JGR: Planets

Supporting Information for

Automated mineralogy analysis of the Apollo 17 73002 continuous core thin sections using QEMSCAN mapping techniques

S. K. Bell^{1,2*}, K. H. Joy², M. Nottingham^{2,3}, R. Tartèse², R. H. Jones², J. J. Kent⁴ and C.K. Shearer^{5,6} and the ANGSA science team⁷

¹Stratum Reservoir AS, Nikkelveien 13 N-4313, Sandnes, Norway

2 Department of Earth and Environmental Sciences, University of Manchester, Oxford Road, Manchester, M19 3PL, UK

³School of Geographical & Earth Sciences, University of Glasgow, Glasgow, G12 8QQ

4 GeoControl Systems Inc., Jacobs JETS Contract, NASA/JSC, USA

5 Department of Earth and Planetary Science, Institute of Meteoritics, University of New Mexico, Albuquerque, New Mexico 8713, USA

6 Lunar and Planetary Institute, Houston TX 77058, USA

⁷ANGSA Science Team (list at https://www.lpi.usra.edu/ANGSA/teams/

Contents of this file

Text S1 Figures S1 to S3 Tables S1 to S3

Introduction

This document provides additional technical information about certain aspects of the QEMSCAN data processing for the analysis of the 73002 continuous core thin sections. For this study, we used an updated version of the SIP list used by Bell et al. (2020) that was specifically established for lunar samples, referred to as the 'Lunar SIP list'. Table S1 outlines some of the changes made to the original Lunar SIP list required due to the subdivision of the broad single lunar glass composition into different more detailed glass types (i.e., volcanic, or feldspathic or mafic impact derived glasses).

Clasts within the samples were separated using a combination of count rate thresholds and processors within the QEMSCAN software. Figure S1 provides an overview of the steps involved using count rate to identify the edges of clasts. Categorisers in the QEMSCAN software were used to split clasts into

different clast types based on composition. To do this, compositional definitions for the different clast types had to be entered. These included: monomineralic clasts (i.e. plagioclase, pyroxene, olivine and ilmenite), felsites, agglutinates, basaltic clasts, basaltic glasses and a number of categories classifying the breccia clasts based on the proportion of mafic and feldspathic glass present. Details of the definitions used can be found in Table S2.

Additionally, compositional plots of pyroxene (Fig. S2) and plagioclase (Fig. S3) using electron microprobe (EPMA) data are provided for each thin section. These were plotted using the same data available in tabular form in the accompanying data repository (DOI: https://doi.org/10.48420/c.7090330).

Included at the end of this document is a brief overview of the materials stored in the accompanying data repository (DOI: https://doi.org/10.48420/c.7090330). This includes full resolution, digital microscope images, back-scatter electron (BSE) images and maps, and QMESCAN mineral phase maps for all four thin sections.

Figure S1. Schematic flow diagram detailing the steps involved with using count rate to identify the edges of clasts and help separate touching clasts.

Table S1. Compositional ranges of elements in major minerals and glass compositions in updated version of Lunar SIP list (Bell et al., 2020). Element ranges are defined using a maximum and minimum concentration. The concentration is relative to a maximum of 125%, imposed by the QEMSCAN software to accommodate low counting statistics. Within the mineral definition, elements are either set as "Must haves" or "May contain". This is to distinguish between elements that are essential to that mineral definition (i.e. "Must haves") and additional elements (generally lower in concentration) that may sometimes occur within that mineral but are not essential (i.e. "May contain"). Ratios between two elements can also be incorporated into mineral definitions, e.g. Ca/Al ratio. Minimum and maximum values for common major elements are provided. In some cases these elements may not be essential to all mineral definitions and so these values are represented by italics if they are a "May contain" element. Additional "May contain" elements are shown below each mineral definition with values in brackets denoting the maximum concentration allowed. The "May contain" elements often represent noise within the spectra rather than a true occurrence of an element, but their inclusion is required within the mineral definition in order to provide a match.

