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Metabolomic profiles differentiate between porto-sinusoidal
vascular disorder, cirrhosis, and healthy individuals
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Background & Aims: Porto-sinusoidal vascular disorder (PSVD) is a rare and diagnostically challenging vascular liver disease.
This study aimed to identify distinct metabolomic signatures in patients with PSVD or cirrhosis to facilitate non-invasive diagnosis
and elucidate perturbed metabolic pathways.

Methods: Serum samples from 20 healthy volunteers (HVs), 20 patients with histologically confirmed PSVD or 20 patients with
cirrhosis were analyzed. Metabolites were measured using liquid chromatography-mass spectrometry. Differential abundance
was evaluated with Limma’s moderated t-statistics. Artificial neural network and support vector machine models were developed
to classify PSVD against cirrhosis or HV metabolomic profiles. An independent cohort was used for validation.

Results: A total of 283 metabolites were included for downstream analysis. Clustering effectively separated PSVD from HV
metabolomes, although a subset of patients with PSVD (n = 5, 25%) overlapped with those with cirrhosis. Differential testing
revealed significant PSVD-linked metabolic perturbations, including pertubations in taurocholic and adipic acids, distinguishing
patients with PSVD from both HVs and those with cirrhosis. Alterations in pyrimidine, glycine, serine, and threonine pathways were
exclusively associated with PSVD. Machine learning models utilizing selected metabolic signatures reliably differentiated the
PSVD group from HVs or patients with cirrhosis using only 4 to 6 metabolites. Validation in an independent cohort demonstrated
the high discriminative ability of taurocholic acid (AUROC 0.899) for patients with PSVD vs. HVs and the taurocholic acid/aspartic
acid ratio (AUROC 0.720) for PSVD vs. cirrhosis.

Conclusions: High-throughput metabolomics enabled the identification of distinct metabolic profiles that differentiate between
PSVD, cirrhosis, and healthy individuals. Unique alterations in the glycine, serine, and threonine pathways suggest their potential
involvement in PSVD pathogenesis.

© 2024 The Author(s). Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is an open access article
under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction
Porto-sinusoidal vascular disorder (PSVD) is a rare condition
that encompasses vascular liver diseases with alterations of the
periportal and sinusoidal vasculature often associated with pre-
sinusoidal portal hypertension in the absence of cirrhosis.1,2

The clinical course of PSVD is linked with the severity of
associated portal hypertension3 and patients occasionally
require liver transplantation.4 Usually, patients with PSVD have
preserved liver function, a low liver stiffness measurement
(LSM),5,6 and often a normal or only slightly elevated hepatic
venous pressure gradient (HVPG).3,5–9 Intrahepatic venovenous
communications, a less pronounced liver-surface nodularity
(compared to cirrhosis), and specific alterations in the periportal
area are among the commonly observed radio-morphological
characteristics in PSVD.10,11 However, diagnosis and
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differentiation from cirrhosis remain challenging. First, diag-
nosis of PSVD requires an invasive liver biopsy of adequate
quality,12 as well as evaluation by an expert pathologist. Sec-
ond, patients usually remain asymptomatic for a long time and
often present at late disease stages after portal hypertension-
associated complications have already developed.3 Currently,
non-invasive tests – especially the combination of LSM and
spleen stiffness measurement – are increasingly being studied
for non-invasive PSVD detection.13,14 However, no biomarkers
have so far been proven sufficiently accurate to diagnose PSVD
without performing a liver biopsy.

Metabolomics offers an approach to measure and analyze
endogenous or exogenous metabolites (e.g., sugars, amino
acids, organic acids, nucleotides, acylcarnitines, or lipids) in
different biological samples.15 This includes both the
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Metabolomic profiles in PSVD and cirrhosis
identification and quantification of all (non-targeted metab-
olomics profiling) or specified (targeted metabolomics profiling)
metabolites that constitute an individual’s metabolome.16 Two
previous studies have examined plasma metabolomics in
patients defined by the old criteria for “idiopathic non-cirrhotic
portal hypertension” (INCPH).17,18 They identified �30
metabolites differentiating INCPH from cirrhosis and healthy
volunteers (HVs).17 Based on a 5-metabolite signature including
an acyl-carnitine, a bile acid, a fatty acid, a lysophosphatidy-
lethanolamine, and sphingomyelin, patients with INCPH could
be discriminated from patients with cirrhosis and HVs.18

However, these results remain to be validated. Considering
the potential of metabolomics to shed light on the patho-
physiology of PSVD and to differentiate PSVD from cirrhosis
non-invasively, this study aimed to investigate the metabolome
of patients with PSVD and compare it to those with cirrhosis
and HVs.
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Patients and methods

Patient cohort & study design

Twenty patients with histologically confirmed PSVD partici-
pating in the prospective Vienna Vascular Liver Disease Study
(VALID study, ClinicalTrials.gov Identifier: NCT03541057), and
20 patients with cirrhosis from the Vienna Cirrhosis Study
(VICIS, NCT03267615) were evaluated in this cross-sectional
cohort study (Fig. 1A). As a control group, 20 HVs. were
included. The PSVD group included patients with different
presumed main etiologies (e.g., drug-induced or genetic). Pa-
tients with cirrhosis were matched using propensity scores
including age, sex, BMI, MELD (model for end-stage liver dis-
ease) score, and history of hepatic decompensation, while HVs.
were matched for age and sex. In patients with PSVD, clinical
and laboratory data and data on LSM were collected at the time
of histological confirmation of PSVD. All samples were
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collected after an overnight fasting period. For validation ex-
periments, we investigated the cohort previously published by
the group at Hospital Clinic Barcelona.18 In parallel, patients
with cirrhosis were matched by gender, signs of portal hyper-
tension and liver function, and HVs. were matched by age and
gender. After outlier removal based on clustering (see
“Metabolomics data analysis” chapter), the cohort consisted of
32 patients with PSVD, 30 patients with cirrhosis, and 33 HVs.

