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Supplementary Results 

Comparison of otter and TREAT with existing tools 

Normalized edit distance between PacBio Sequel 2 and Revio: In general, the normalized edit 

distance was lower for PacBio’s Sequel 2 data in comparison with Revio data: error rates 

ranged 0.1-2.3% (otter) and 0.1-3.8% (TRGT) in Sequel 2 data, and ranged 0.2-2.5% (otter) 

and 0.2-3.3% (TRGT) in Revio data (Figure 2A). In ONT data, the normalized edit distance 

was lower for Duplex data in comparison with Simplex data: error rates ranged 0.3-1.8% (otter) 

and 0.2-2.1% (LongTR) in Duplex data, and ranged 0.3-4.9% (otter) and 0.3-3.6% (LongTR) 

in Simplex data. Note that LongTR was not able to genotype ~20% of TRs at coverage 5× 

(Figure 2B).  

 

Raw edit distance across tools and technologies: Using raw edit distance as metric, similar 

results as to using normalized edit distance were obtained. Error rates ranged 0.1-78.3 (otter) 

and 0.2-114.9 (TRGT) in Sequel 2 data, and ranged 0.2-95.7 (otter) and 0.3-107.0 (TRGT) in 

Revio data. In ONT data, error rates ranged 0.4-51.7 (otter) and 0.5-96.5 (LongTR) in Duplex 

data, and ranged 0.6-133.6 (otter) and 0.7-105.8 (LongTR) in Simplex data. Note that LongTR 

was not able to genotype ~20% of TRs at coverage 5× (Figure S1D-F). 

 

Correlation between TR allele sizes across tools and technologies: When correlating observed 

and expected TR allele size across tools and technologies, we observed a similar pattern. 

Average correlation values (Spearman correlation) ranged 0.91-0.99 (otter) and 0.90-0.99 

(TRGT) for Sequel 2 data; 0.90-0.99 (otter) and 0.91-0.99 (TRGT) for Revio data; 0.90-0.99 

(otter) and 0.90-0.99 (LongTR) for Simplex data; 0.96-0.99 (otter) and 0.91-0.99 (LongTR) for 

Duplex data (Figure S1A-D). 
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TREAT’s unified workflow enables diverse characterisations of 

tandem repeats 

Genotyping accuracy of otter in ~864K TRs from CHM13: We benchmarked otter on HG002 

using a larger set of ~864K TRs from CHM13 reference genome. We used all sequencing 

technologies (PacBio Sequel 2 and Revio, and ONT Simplex and Duplex), and varied 

sequencing coverages (5×, 10×, 15×, 20×, 25×, and 30×). Across all technologies, increasing 

coverage yielded more accurate TR-sequence assemblies (Figure S10). At 15× coverage, the 

average sequence dissimilarities were 0.88% and 0.51% for ONT’s Duplex and Simplex 

chemistries, respectively, and 0.40% and 0.29% for PacBios’s Revio and Sequel 2, with slight 

improvements at higher coverages (Figure S10). Overall, we found that otter’s assemblies 

were most accurate when using Sequel 2 HiFi data, followed by Revio, Duplex, and Simplex 

(Figure S10). A closer analysis revealed that Sequel 2 HiFi data had significantly lower read-

sequence variability relative to Duplex, Simplex, and Revio (Wilcoxon rank-sum test, p-value 

<2.2e-16). This is possibly due to a combination of increased sequencing errors and somatic 

variation in Revio data relative to Sequel 2, which ultimately yielded suboptimal assemblies 

relative to the expected allele-sequences from the HG002 T2T assembly. 

 

Comparison of TREAT reads and assembly modes: We compared TREAT assembly analysis, 

which uses otter for TR genotyping, to TREAT reads analysis, which genotypes TR alleles 

using a clustering framework based on TR sizes as observed in the individual reads spanning 

the TR. For this analysis, we used the curated PacBio genome-wide catalogue of 161K TRs, 

and all 47 genomes from the HPRC. Spearman correlations were calculated for the shorter (in 

size), longer, and joint alleles (i.e. the sum of the shorter and longer alleles). We found nearly 

perfect concordance between the assembly and reads analyses when correlating the size of 

the TRs across the shorter, longer, and joint allele sizes (Spearman correlation=0.99, p<2.0e-

16 in all cases). This shows that the two analyses deliver correlated results, and their choice 
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depends on the analysis setting: for a large set of TRs, we advise to use assembly analysis, 

while when individual read information is valuable, it is advisable to use the reads analysis. 

