Supplementary data

119	Supplementary Table 1. GLP.	IR variants that were function	ally analyzed <i>in vitro</i> .	
	GL D1D variants (NM_002062.5)	MAEEVAC	Included in LIKP	i

GLP1R variants (NM_002062.5)	MAF EXAC	Included in UKB
c.128G>A/p.Arg43GIn	0.000017	x
c.131G>A/p.Arg44His	0.0037	x
c.251G>C/p.Ser84Thr		
c.287C>T/p.Pro96Leu		x
c 410C>T/p Pro137Leu	0.000051	×
c 513C>A/n His171Cln	0.000084	^
0.5190577(p.1113171011	0.000004	Y
c.510A>O/p.His175Alg	0.000042	X
C.518A>C/P.HIS173P10	0.000083	
c.524C>1/p.1hr1/5lle	0.000083	
c.526A>1/p.Arg1/61rp	0.000017	X
c.538C>T/p.His180Tyr	0.000082	
c.569G>A/p.Arg190GIn	0.000082	X
c.580G>A/p.Val194lle	0.00048	x
c.622G>A/p.Ala208Thr		
c.679C>T/p.Arg227Cys	0.000082	x
c.680G>A/p.Arg227His	0.000082	x
c.692T>C/p.Leu231Pro	0.000082	
c 707G>A/p Cvs236Tvr		
c 715G>A/n Ala239Thr	0.00016	×
c 730C>T/n Leu2/4Phe	0.0000182	^
c.745G>A/p.1/249Met	0.000002	
	0.000091	<u>×</u>
	0.0000082	X
c.7811>G/p.Ser261Ala	0.000082	
c./901>C/p.1rp264Arg	0.000082	
c.802C>T/p.Leu268Phe	0.00024	X
c.808G>A/p.Val270Met	0.000025	X
c.860T>A/p.Val287Asp	0.000082	
c.868C>T/p.Leu290Phe		
c.872A>G/p.Tyr291Cys	0.000082	x
c.875A>T/p.Glu292Val	0.000082	х
c.877G>T/p.Asp293Tyr	0.000016	x
c.880G>A/p.Glu294Lvs	0.000091	x
c.928C>T/p.Arg310Trp	0.000082	x
c.929G>A/p.Arg310Glp	0.0000082	x
c 946G>A/n Ala316Thr	0.010	x
c 950T>C/n lle317Thr	0.00058	×
0.594 \T/p Acp220Tyr	0.000000	*
0.350A-1/p.Asii5201yi	0.0000082	Y
C.976C>1/p.Arg52611p	0.0000082	<u>×</u>
c.99TG>A/p. val33TMet	0.000016	X
c.10141>A/p.Ash338Lys		
c.1021T>A/p.Cys341Ser	0.000082	X
c.1032C>A/p.Asp344Glu	0.00027	x
c.1064C>T/p.Thr355lle	0.000017	
c.1069A>T/p.Ile357Phe	0.000083	
c.1081G>A/p.Gly361Arg	0.000083	
c.1087C>T/p.His363Tyr	0.000017	
c.1099T>C/p.Phe367Leu	0.000082	
c.1126C>T/p.Arg376Trp	0.000033	X
c.1127G>A/p.Arg376GIn	0.0010	X
c.1138C>T/p.Ara380Cvs	0.000082	x
c.1199T>G/p.lle400Arg		
c 1201T>A/n Leu401lle	0,000083	
c 1223A>G/p Glu408Glv	0,000,017	
c 1250G>T/n Trn/17Lau	0.000016	×
a 1240T>C/a Tra417Ch	0.00010	^
0.12491-0/p.11p4170ly	0.000002	
	0.000082	X
c.1261C>1/p.Arg4211rp	0.00039	X
c.1262G>A/p.Arg421GIn	0.0020	X
c.1304C>T/p.Pro435Leu	0.000082	
c.1334G>C/p.Ser445Thr	0.0020	x