Definitions

Diagnosis of PSVD was established according to a recent
consensus statement.19 Specifically, PSVD was diagnosed
based on a liver biopsy of adequate quality to rule out cirrhosis
in the presence of either one clinical sign specific for portal
hypertension or one histological lesion specific for PSVD. Spe-
cific clinical signs of portal hypertension included the presence
of varices or portosystemic collaterals on endoscopy or cross-
sectional imaging or a history of portal-hypertensive bleeding.
Specific histological findings included obliterative portal veno-
pathy (OPV) or nodular regenerative hyperplasia (NRH). Alter-
natively, the diagnosis of PSVD was established in a patient
without cirrhosis on liver biopsy presenting with both an un-
specific clinical sign of portal hypertension and an unspecific
histological sign for PSVD. Unspecific clinical signs of portal
hypertension included the presence of ascites, thrombocyto-
penia and splenomegaly >−13 cm. Unspecific histological signs
included portal tract abnormalities, architectural disturbances,
non-zonal sinusoidal dilatation and mild perisinusoidal fibrosis.

Cirrhosis was diagnosed in the presence of clinically sig-
nificant portal hypertension (CSPH, HVPG >−10 mmHg) and
LSM >−15 kPa.

Patients with current or a history of occlusive portal vein
thrombosis or hepatocellular carcinoma were excluded.

Histological work-up

Liver biopsy specimens were obtained by percutaneous liver
biopsy (aspiration biopsy) or transjugular liver biopsy (aspiration
or the TruCut biopsy), as previously described,20,21 and were
required to have a length of >−20 mm and/or include >−6 portal
tracts and/or be considered adequate for exclusion of cirrhosis
by an expert liver pathologist.19 Biopsy specimens were eval-
uated by expert liver pathologists for the presence/absence of
cirrhosis or histological features of PSVD.

Sample pre-processing and metabolomics data acquisition

A detailed description of sample pre-processing and metab-
olomics data acquisition for hydrophilic metabolites, lipids, and
fatty acids can be found in the supplementary methods. In
summary, metabolomics analyses were performed using
reversed-phase liquid chromatography coupled to a high mass
resolution Tribrid Orbitrap mass spectrometer for lipidomics
and free fatty acid analysis and to a triple quadrupole mass
spectrometer for hydrophilic metabolomics. For lipidomics
analysis, lipids were extracted following the MTBE method.22

Studied lipophilic metabolites included phospholipids (phos-
phatidylcholine, phosphatidylethanolamine, phosphatidyl-
serine, phosphatidylglycerol), sphingolipids (sphingomyelin,
glucosylceramide, ceramide), glycerolipids (diacylglycerol, tri-
acylglycerol), cholesteryl esters, and free cholesterol.
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For measuring hydrophilic metabolites, hydrophilic small-
molecule metabolites were extracted using ice-cold 80%
methanol. Separation of small-molecule metabolites was ach-
ieved by ion-pairing reversed-phase chromatography coupled
with dynamic MRM-based targeted tandem mass spectrometry
analysis using the Agilent 6470 triple quadrupole mass spec-
trometer operated in negative electrospray ionization mode.
Absolute quantification was based on an isotopically labeled
internal standard mixture and external calibration curves. Me-
tabolites analyzed by this method included acylcarnitines,
amino acids and amino acid derivatives, biogenic acids and
carboxylic acids, cofactors, nucleosides/nucleobases, nucleo-
tides, phenyl acids, sugar derivatives, sugar phosphates, and
vitamins. Finally, free fatty acids were measured using deriva-
tization with 2-hydrazinoquinoline in acetonitrile. Absolute
quantification was based on external calibration and isotopi-
cally labeled internal standardization.

Samples of the validation cohort were pre-processed and
serum metabolomic profiles were acquired as previ-
ously described.18
Metabolomics data analysis

Peak finding and alignment were performed with Mass Hunter
and TraceFinder software. The threshold for missing values
was set as 10%, and metabolites with higher numbers of
missing values were removed. Based on the removed metab-
olites detectable in at least one sample, we performed a
missing pattern analysis (Supplementary Data 2). We imputed
missing values for metabolites below the 10% threshold using
the k-nearest neighbors’ algorithm in POMA (v.1.10.0).23 Outlier
analysis was performed using PomaOutliers based on the for-
mula Q3 + 3 * IQR, and three identified metabolomic profiles (all
within the cirrhosis group) were removed from the differential
analysis but still used for machine learning prediction. The
values were log-transformed and Pareto-scaled as previ-
ously described.24

Next, metabolomics datasets (lipids, hydrophilic metabo-
lites, and fatty acids) were merged (Fig. 1B). Exploratory anal-
ysis was performed using principal component analysis
(PCAtools, v. 2.12.0) for unsupervised exploration and partial
least squares-discriminant analysis for clustering estimation
with patient group considerations. Principal components were
prioritized based on their ability to group and separate PSVD
metabolic profiles from other groups. Differential metabolite
abundance was tested using the Limma method (limma, v.
3.56.2)25 and with Benjamini Hochberg’s adjustment of p
values. padjusted of <0.05 and logFC >−|0.5| were used to identify
significantly dysregulated metabolites. Functional analysis of
metabolite groups was performed using the hypergeometric
test of MetaboAnalystR (v. 4.0)26 against the KEGG database. A
false discovery rate <25% was used as a threshold for signifi-
cantly dysregulated pathways.
HVPG measurement