Table S2. Compositional definitions input into the categorisers in the QEMSCAN software to separate clats into different clast types. The "AreaPercent" function refers to the area percentage of a particular mineral within an individual clast. The terms "Short List" and "Long List" refer to the secondary mineral lists; the Long List being the full list of mineral definitions and the Short List being all mineral definitions grouped into broader mineral groups. The phase names detailed here are the customised names used in the Lunar SIP list modified after Bell et al. (2020). Clasts are matched on a first order basis, and so the order given here matches the order within the categoriser. Definitions were established on an iterative basis whilst referring to images of the clasts falling within each definition to make sure the definitions are suitable.

Figure S2. Pyroxene compositions measured in the four 63002 thin sections we have investigated. Colours used for symbol plotting do not denote a particular clast type.

Figure S3. Plagioclase compositions measured in three out of the four 63002 thin sections we have investigated. We did not collect any plagioclase data in section 63002,6014. Colours used for symbol plotting do not denote a particular clast type. The top three plots show the complete plagioclase ternary with anorthite (Ca) - orthoclase (Or) - albite (Ab) end-members, and the lower three plots show just the An70-90 and Or0-10 range.

Text S1.

Figshare Data Repository Overview

Title: Apollo 17 ANGSA 73002 Core - QEMSCAN paper Datasets **Authors**: S. K. Bell, K. H. Joy, M. Nottingham, R. Tartèse, R. H. Jones, J. J. Kent and C.K. Shearer and the ANGSA science team **DOI**: https://doi.org/10.48420/c.7090330

This dataset provides additional supplementary material for this manuscript, including full resolution maps and images.

Contents:

Electron microprobe data for samples 73002,6011 to 73002,6014

QEMSCAN phase maps of samples 73002,6011 to 73002,6014

- LongList a primary lunar mineral list from which all secondary mineral lists are created
- ShortList a secondary mineral list that is a simplified version of the long list, grouping minerals into broader mineral groups (i.e. pigeonite and augite into pyroxene)
- Datable a secondary mineral list that highlights dateable minerals such as apatite and zircon
- Feldspar a secondary mineral list highlights different feldspar compositions
- Felsite a secondary mineral list highlights minerals common in lunar felsite clasts
- Glass a secondary mineral list a secondary mineral list highlights different glass compositions
- MetalSulph a secondary mineral list highlights metals and sulphides
- Meteorites a secondary mineral list highlights minerals commonly found in meteorites
- _Olivine a secondary mineral list highlights different olivine compositions

Digital microscope images of samples 73002,6011 to 73002,6014

Back-scatter electron maps of samples 73002,6011 to 73002,6014

Back-scatter electron images of phases and clasts in samples 73002,6011 to 73002,6014

Marc Caffee Purdue University Mahesh Anand Open University

Name Affiliation

Jessica Barnes University of Arizona Carolyn Crow University of Colorado Boulder Maryjo Brounce University of California Riverside Jeremy Boyce NASA Johnson Space Center Jed Mosenfelder University of Minnesota Tom Zega University of Arizona Zoë Wilbur University of Arizona Sean Pomeroy University of Colorado Boulder Iunn Jenn Ong University of Arizona Timothy Hahn Jacobs NASA Johnson Space Center Timmons Erickson Jacobs NASA Johnson Space Center Jamie Elsila Cook NASA Goddard Space Flight Center Daniel Glavin NASA Goddard Space Flight Center Jason Dworkin NASA Goddard Space Flight Center Jose Aponte NASA Goddard Space Flight Center Danielle Simkus NASA Goddard Space Flight Center Darby Dyar Mount Holyoke College/PSI Antonio Lanzirotti University of Chicago Stephen Sutton University of Chicago Molly McCanta University of Tennessee, Knoxville Elizabeth Sklute Planetary Science Institute Kees Welten University of California Berkeley Kunihiko Nishizumi University of California Berkeley Natalie Curran NASA Goddard Space Flight Center Barbara Cohen NASA Goddard Space Flight Center Sarah Valencia University of Maryland Catherine Corrigan National Museum of Natural History Emma Bullock Carnegie Earth and Planets Laboratory Kate Burgess Naval Research Laboratory Rhonda Stroud Naval Research Laboratory Brittany Cymes Naval Research Laboratory Alexander Sehlke NASA AMES Research Center Derek Sears NASA AMES Research Center Jeffrey Gillis-Davis Washington University St. Louis Richard Walroth SLAC National Accelerator Laboratory Thomas Kroll SLAC National Accelerator Laboratory Dimosthenis Sokaras SLAC National Accelerator Laboratory Hope Ishii University of Hawaii John Bradley University of Hawaii Roberto Colina-Ruiz SLAC National Accelerator Laboratory Charles Shearer University of New Mexico Bradley Jolliff Washington University St. Louis James Carpenter European Space Agency