120 MAF, minor allele frequency; UKB, UK biobank

122 Supplementary Table 2a. Cell surface expression of WT and mutant GLP1R in HEK293T cell (ELISA).

Variant	Surface exp (% WT)						
R43Q	93 ± 3	R227H	$66 \pm 8^*$	D293Y	$23\pm4^{***}$	H363Y	$36\pm14^{***}$
R44H	97 ± 6	L231P	$3 \pm 1^{***}$	E294K	$62 \pm 7^{**}$	F367L	63 ± 17
S84T	91 ± 5	C236Y	$31\pm6^{***}$	R310Q	$61 \pm 17^{*}$	R376Q	87 ± 4
P96L	93 ± 6	А239Т	75 ± 10	R310W	$13 \pm 2^{***}$	R376W	74 ± 7
P137L	89 ± 7	L244F	$50 \pm 10^{***}$	A316T	$48 \pm 8^{***}$	R380C	105 ± 21
H171Q	91 ± 11	V249M	89 ± 13	I317T	$37 \pm 11^{***}$	I400R	$2 \pm 0^{***}$
H173P	$4 \pm 2^{***}$	S258L	$29 \pm 7^{***}$	N320Y	$4 \pm 2^{***}$	L401I	92 ± 9
H173R	108 ± 12	S261A	74 ± 8	R326W	$52 \pm 11^{***}$	E408G	$18 \pm 4^{***}$
T175I	71 ± 16	W264R	$138\pm11^{*}$	V331M	$55 \pm 17^{*}$	W417G	$17 \pm 2^{***}$
R176W	$8 \pm 2^{***}$	L268F	$71 \pm 12^*$	N338K	93 ± 9	W417L	74 ± 4
H180Y	$3 \pm 1^{***}$	V270M	95 ± 5	C341S	94 ± 9	R419H	75 ± 6
R190Q	$24\pm2^{***}$	V287D	$5 \pm 1^{***}$	D344E	98 ± 13	R421Q	$60 \pm 9^{**}$
V194I	95 ± 6	L290F	$70 \pm 8^*$	T355I	100 ± 17	R421W	70 ± 11
A208T	104 ± 8	Y291C	$39 \pm 8^{***}$	I357F	$20 \pm 5^{***}$	P435L	78 ± 12
R227C	$33\pm3^{***}$	E292V	$11 \pm 3^{***}$	G361R	$3 \pm 2^{***}$	S445T	99 ± 5

123 124

124

125

Supplementary Table 2b. Cell surface expression of WT and mutant GLP1R in INS-1 823/3 (*Glp1r* KO) (ELISA).

			- / (
Varia	nt Surface exp (% WT)	Variant	Surface exp (% WT)	Variant	Surface exp (% WT)	Variant	Surface exp (% WT)
R430	2 58 ± 17	R227H	$53 \pm 13^{*}$	D293Y	$26\pm7^{**}$	H363Y	$52 \pm 11^*$
R44I	1 109 ± 15	L231P	$3 \pm 2^{***}$	E294K	45 ± 11	F367L	100 ± 39
S841	52 ± 14	C236Y	$6 \pm 3^{***}$	R310Q	$45 \pm 4^*$	R376Q	117 ± 28
P96I	93 ± 16	А239Т	$46 \pm 13^{*}$	R310W	$5 \pm 2^{***}$	R376W	101 ± 24
P137	L 82 ± 17	L244F	57 ± 13	A316T	$13 \pm 5^{***}$	R380C	$44\pm4^{**}$
H171	Q 141 ± 24	V249M	99 ± 37	I317T	$25\pm9^{***}$	I400R	ND
H173	P $11 \pm 7^{***}$	S258L	$27 \pm 11^{**}$	N320Y	ND	L401I	58 ± 18
H173	R 143 ± 48	S261A	91 ± 14	R326W	50 ± 7	E408G	$18 \pm 11^{**}$
T175	I 97 ± 31	W264R	134 ± 19	V331M	78 ± 12	W417G	$10 \pm 6^{***}$
R176	$W = 3 \pm 1^{***}$	L268F	$12 \pm 5^{***}$	N338K	76 ± 20	W417L	89 ± 31
H180	Y $10 \pm 5^{***}$	V270M	91 ± 8	C341S	127 ± 32	R419H	77 ± 9
R190	0 $21 \pm 2^{***}$	V287D	$11 \pm 5^{***}$	D344E	78 ± 10	R4210	125 ± 12
V194	I 113 ± 45	L290F	80 ± 9	T355I	104 ± 22	R421W	76 ± 19
A208	T 88 ± 17	Y291C	$10 \pm 5^{***}$	I357F	$33 \pm 13^*$	P435L	55 ± 12
R227	C 39 ± 11	E292V	$6 \pm 1^{***}$	G361R	$2 \pm 1^{***}$	S445T	$183\pm13^{\ast\ast}$

127 All values are expressed as means \pm SEM of at least three independent experiments. Statistical significance

of differences was determined by one-way analysis of variance and Dunnett's post-test *P < 0.05, **P < 0.01, ***P < 0.0001. exp. expression.

- 131 Supplementary Table 3a. Summary of the functional profiling of cAMP accumulation by WT and
- 132 mutant GLP1R. (see Excel file).