HVPG measurements were performed at the Vienna Hepatic
Hemodynamic Lab according to a standardized and published
protocol.21 HVPG was calculated as the mean difference be-
tween the wedged hepatic vein pressure and the free hepatic
vein pressure after three measurements.27
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Transient elastography

LSM was performed using FibroScan® (Echosens, Paris,
France) by experienced operators, as previously described.28,29

The M and XL probes were used according to the manufac-
turer’s recommendations. Only reliable measurements ac-
cording to published criteria were considered for this study.30
Ethics

This study was approved by the ethics committees of the
Medical University of Vienna (No. 1928/2017 and 1262/2017)
and Universitat de Barcelona. All patients and HVs provided
written informed consent to use their data and samples.
Cohort statistics and machine learning models

Statistical analyses were performed using R 4.3.0 (R Core
Team, R Foundation for Statistical Computing, Vienna, Austria).
Continuous variables were reported as mean ± standard devi-
ation or median (interquartile range), while categorical variables
were reported as the proportion of patients with/without a
certain characteristic. Student’s t test was used for group
comparisons of normally distributed variables, and the Mann-
Whitney U test for non-normally distributed variables. Group
comparisons of categorical variables were performed using
either Pearson’s Chi-squared (X2) or Fisher’s exact test, as
applicable. Details on metabolomics data processing are out-
lined above.

Machine learning models were employed for binary classi-
fication tasks in pairwise comparisons (PSVD vs. HV and PSVD
vs. cirrhosis) with the Caret package. Model development was
performed in two steps:
1. Feature selection: We employed Naïve Bayes (klaR, v. 1.7-2) for

recursive feature elimination, where differentially regulated me-
tabolites of the PSVD group were used as inputs. It included all
metabolites of PSVD vs. cirrhosis (n = 7); to reduce the dimen-
sionality of the dataset for the moderate number of observa-
tions, only the top 20% significant metabolites of PSVD vs. HVs
were employed (n = 22). The feature selection was performed in
repeated cross-validation with five repeats, 10-fold each. Vari-
able identification was performed considering the highest ac-
curacy of a final model with <10 metabolites.

2. Classification: We used the leave-one-out method with n = 1 in
two models using selected features as an input: artificial neural
network (ANN)31 with one hidden layer and polynomial support
vector machine.32 The hyperparameter optimization was the
following: hidden layer size from 5 to 10, decay from 0.1 to 2.5
for ANN; cost from 10 to 1,000, degree from 1 to 3, and scale
from 0.1 to 1 for support vector machine. Prediction specificity,
sensitivity, and Kappa values of final models were used for
comparison. Importance metrics were extracted for each feature
in the final models to compare feature contributions for the
prediction. The minimization of overfitting in ANN has been
considered by employing only one hidden layer and the
abovementioned penalizing parameters for model cost
and decay.

For validation experiments, normalized metabolite concen-
trations, or ratios of several such concentrations, were used for
discriminatory analyses with the pROC package.33 Specifically,
the validation cohort dataset was split into PSVD vs. cirrhosis
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and PSVD vs. HVs, where the patient group was defined as a
response value, and the metabolite concentration (or ratio) as
a predictor.

Results

Patient cohort description

Clinical, instrumental, and histological characterization

The median ages of the PSVD, cirrhosis, and HV groups were
51.0 (36.3-55.0), 53.0 (44.0-60.1), and 52.2 (39.7-58.9) years,
while 13 (65.0%), 16 (80.0%), and 13 (65.0%) were male,
respectively (Table 1). Patients with PSVD or cirrhosis had
median MELD scores of 8 (7-10) vs. 8 (8-10) (p = 0.699) and a
comparable incidence of previous hepatic decompensation (6
[30.0%] vs. 8 [40.0%], p = 0.740). Child-Pugh stages (A: 14
[70.0%] vs. 16 [80.0%], p = 0.715) and platelet counts (82 [63-
117] vs. 84 [70-113], p = 0.642) were similar between the two
groups. Expectedly, median LSM (7.8 [5.9-8.8] vs. 30.2 [23.9-
67.5] kPa, p <0.001) and HVPG (54–8 vs. 1813–19 mmHg, p
<0.001) were significantly lower in patients with PSVD, whereas
median serum albumin levels were higher (42.7 [39.8-44.5] vs.
39.5 [36.8-40.7] g/dl, p = 0.009). Specific signs of portal hy-
pertension (varices and/or portosystemic collaterals) were
present in all patients in both groups, while non-specific clinical
signs (ascites, thrombocytopenia, and/or splenomegaly) were
present in 95% of patients with PSVD.

Histological findings among patients with PSVD included
OPV in 11 (55%), NRH in 3 (15%), portal tract abnormalities in
19 (95%), architectural disturbances in 16 (80%), non-zonal
sinusoidal dilatation in 14 (70%) and mild perisinusoidal
fibrosis in 10 (50%), summing up to 13 (65%) patients with
specific histological features, while all patients had at least one
unspecific feature. Liver biopsy was performed in 8/20 patients
(40.0%) with cirrhosis, confirming the diagnosis of cirrhosis in
all patients.