Lars Borg Lawrence Livermore National Laboratory Katherine Joy University of Manchester Lindsay Keller NASA Johnson Space Center Paul Lucey University of Hawaii Clive Neal University of Notre Dame Noah Petro NASA Goddard Space Flight Center Harrison Schmitt Harrison Schmitt Consulting Richard Walker University of Maryland Alex Bradley Washington University St. Louis Adrian Brearley University of New Mexico William Cassata Berkeley Geochronology Center Roy Cristofferson Jacobs NASA Johnson Space Center Simon Clemett Jacobs NASA Johnson Space Center Aidan Cowley European Space Agency Catherine Dukes University of Virginia Kate Freeman Penn State University Amy Gaffney Lawrence Livermore National Laboratory Rhian Jones University of Manchester Randy Korotev Washington University St. Louis Thomas Kruijer Lawrence Livermore National Laboratory Gordon Love University of California Riverside Dayl Martin European Space Agency Matthias Maurer **European Space Agency** Alex Meshik Washington University St. Louis Alexandre Meurisse European Space Agency Richard Morris NASA Johnson Space Center James Papike University of New Mexico Rita Parai Washington University St. Louis Olga Pravdivtseva Washington University St. Louis Zachary Sharp University of New Mexico Justin Simon NASA Johnson Space Center Steven Simon University of New Mexico Corliss Kin Sio Lawrence Livermore National Laboratory Lingzhi Sun University of Hawaii Romain Tartèse University of Manchester Kathie Thomas-Keprta Jacobs NASA Johnson Space Center Michelle Thompson Purdue University Kun Wang Washington University St. Louis Josh Wimpenny Lawrence Livermore National Laboratory Michael Cato University of New Mexico Anthony Gargano University of New Mexico Mason Neuman Washington University St. Louis James McFadden Purdue University Dan Moriarty NASA Goddard Space Flight Center Giulia Magnarini University College, London Patrizia Will Washington University St. Louis Zhen Tian Washington University St. Louis

Chris Yen Washington University St. Louis Abbey Flom University of Hawaii Chiara Ferrari-Wong University of Hawaii Jessika Valenciano University of Notre Dame Kamil Stelmach University of Virginia Grace Minesinger University of Virginia Grant Killian University of Virginia Paul Carpenter Washington University St. Louis Julian Rodriguez Washington University St. Louis Thomas Mitchell University College, London Peter Grindrod Natural History Museum London Karen Ziegler University of New Mexico James Dottin Brown University Stu Webb University of Notre Dame Samantha Bell University of Manchester Erick Cano University of New Mexico Linda Ziamanesh University of Virginia Jessica Oraegbu University of Virginia Adam Woodson University of Virginia Jillian Maxson University of Virginia Angelina Minocha Washington University St. Louis Ryan Ogliore Washington University St. Louis Caitlin Ahrens NASA Goddard Space Flight Center Francesca McDonald European Space Agency Advenit Makaya European Space Agency Nathan Bamsey European Space Agency Thomas Rohr European Space Agency Gianluca Casarosa European Space Agency Matteo Appolloni European Space Agency Robert Linder **European Space Agency** Yuriy Butenko European Space Agency Timon Schild European Space Agency Eoin Tuohy European Space Agency Cyrille Crespi European Space Agency Paul deMediros European Space Agency Benoit Andre European Space Agency Riccardo Biella European Space Agency Fiona Thiessen European Space Agency Ryan Zeigler NASA Johnson Space Center Juliane Gross NASA Johnson Space Center Charis Krysher Jacobs NASA Johnson Space Center Andrea Mosie Jacobs NASA Johnson Space Center Judith Allton NASA Johnson Space Center Scott Eckley Jacobs NASA Johnson Space Center Jeremy Kent GeoControl NASA Johnson Space Center Julie Mitchell NASA Johnson Space Center Cecilia Amick Jacobs NASA Johnson Space Center

Table S3. Members of the ANGSA Science team (list at https://www.lpi.usra.edu/ANGSA/teams/)