134	Supplementary	Table 4.	Null G	LP1R	variants	detected	in the	UK	Biobank
-----	---------------	----------	--------	------	----------	----------	--------	----	---------

Supprementary fusic mittai	i i u i i u i i u i i u i i u i i u i i u i i u i i u i i u i u i u i u i u i u i u i u i u i u i u i u i u i u
GLP1R variants (NM_002062.5)	MAF UKB
c.32dup/p.Leu12AlafsTer41	0.0000025
c.76del/p.GIn26ArgfsTer25	0.0000053
c.76dup/p.Gln26ProfsTer27	0.0000053
c.79-2A>C	0.0000027
c.118C>T/p.Arg40Ter	0.000013
c.126C>G/p.Tyr42Ter	0.0000025
c.127C>T/p.Arg43Ter	0.0000050
c.152_155del/p.Thr51ArgfsTer30	0.0000076
c.245dup/p.Asn82LysfsTer26	0.0000075
c.284-2A>G	0.0000025
c.391C>T/p.Arg131Ter	0.0000025
c.402+1G>A	0.0000078
c.568C>T/p.Arg190Ter	0.0000050
c.670_671del/p.Leu224GlufsTer38	0.0000025
c.722dup/p.Tyr241Ter	0.0000025
c.823+1del	0.0000025
c.824-1G>C	0.0000025
c.1117G>T/p.Glu373Ter	0.0000025
c.1337del/p.Gly446GlufsTer76	0.0000025

135 MAF, minor allele frequency; UKB, UK biobank

137 Propidiumiodide-PerCP FSC-A
 138 Supplementary Fig. 1 Sequence of Gating Steps in Flow Cytometry Experiments. a, Selection of cells; b, Selection of single cell; c, Selection of live cells; d, selection of LUXendin+cells. Numbers

cells; b, Selection of single cell; c, Selection of live cells; d, selection of LUXen
represent the % of selected cells.

142

143 cAMP pathway

The E_{max} of Ex-4 to promote cAMP production was significantly diminished for eight mutants of which the five 144 145 most severely affected ones (p. R176W, p. H180Y, p.N320Y, p.G361R and p.I400R) could be explained by 146 severely impaired cell surface expression (Supplementary Table 2a and Supplementary Table 3a and Fig. 2a 147 and Extended Data Fig. 6a). Twelve mutants showed a GoF phenotype with a significant, up to 200%, increase in E_{max} (ten from the 'cAMP GoF' category (Fig. 2f and Extended Data Fig. 6f, Supplementary Table 3a) and 148 p.V287D (Extended Data Fig. 6a) and p.A316T (Fig. 2g)). The cell surface expression levels of these mutants 149 ranged from 31 to 95% of WT GLP1R (Supplementary Table 2a). Twenty mutants showed significantly lower 150 potencies with seven of them being severely affected (EC50 right-shifted by 2 logs). Among these, five mutants 151 belong to the category of mutants of 'Severely surface exp defective' (p. R176W, p.L231P, p.V287D, p.E292V, 152 p.R310W) and two (p.R190Q, p.R380C) to the category of 'All pathways defective'. 153 The correlation curve between cell surface expression and cAMP signaling (Extended Data Fig. 4b) allowed us 154

to define mutants with less than 10 ± 3 % cell surface expression compared to WT GLP1R as an independent 155 category of 'Severely surface exp defective' (Fig. 2a and Extended Data Fig. 6a). This category comprises 156 variants encoding p.H173P, p.R176W, p.H180Y, p.L231P, p.V287D, p.E292V, p.R310W, p.N320Y, p.G361R 157 and p.I400R. The severely impaired cell surface expression of these mutants is consistent with absence of any 158 measurable Ex-4 binding in the TR-FRET-based ligand competitive binding assay for six members of this 159 160 category (p.H173P, p.H180Y, p.L231P, p.N320Y, p.G361R and p.I400R) (Extended Data Fig. 7). The variant encoding p.R380C shows normal surface expression but severely impaired Ex-4 binding consistent with 161 previous results obtained with an alanine substituted receptor at this position (Wootten et al, 2016). GoF mutants 162 show increased E_{max} values despite normal surface expression. 163

164

165 Ca²⁺ mobilization

Similar to cAMP accumulation, the Ca^{2+} mobilization responsiveness was also differentially affected, with 21 LoF or GoF mutants each (Supplementary Table 3b). All mutants of the 'Severely surface exp defective' category were also defective in Ca^{2+} mobilization, similar to the cAMP pathway (Fig. 2a and Extended Data