Etiological factors for PSVD included azathioprine exposure
in 11 (55.0%), retroperitoneal fibrosis in 2 (10.0%), and
cisplatin-based chemotherapy, HIV, antiphospholipid syn-
drome, acromegaly, myasthenia gravis, and systemic lupus
erythematosus in one patient each (5.0%). No etiological fac-
tors were found in three young patients (18-20 years, 15.0%).
Etiologies of cirrhosis included alcohol-related liver disease (8
patients, 40.0%), viral hepatitis (7, 35.0%), and non-alcoholic
fatty liver disease (5, 25.0%).

Patient group separation based on whole-metabolomics
profiles

Of the 539 identified serum metabolites, 256 (47.5%) were
excluded during pre-processing, and 74 (13.7%) were com-
plemented with imputation (Fig. 1B, Supplementary Data 1).
Specifically, 226 metabolites (41.9%) were removed based on
the 10% missing value threshold, and 30 metabolites (5.6%)
were removed due to constant abundance or outlier concen-
trations (see “Metabolomics Data Analysis” chapter). The
remaining 283 metabolites were used for downstream analysis.
Missing pattern analysis of metabolites showed flavin adenine
dinucleotide was predominantly absent in PSVD metabolomes,
while fumaric acid non-detection was linked to cirrhosis and HV
groups (Fig. S3).
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Table 1. Characteristics of patients with PSVD or cirrhosis and HVs.

PSVD (n = 20) Cirrhosis (n = 20) HVs (n = 20) p value

Age, years 51.0 (36.3-55.0) 53.0 (44.0-60.1) 52.2 (39.7-58.9) 0.414
Male sex 13 (65.0%) 16 (80.0%) 13 (65.0%) 0.699
BMI, kg/m2 25.6 (22.9-28.4) 25.9 (25.0-27.7) - 0.791
History of decompensation 6 (30.0%) 8 (40.0%) - 0.740
LSM, kPa 7.8 (5.9-8.8) 30.2 (23.9-67.5) - <0.001
HVPG, mmHg 5 (4-8) 18 (13-19) - <0.001
Child-Pugh score, points 6 (5-7) 6 (5-6) - 0.522
Child-Pugh stage A 14 (70.0%) 16 (80.0%) - 0.715
Child-Pugh stage B/C 6 (30.0%) 4 (20.0%) -

MELD 8 (7-10) 8 (8-10) - 0.699
Platelet count, G/L 82 (63-117) 84 (70-113) - 0.642
Albumin, g/dl 42.7 (39.8-44.5) 39.5 (36.8-40.7) - 0.009
Spleen length, cm 16.0 (14.5-17.5) 14.0 (12.0-15.0) 0.040
Specific clinical signs of portal hypertension 20 (100%) 20 (100%) - -
Varices 19 (95.0%) 19 (95.0%) - 1.000
Portosystemic collaterals 18 (90.0%) 15 (75.0%) - 0.405

Unspecific clinical signs of portal hypertension 19 (95.0%) 19 (95.0%) - 1.000
Ascites 2 (10.0%) 8 (40.0%) - 0.068
Thrombocytopenia 16 (80.0%) 18 (90.0%) - 0.661
Splenomegaly 18 (90.0%) 14 (70.0%) - 0.235

HV, healthy volunteers; HVPG, hepatic venous pressure gradient; LSM, liver stiffness measurement; PSVD, porto-sinusoidal vascular disorder; Student’s t test, Mann-
Whitney U test, Pearson’s Chi-squared test, Fisher’s exact test. Bold value represents p <0.05.
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Supervised dimensionality reduction clearly separated
metabolic profiles between PSVD and HV groups (Fig. 1C).
Unsupervised reduction mostly aligned with these findings,
highlighting one patient with PSVD with an HV-like metabolome
(Fig. 1D). However, the separation between PSVD and cirrhosis
was less distinct, with five patients with PSVD in close prox-
imity to the cirrhosis group in the supervised scenario (Fig. 1C).
These five patients were further evaluated as a distinct PSVD
subgroup later. Principal components (PC)-1 and PC4 best
separated PSVD and cirrhosis (Fig. S1). PC1 was influenced by
metabolites linked to oxidative phosphorylation and fatty acid
beta-oxidation, while PC4 was driven by aspartic acid and
beta-oxidation metabolites. PC1 was a key separator of patient
etiology groups, while PC4 mainly explained the intra-group
variance in patient metabolomes, separating samples within
each group but not linked to similarities between patient
groups. Both PCs featured several triacylglycerides as robust
negative markers (Supplementary Data 2).
Pathophysiological analyses based on differentially
expressed metabolites

Differential analysis reveals alterations in metabolite abundance
in PSVD and cirrhosis

Differential testing identified distinct metabolic signatures for
the PSVD and cirrhosis groups compared to the HV group
(Fig. 2A). In PSVD, 114 metabolites were significantly altered,
with cholesterol M (-H2O), isovaleric acid, and hydroxyglutaric
acid being the most overrepresented and taurine, asparagine,
erucic acid, and valine being the most downregulated (Sup-
plementary Data 3). A pairwise comparison of PSVD vs.
cirrhosis revealed seven differentially abundant metabolites
(Supplementary Data 4). Adipic acid was upregulated in PSVD,
while tyrosine, aspartic, and taurocholic acids, along with
several lipids, were upregulated in cirrhosis.

Comparing patients with PSVD or cirrhosis to HVs identified
major overlaps in downregulated (51 metabolites, 32.9%) and
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upregulated (45, 29%) directions (Fig. 2B). PSVD-specific al-
terations included upregulation of adipic acid, cholesterol M
(-H2O), aminoadipic acid, xanthosine, and others, and down-
regulation of isoleucine, glycine, and threonine (Supplementary
Data 5).

