaPercent(“Short List”.Olivine)>90 
Ilmenite AreaPercent(“Short List”.Ilmenite)>60 

Basaltic Glasses 
AreaPercent(“Long List”.Lunar High-Ti Volc Glass)+ AreaPercent(“Long List”.Lunar Low Ti Volc Glass)+ AreaPercent(“Long 
List”.Lunar VLT Volc Glass) + AreaPercent(“Long List”.Mare Impact Glass)+ AreaPercent(“Long List”.Ilmenite)>80 

Felsite AreaPercent(“Long List”.Quartz)+ AreaPercent(“Long List”.Orthoclase)+ AreaPercent(“Long List”.Labradorite)+ 
AreaPercent(“Long List”.Andesine)>40 

Agglutinates AreaPercent(“Long List”.Epoxy)+ AreaPercent(“Long List”.Background)>20 and AreaPercent(“Long List”. Epoxy)>0 

Basaltic clasts 

AreaPercent(“Long List”.Augite)+ AreaPercent(“Long List”.Pigeonite)+ AreaPercent(“Short List”.Olivine)>20 and 
AreaPercent(“Short List”.Ilmenite)>0 and AreaPercent(“Long List”.Highland Impact Glass)<15 and AreaPercent(“Long 
List”.En60)+ AreaPercent(“Long List”.En70)+ AreaPercent(“Long List”.En80)+ AreaPercent(“Long List”.En90)+ 
AreaPercent(“Long List”.Enstatite)<5 and AreaPercent(“Short List”.Feldspar)<60 and AreaPercent(“Short List”.Olivine)<30 

mafic>feld glass AreaPercent(“Long List”.Glass)>10 and AreaPercent(“Long List”.Mare Impact Glass)>AreaPercent(Highland Impact Glass) 
<10 feldspathic 
glass 

AreaPercent(“Short List”.Feldspar)+ AreaPercent(“Short List”.Olivine)+ AreaPercent(“Short List”.Pyroxene)>30 and 
AreaPercent(“Short List”.Highland Impact Glass)<10 

10-40 
feldspathic glass 

AreaPercent(“Short List”.Feldspar)+ AreaPercent(“Short List”.Olivine)+ AreaPercent(“Short List”.Pyroxene)>5 and 
AreaPercent(“Short List”.Highland Impact Glass)<40 

40-80 
feldspathic glass 

AreaPercent(“Short List”.Feldspar)+ AreaPercent(“Short List”.Olivine)+ AreaPercent(“Short 
List”.Pyroxene)+AreaPercent(“Long List”.Mare Impact Glass)>3 and AreaPercent(“Short List”.Highland Impact Glass)<80 

>80 feldspathic 
glass 

AreaPercent(“Long List”.Highland Impact Glass)>80 



 
 

 
Figure S2. Pyroxene compositions measured in the four 63002 thin sections we have investigated. Colours used for symbol plotting do not denote a 
particular clast type.  



 

  
Figure S3. Plagioclase compositions measured in three out of the four 63002 thin sections we have investigated. We did not collect any plagioclase data in 
section 63002,6014. Colours used for symbol plotting do not denote a particular clast type. The top three plots show the complete plagioclase ternary with 
anorthite (Ca) - orthoclase (Or) - albite (Ab) end-members, and the lower three plots show just the An70-90 and Or0-10 range.



Text S1. 
 
Figshare Data Repository Overview 
 
Title: Apollo 17 ANGSA 73002 Core - QEMSCAN paper Datasets 
Authors: S. K. Bell, K. H. Joy, M. Nottingham, R. Tartèse, R. H. Jones, J. J. Kent and C.K. Shearer 
and the ANGSA science team  
DOI: https://doi.org/10.48420/c.7090330 
 
This dataset provides additional supplementary material for this manuscript, including full 
resolution maps and images.  
 
Contents:  
 
Electron microprobe data for samples 73002,6011 to 73002,6014 
 
QEMSCAN phase maps of samples 73002,6011 to 73002,6014  

• _LongList - a primary lunar mineral list from which all secondary mineral lists are 
created 

• _ShortList - a secondary mineral list that is a simplified version of the long list, 
grouping minerals into broader mineral groups (i.e. pigeonite and augite into 
pyroxene) 

• _Datable - a secondary mineral list that highlights dateable minerals such as 
apatite and zircon 

• _Feldspar - a secondary mineral list highlights different feldspar compositions 
• _Felsite - a secondary mineral list highlights minerals common in lunar felsite clasts 
• _Glass - a secondary mineral list a secondary mineral list highlights different glass 

compositions 
• _MetalSulph - a secondary mineral list highlights metals and sulphides 
• _Meteorites - a secondary mineral list highlights minerals commonly found in 

meteorites 
• _Olivine - a secondary mineral list highlights different olivine compositions 

 
Digital microscope images of samples 73002,6011 to 73002,6014 
 
Back-scatter electron maps of samples 73002,6011 to 73002,6014 
 
Back-scatter electron images of phases and clasts in samples 73002,6011 to 73002,6014  
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