Fig. 6a). In contrast to the cAMP pathway, only E_{max} values were affected without any change in EC₅₀ 169 (Supplementary Table 3b). To compensate for the impact of differences in cell surface expression of mutants, 170 correlation curves with EC₅₀ and E_{max} were generated (Extended Data Fig. 5a). Whereas E_{max} values increased 171 linearly (Extended Data Fig. 5b), EC₅₀ values were unaffected by the cell surface expression level (Extended 172 Data Fig. 5c). After normalization to cell surface expression, ten mutants belonged to the 'Ca²⁺ GoF' category 173 174 (Fig. 2g and Extended Data Fig. 6g). For all of them only E_{max} values were affected (up to 235% increase over 175 WT GLP1R). Interestingly, three GoF variants encoding p.S258L, p.E408G and p.W417G exhibited clearly increased Ca^{2+} mobilization in the context of normal cAMP production and significantly decreased cell surface 176 expression (Extended Data Fig. 6g and Supplementary Table 2a). Five mutants were GoF for both cAMP and 177 Ca²⁺ pathways (p.Y291C, p.E294K, p.A316T, p.N338K and p.C341C) (Fig. 2g and Extended Data Fig. 6f). In 178 conclusion, Ca²⁺ mobilization is affected in 2/3 of the studied GLP1R mutants with both LoF and GoF in E_{max}. 179

180

181 ERK1/2 activation by GLP1R mutants

Ex-4 induced a rapid increase in ERK1/2 activation for the WT GLP1R reaching a plateau at 5 minutes that 182 was maintained for up to 1 hour (Extended Data Fig. 3e). At 5 minutes, the ERK1/2 activation was fully blocked 183 by the PKA inhibitor H89 but not by β -arr1/2 silencing (Extended Data Fig. 3k-n) indicating that the 184 Gs/cAMP/PKA pathway is the predominant input pathway at 5 minutes of stimulation in HEK293T cells. Ex-185 4-induced ERK1/2 activation of GLP1R mutants was tested at 5 minutes. Twenty-seven mutants showed 186 significantly impaired ERK1/2 activation and one mutant (p.S258L) increased ERK1/2 activation 187 (Supplementary Table 3c). Similar to Ca^{2+} mobilization, only E_{max} values, but not EC₅₀ values, were affected. 188 A linear correlation was observed for E_{max} values and cell surface expression and no influence of the latter on 189 EC₅₀ values (Extended Data Fig. 5d-f). Three mutants (p.L231P, p.E292V, and p.R310W) highlighted the 190 robustness of the ERK1/2 pathway compared to the other pathways as the ERK1/2 pathway was the only one 191 maintaining a notable level of activation upon Ex-4 stimulation at low receptor cell surface expression 192 (Extended Data Fig. 6a). In contrast, three other variants encoding p.H173R, p.A239T, and p.D344E showed 193 an ERK-specific defect (Fig. 2e, Extended Data Fig. 6e and Supplementary Table 3c). 194

195

β-arr2 recruitment by GLP1R mutants

With 41 defective mutants, the β-arr2 recruitment was the most affected pathway in our study. For 17 mutants 197 β-arr2 recruitment was completely undetectable including all 10 mutants of the 'Severely surface exp defective' 198 category and all four mutants of the 'All pathways defective' category (Fig. 2, Extended Data Fig. 6 and 199 Supplementary Table 3d). Correlation curves of EC₅₀ and E_{max} for surface expression were generated (Extended 200 201 Data Fig. 5g) and showed a similar behavior as the correlation curves for the Ca^{2+} and ERK pathways; whereas 202 E_{max} values increased linearly with increased cell surface expression (Extended Data Fig. 5h), EC₅₀ values were 203 unaffected (Extended Data Fig. 5i). After normalization to cell surface expression, 16 additional mutants showed decreased E_{max} values and eight variants a modest decrease in EC₅₀ values. With nine mutants (p.P96L, 204 p.H171Q, p.A208T, p.L268F, p.I317T, p.I357F, p.H363Y, p.R376Q, and p.S445T), the 'β-arr2 specific 205 defective' category represented the largest pathway specific category of this study (Fig. 2d, Extended Data Fig. 206 6d and Supplementary Table 3d). A distinctive feature of this category is the predominant defect in EC₅₀ values 207 for all members with an additional defect in E_{max} for p.I317T, p.357F, p.H363Y, most likely because of 208 diminished cell surface expression (Fig. 2d, Extended Data Fig. 6d and Supplementary Table 3d). Of note, 209 p.I317T and p.I357F are the most pathway-selective mutants with a complete (p.I357F) or almost complete 210 (p.I317T) absence of β -arr2 recruitment and normal signaling on the other pathways. In conclusion, the β -arr2 211 pathway represents the pathway for which most of the mutants are affected with diminished EC₅₀ and/or E_{max}. 212 GoF was not observed for this pathway. 213