Unsupervised clustering of high-variance metabolites
revealed five clusters (Fig. 2C). Cluster 1 included only pyruvic
acid, downregulated in both disease groups compared to HVs,
with stronger downregulation in cirrhosis. Cluster 2 included
metabolites slightly upregulated in PSVD or less downregulated
than in cirrhosis, such as alpha-ketoglutaric acid and phos-
phatidylcholine (36:5). Cluster 3 included strongly upregulated
aspartic and glutamic acids in cirrhosis, with less pronounced
upregulation in PSVD. Cluster 4 included metabolites less
abundant in HV, such as taurocholic and citramalic acid.
Cluster 5 included metabolites with unclear patterns, such as
tyrosine, downregulated in patients with PSVD compared to
those with cirrhosis or HVs, and adipic acid, upregulated only
in PSVD.

Differential testing and high-variance metabolite exploration
indicate that adipic and taurocholic acids are key determinants
in PSVD metabolomic profiles, with phosphatidylcholines,
cholesteryl esters, and sphingomyelins being prominent high-
variance molecules.

We further compared metabolomes of the subset of five
patients with PSVD with similarities to cirrhosis profiles (Fig. 1C,
hereinafter referred to as PSVDsubgroup) to the rest of the pa-
tients with PSVD. Notably, all had one specific histological
feature of PSVD (OPV in 4 patients and NRH in 1 patient) and at
least one unspecific feature. Interestingly, 15 differentially
abundant metabolites were identified: aconitic acid and 12 tri-/
diglycerides were upregulated, while two phosphatidylcholines
were downregulated in the PSVDsubgroup (Fig. S2,
Supplementary Data 6A). Histologically confirmed steatosis
(10-30%) was observed in 4/5 patients in this subgroup, and
two had type 2 diabetes mellitus (Supplementary Data 6B).
PSVDsubgroup patients had higher total serum triglyceride con-
centrations than other patients with PSVD (Fig. S2).
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Metabolomic profiles in PSVD and cirrhosis
PSVD is linked to impairments in pathways associated with
amino acid metabolism
Functional analysis of differential metabolites identified altered
metabolic pathways in PSVD (Supplementary Data 7). The most
perturbed significant pathways distinguishing patients with
PSVD and HVs were alanine, aspartate, and glutamate meta-
bolism; D-Glutamine and D-glutamate metabolism; and taurine
and hypotaurine metabolism pathways (Fig. 3A). Pyrimidine
metabolism was also impacted: despite downregulation in L-
glutamine, N-carbamoyl-L-aspartate, and orotate were over-
represented (Fig. S4).

Glycine, serine, and threonine metabolic pathways were
uniquely linked to PSVD, but not to cirrhosis (Supplementary
JHEP Reports, --- 2
Data 8). Perturbations of this pathway were followed by the
significant downregulation of glycine and threonine, as well as
pyruvate and L-tryptophan (Fig. 3B). These changes in L-
glutamine as a precursor aligned with the reduction in alpha-
ketoglutarate, as they are both members of the glutaminolysis
pathway (Fig. 2C). Upregulation in N-carbamoyl-L-aspartate
and orotate may indicate dysregulation of uridine metabolism,
as the other molecule linked to its exchange, deoxyuridine, was
also found to be upregulated in PSVD (Fig. S4).

These alterations in amino acid turnover and their crosslinks
to the tricarboxylic acid cycle and pyrimidine synthesis may
provide a first glimpse at pathophysiologically relevant meta-
bolic disturbances in PSVD.
024. vol. 6 j 101208 6
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Table 2. Performance of machine learning models.

Prediction Prioritized parameters Model Sensitivity Specificity K

PSVD vs. HV � Adipic acid
� L-Aspartic acid
� Taurocholic acid
� Xanthosine
� Phosphatidylcholine (36:5)
� Phosphatidylethanolamine (40:4)

ANN 0.95 1 0.95
SVM 1 0.952 0.95

PSVD vs. cirrhosis � Adipic acid
� Phosphatidylcholine (32:1)
� L-Tyrosine
� Triglyceride (50:2)

ANN 0.8 0.9 0.7
SVM 0.833 0.773 0.6

ANN, artificial neural network; HVPG, hepatic venous pressure gradient; LSM, liver stiffness measurement; PH, portal hypertension; PSVD, porto-sinusoidal vascular disorder; SVM,
support vector machine; K, Cohen’s Kappa. Bold value represents p <0.05.

Research article
Metabolomics for non-invasive diagnosis of PSVD

Machine learning models for metabolite-based PSVD
identification

Machine learning models were employed to prioritize metabo-
lites and assess their diagnostic value (Fig. S5A). Recursive
feature elimination identified four metabolites for classifying
PSVD vs. cirrhosis and six for distinguishing patients with PSVD
from HVs (Table 2).
JHEP Reports, --- 2
The ANN model for PSVD vs. HV classification used adipic
acid, L-aspartic acid, taurocholic acid, xanthosine, phosphati-
dylcholine (36:5), and phosphatidylethanolamine (40:4)
(Fig. 4A). It correctly classified all HVs and misclassified only
one patient with PSVD (Fig. 4B), achieving a specificity of 1 and
sensitivity of 0.95.

The ANN for PSVD vs. cirrhosis used adipic acid, phos-
phatidylcholine (32:1), L-tyrosine, and triglyceride (50:2) (Figs
4C and S5B). It misclassified PSVD in four cases and
024. vol. 6 j 101208 7



Metabolomic profiles in PSVD and cirrhosis
cirrhosis in two (Fig. 4D), with a sensitivity of 0.8 and specificity
of 0.9 (Table 2).
Confirmation of the diagnostic importance of taurocholic and L-
aspartic acids in the Barcelona cohort

A comparison of patient characteristics between the Barce-
lona and Vienna cohorts can be found in Table S1. Importantly,
both cohorts were comparable with regard to liver dis-
ease severity.

The first two PCs, mainly comprising lipids and taurocholic
acid derivatives, explained the most variance in the Barcelona
cohort. As in the Vienna dataset, there was a clear separation
between the cirrhosis and HV groups, with some patients with
PSVD clustering among other groups (Fig. 5A).
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Metabolites with the highest variance showed similar taur-
ocholic acid perturbation as in the Vienna cohort: taurocholic
acid and its derivatives were downregulated in HVs compared
to patients with PSVD and upregulated in cirrhosis compared to
PSVD (Figs 5B and 2C).

Although metabolite panels did not completely overlap be-
tween cohorts, L-aspartic acid, taurocholic acid, phosphati-
dylcholine (32:1), and L-tyrosine were detected in both.
Taurocholic and L-aspartic acids showed consistent levels in
PSVD across cohorts, with significant differences only seen in
the HV cohorts (Fig. S6). Taurocholic acid concentrations were
higher in patients with PSVD compared to HVs in both cohorts
(p <−0.001), while aspartic acid was upregulated only in
PSVDVienna compared to HVVienna (p <−0.001) (Fig. 5C). Taur-
ocholic acid levels were further increased in cirrhosis compared
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to PSVD, significantly in the Vienna cohort (p = 0.01) and as a
trend in the Barcelona cohort (p = 0.09) (Fig. 5D).

Taurocholic acid alone distinguished patients with PSVD
from HVs with an AUROC of 0.899 (Table 3, Supplementary
Data 10). The ratio of taurocholic acid to L-aspartic acid was
JHEP Reports, --- 2
the best predictor for PSVD vs. cirrhosis (AUROC = 0.720)
and the second-best for PSVD vs. HV (AUROC = 0.645).
These findings highlight the diagnostic potential of prioritized
metabolites, warranting further evaluation in larger
PSVD cohorts.
024. vol. 6 j 101208 9



Table 3. Discriminative performance of metabolite concentrations or their ratios in the Barcelona cohort.

Comparison Metabolite(s) AUROC 95% CI

vs. cirrhosis
PSVD vs. cirrhosis Taurocholic acid/L-aspartic acid (ratio) 0.720 0.592-0.847
PSVD vs. cirrhosis Tyrosine/L-aspartic acid (ratio) 0.631 0.491-0.771
PSVD vs. cirrhosis Tyrosine/taurocholic acid (ratio) 0.620 0.479-0.760
PSVD vs. cirrhosis L-aspartic acid 0.605 0.463-0.747

vs. HVs
PSVD vs. HV Taurocholic acid 0.899 0.812-0.985
PSVD vs. HV Taurocholic acid/L-aspartic acid (ratio) 0.645 0.506-0.783
PSVD vs. HV L-tyrosine 0.612 0.461-0.762

Only metabolites previously prioritized in the machine learning models in the Vienna cohort were assessed and reported when AUROC values >0.6 are observed. Values in bold
indicate the best prediction for each comparison and are graphically displayed in Fig. 5E. HV, healthy volunteer; PSVD, porto-sinusoidal vascular disorder; Area-under-the-receiver-
operator-characteristics-curve.

Metabolomic profiles in PSVD and cirrhosis
Discussion

This study aimed to showcase the potential of advanced high-
throughput metabolomics analyses in gaining further insights
into the pathophysiology of PSVD and in facilitating its non-
invasive diagnosis.

Our study provides insights into potential pathophysiological
mechanisms. Adipic acid was upregulated in PSVD compared to
both non-diseased and cirrhosis groups. This dicarboxylic acid is
not a primary humanmetabolic product nor a major fermentation
product of the gut microbiome.34,35 Its increased urine concen-
tration has been reported in type 2 diabetes.35,36 However, our
discovery of its association with PSVD is a novel finding. As a
xenobiotic in humans, it undergoes b-oxidation into smaller
metabolites.37 Hence, we hypothesize that an unknown genetic
or epigenetic factor in PSVD impacts mechanisms involved in
adipic acid transformation (e.g., acyl-CoA synthetases, medium-
chain acyl-CoA dehydrogenase, or crotonase).

Taurocholic acid was significantly downregulated in patients
with PSVD in the Vienna cohort. Alterations in glycine, threonine,
and serinemetabolic pathwayswere unique to PSVD, potentially
contributing to its pathobiology. Downregulation of pathway
members such as pyruvate and L-tryptophan suggests reduced
substrate availability for the tricarboxylic acid cycle, aligningwith
the downregulation of alpha-ketoglutarate and L-glutamine.
Downregulation of the latter pathway, known as glutaminolysis,
indicates that this alternative source of tricarboxylic acid cycle-
substrates is not involved in compensation for cell energy bal-
ance impairments in PSVD.38 The upregulation of gene sets
related to the tricarboxylic acid cycle enzymes, observed in
previous RNA microarray studies, follows our findings and hints
at the compensatory nature of such changes.39 Recent genomic
findings describe a pathogenic variant in FCHSD1, an mTOR
pathway member gene,40 potentially linked to these amino acid
perturbations.41 Still, the characterization of these processes on
a cellular level is lacking in PSVDandwould require amulti-omics
setup to combine our findingswith tissue and cellular expression
of the involved enzymes.

The upregulation of N-carbamoyl-L-aspartate and orotate
suggests increased pyrimidine synthesis, hinting at a dysre-
gulation in uridine metabolism. This may not impact energy
production directly via the tricarboxylic acid cycle but is crucial
for DNA and RNA synthesis.42 The impairment of pyrimidine
turnover in PSVD warrants further investigation.

We deliberately included a heterogeneous PSVD and
cirrhotic cohort to obtain generalizable results and avoid
JHEP Reports, --- 20
overfitting. While studying narrowly defined groups could yield
more explicit metabolomic signatures, this approach risks non-
reproducibility in external cohorts. Similarly, not limiting pa-
tients with cirrhosis to those undergoing liver biopsy avoided
selection bias.

Recent studies have evaluated metabolomic signatures in
patients diagnosed according to the previous INCPH
criteria.17,18 One study compared metabolomic profiles of 33
patients with PSVD, 33 with cirrhosis, and 33 HVs,17 identifying
28 differentially abundant metabolites using ultra-performance
liquid chromatography with mass spectrometry. These me-
tabolites could differentiate PSVD from cirrhosis with an AUC of
0.99. Another model with 31 metabolites also differentiated
patients with PSVD from HVs with similar accuracy, although
the spectral peaks were not linked to specific metabolic com-
pounds, limiting the generalizability of the results.17 Another
study identified a five-metabolite signature that accurately
discriminated patients with INCPH from those with cirrhosis
and HVs, but these studies used the older INCPH criteria,
which may not represent the current, broader PSVD patient
population.18 As it is estimated that current PSVD criteria
extend the number of patients by three times,3 the previous
studies might not represent the current population. Neverthe-
less, when investigated for validation purposes, the dataset
from Seijo et al. (2015)18 confirmed the diagnostic role of our
prioritized markers, taurocholic and L-aspartic acids.

These findings indicated that linear methods based on
serum whole-metabolome features can partially differentiate
profiles for PSVD. Advanced approaches, e.g. based on ma-
chine learning, are needed for more precise separation. Hence,
our study identified two metabolite signatures that enabled the
non-invasive differentiation between PSVD, cirrhosis, and
health with high sensitivity and specificity. Our PSVD patient
group included diverse etiological factors, so these signatures
likely reflect conserved metabolic perturbations in PSVD.

Finally, we identified a subgroup of patients with PSVD and
metabolomic profiles overlapping those of patients with
cirrhosis, characterized by lipid-related alterations, including
higher total triglyceride levels and histological signs of hepatic
steatosis. Indeed, the observed dysregulated lipids were pre-
viously linked with MASLD and the metabolic syndrome, indi-
cating that the co-existence of MASLD and vascular changes
might define a specific subset of patients with PSVD, which
requires further evaluation in larger PSVD cohorts.

Despite the promise of untargeted metabolomics, its pri-
mary application will likely remain research-oriented. Thus, our
24. vol. 6 j 101208 10
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results should foster multicenter, prospective collaborations,
utilizing targeted assays for the suggested candidate bio-
markers to test their diagnostic value. This could lead to cost-
effective, easily applicable tests for non-invasive
PSVD diagnosis.

Our study has limitations. The small sample size reflects the
rare nature of PSVD, limiting opportunities to subdivide the
cohort to assess heterogeneity and impacting the performance
of machine learning models. Despite using best practices to
minimize overfitting, it remains a concern due to the small cohort
JHEP Reports, --- 2
size. Although comparable metabolite perturbations were
observed in the Barcelona cohort, more extensive, prospective
multicenter studies are needed to validate themodels’ accuracy.

The absence of paired liver metabolomic readouts and
enzymatic activity measurements, linked to material-related
challenges, means extrahepatic effects of cirrhosis and PSVD
may drive some metabolomic changes. Additionally, technical
differences between studies affected the overlap of detected
metabolites, necessitating further studies to explore other
markers predicted to perform well for PSVD identification.
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Supplementary methods. Metabolomics data acquisition and pre-processing. 

Hydrophilic metabolites 

An analytical method based on ion-pairing reversed-phase liquid chromatography and 

targeted dMRM was used. Absolute quantification of around 200 metabolites from 

central carbon metabolism, including glycolysis, pentose phosphate pathway, TCA 

cycle, amino acid, and nucleobase metabolism, as well as related metabolic pathways, 

was performed using heavy isotope-labeled as internal standards and external 

calibration curves. A 1290 Infinity II UHPLC system (Agilent Technologies) coupled 

with a 6470 triple quadrupole mass spectrometer (Agilent Technologies) was used for 

the LC-MS/MS analysis. The chromatographic separation for samples was carried out 

on a ZORBAX RRHD Extend-C18, 2.1 x 150 mm, 1.8 µm analytical column (Agilent 

Technologies). PeakBot software (vers. 0.9.54) was used for data processing[22].   

Lipids 

The LC-MS analysis was performed using a Vanquish UHPLC system (Thermo Fisher 

Scientific) combined with an Orbitrap Fusion™ Lumos™ Tribrid™ mass spectrometer 

(Thermo Fisher Scientific). Lipid separation was performed by reversed-phase 

chromatography employing an Accucore C18, 2.6 µm, 150 x 2 mm (Thermo Fisher 

Scientific) analytical column at a column temperature of 35 °C. As mobile phase A an 

acetonitrile/water (50/50, v/v) solution containing 10 mM ammonium formate and 0.1 

% formic acid was used. Mobile phase B consisted of acetonitrile/isopropanol/water 

(10/88/2, v/v/v) containing 10 mM ammonium formate and 0.1% formic acid. The flow 

rate was set to 400 µL/min. A gradient of mobile phase B was applied to ensure optimal 

separation of the analyzed lipid species. The mass spectrometer was operated in ESI-

positive and -negative mode, capillary voltage 3500 V (positive) and 3000 V (negative), 

vaporize temperature 320 °C, ion transfer tube temperature 285 °C, sheath gas 60 
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arbitrary units, aux gas 20 arbitrary units and sweep gas 1 arbitrary unit. The Orbitrap 

MS scan mode at 120000 mass resolution was employed for lipid detection. The scan 

range was set to 250-1200 m/z for both positive and negative ionization modes, the 

AGC target was set to 2.0e5, and the intensity threshold to 5.0e3. The data analysis 

was performed using the TraceFinder software (ThermoFisher Scientific).  

Fatty acids 

Fatty acid analysis was based on the derivatization of free fatty acids, separation via 

reversed-phase liquid chromatography, and detection with a high mass accuracy mass 

spectrometer. Absolute quantification is based on external calibration and isotopically 

labeled internal standardization. Some minor fatty acids are quantified only in a semi-

quantitative way. The LC-MS analysis was performed using a Vanquish UHPLC 

system (Thermo Fisher Scientific) combined with an Orbitrap Fusion™ Lumos™ 

Tribrid™ mass spectrometer (Thermo Fisher Scientific). Fatty acid separation was 

performed by reversed-phase chromatography employing an Accucore C18, 2.6 µm, 

150 x 2 mm (Thermo Fisher Scientific). The data analysis was performed using the 

TraceFinder software (ThermoFisher Scientific).  
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Fig. S1. Top five principal components (PC). No combination allows for perfect 

separation of PSVD from cirrhosis or samples from healthy volunteers, but PC1 and 

PC4 result in better distinguishing the patient metabolic profiles. B: Highest-ranked 

metabolites in PC1 and PC4.  
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Fig. S2. A: Comparison of total serum triglycerides between the PSVDsubgroup and other 

PSVD patients. B: Differential metabolite abundance testing results between 

PSVDsubgroup and other PSVD patients. 
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Fig. S3. Pattern analysis of missing data. All missing metabolites in more than 10% of 

samples (i.e., above the set data imputation threshold) and less than 100% of samples 

(i.e., present in at least one sample) are compared between the groups. A high number 

of missing values in one group, coded in yellow color, suggests a link between the 

respective group and concentration below the detection limit.  
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Fig. S4. Pyrimidine metabolic pathway in PSVD compared to the non-disease group. 

Color-coding indicates the direction of abundance: blue is linked to downregulation, 

while yellow indicates upregulation.  
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Fig. S5. Metabolites utilized for machine learning models. A: The flow chart 

demonstrates steps for metabolite prioritization for subsequent use in machine 

learning-based prediction. B: schematic representation of the artificial neural network 

used for classification in the study. The input layer (In) represents metabolites. Only 

one hidden (Hn) layer with five neurons is present to avoid overfitting. The outcome 

(O1) node represents the classification result. Bias nodes (Bn) represent constant 

values optimized for respective model fit. 
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Fig. S6. Comparative analysis of the metabolites with the highest diagnostic 

performance in patients with PSVD and healthy volunteers in Vienna and Barcelona 

cohorts. Normalized and Z-scaled values were used for testing. Shapiro-Wilk test for 

normality was performed, following the Welch Two Sample t-test (normal distribution) 

or Wilcoxon rank sum test (non-normal distribution), results of which are reported on 

the plots. Ns: P > 0.05, *** : P ≤ 0.001. 
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Table S1. Characteristics of patients with porto-sinusoidal vascular disorder (PSVD) 

and cirrhosis compared between the Vienna and the Barcelona cohort. Data are 

presented as a mean and standard deviation to align with the data from Seijo et al. 

(2015). 

 Vienna cohort Barcelona cohort 

 PSVD 

(n=20) 

Cirrhosis 

(n=20) 

PSVD  

(n=34) 

Cirrhosis 

(n=34) 

Age, years 44.8±13.5 53.1±10.0 47±19 61±10 

Male sex 13 (65.0%) 16 (80.0%) 23 (67.6%) 23 (67.6%) 

Ascites 2 (10.0%) 8 (40.0%) 11 (32.4%) 8 (23.5%) 

Varices 19 (95.0%) 19 (95.0%) 32 (94.1%) 28 (82.4%) 

Variceal bleeding 5 (25.0%) 4 (20.0%) 11 (32.4%) 6 (17.6%) 

Hepatic encephalopathy 0 (0%) 3 (15.0%) 1 (2.9%) 0 (0%) 

Child-Pugh Score, points 6.0±1.2 5.7±0.8 5.8±1.2 6.0±1.4 

 Child-Pugh stage A 14 (70.0%) 16 (80.0%) 26 (76.5%) 27 (79.4%) 

 Child-Pugh stage B/C 6 (30.0%) 4 (20.0%) 8 (23.5%) 7 (20.6%) 

Platelet count, G/L 115±95 100±47 93±56 92±38.9 

Prothrombin time ratio (%) 76±14 61±10 76±15 76±12 

Albumin, g/dL 41.5±3.7 38.2±3.9 39±4.3 36±4.7 

Bilirubin, mg/dL 1.0±0.8 0.8±0.2 1.0±1.3 1.4±0.8 
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