 

Tandem repeats may be sensitive to coverage dropouts in long-

read sequencing 

Coverage drops in the pathogenic TR in RFC1: We used TREAT/otter to characterise the 

intronic TR in RFC1 in 47 genomes from the HPRC consortium, two CANVAS patients, and 

10 parent-child duos. We found that CANVAS patient 2 carried a ~7.7 kbp and a ~8.5 kbp 

RFC1 TR allele-sequence, both largely composed of the disease-associated motif (ACAGG)n, 

repeated 1489 and 1710 times, respectively. In addition, in the larger allele, the (AACAG)n 

was also observed (Figure 3). CANVAS patient 1 carried a ~6.3 kbp and a ~7.7 kbp TR allele-

sequence mostly composed of the same (ACAGG) motif, repeated 1270 and 1540 times, 

respectively (Figure 3). Although this motif is enriched in non-European individuals, both 

patients were of Dutch ancestry. This analysis showcases not only TREAT and otter utility in 

characterising tandem-repeats in a clinical setting, but also to facilitate the discovery of novel 

motif compositions. Although to a lower extent compared to the CANVAS patients, expansions 

of this TR were also observed in other samples (Figure 3). These include a heterozygous TR 

expansion in one parent of the 10 parent-child duos (C7_BLOOD, Figure 3). Moreover, the 

child of this individual reported homozygous wild-type alleles, which was surprising. The ratio 

of local versus whole-genome coverage for the TR in the parent, using HiFi data alone, was 

0.66 (31 total local reads, 47.3× average whole-genome coverage), while for the child it was 

0.52 (7 total local reads, 13.5× average whole-genome coverage). Assuming that whole-

genome coverage follows a Poisson distribution, these ratios are significantly lower than 

expected (p-value of 0.00773 and 0.02 for the parent and child, respectively). When we 

included non-HiFi data, this ratio increased to respectively 1.06 (50 total local reads) and 0.92 
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(13 total local reads) in the centenarian and child. Furthermore, the expanded allele in the 

child was supported, and could be rescued (Figure 4).  

 

Coverage drops in the Alzheimer’s Disease (AD)-associated TR in ABCA7: This intronic TR 

in ABCA7 was previously identified as a risk factor for Alzheimer’s Disease (AD). We further 

investigated challenges when sequencing this TR by comparing TR-lengths from Southern 

Blotting assay (Supplementary Methods) and long-read sequencing data generated on the 

Sequel 2 instrument in nine Dutch individuals (coverage ranging 11.5-34×, median read-

lengths of 14-19 kbp). We found similar coverage drops in the ABCA7 TR in all nine genomes, 

with local coverages ranging 1-7×. We found low-concordance between lengths in HiFi data 

and the observed lengths from Southern Blotting assay, suggesting challenges in accurately 

characterising this TR with HiFi technology. We then used TREAT/otter to integrate HiFi and 

non-HiFi data in the nine centenarian genomes for which experimental validation by Southern 

Blotting was available. The inclusion of non-HiFi data increased read-support by 4-folds to an 

average coverage of 22×. Notably, all technologies highlight a potential mis-assembly in 

HG002 as they do not support the expanded version of the ABCA7 TR. Manual inspection 

revealed that the expanded TR in the HG002 assembly harboured TE-like sequences not 

supported by any of the long-read datasets, suggesting either variation specific to the 

sequenced HG002 cell-line, or a mis-assembly in the HG002 reference.  

 

Systematic analysis of coverage drops in TRs: The average coverage of the 454 low-coverage 

TRs in PacBio in ONT Simplex was 37.43±16.65, with average local to global coverage ratio 

of 0.97±0.43. In ONT Duplex, the average coverage was 25.36±12.85, with an average ratio 

of 0.66±0.33 (≥ 22× coverage, average ratio=0.60). Therefore, the TRs problematic in PacBio 

instruments were generally well-supported by ONT. In contrast, the 49 problematic regions in 
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ONT reported average coverage of 17.43±9.45 in PacBio Revio, with average ratios of 

0.45±0.25, and average coverage of 13.84±13.96 in Sequel 2 data, with an average ratio of 

0.38±0.38. 9/20 TRs problematic in ONT had no HIFI reads in both PacBio instruments, and 

the remaining 11/20 TRs were supported by 6-9 HIFI reads (ratio ranging 0.16-0.24) from one 

or both instruments, suggesting that these TRs may be challenging to sequence with current 

long-read sequencing technologies. 
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Supplementary Figures 

 

Figure S1: Additional metrics for TR genotyping accuracy across tools, technologies, and 

sequencing coverage. A-B-C. Show the correlation between observed and expected allele 

size, respectively for otter, TRGT, and LongTR. D-E-F. Show the raw edit distance between 

observed and expected allele sizes, respectively for otter, TRGT, and LongTR. 
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Figure S2: TR genotyping accuracy in the context of TR motif length. A. Shows the genotyping 

performances of otter and TRGT in PacBio Sequel 2 and Revio data at different coverage 

levels and for different TR motif lengths. B. Shows the same performances between otter and 
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LongTR on ONT Simplex and Duplex data. The TR motif size was based on TREAT motif 

characterization. 

 

 

Figure S3: Fraction of perfectly matched TR alleles across tools, sequencing technologies and 

coverage levels. For this, we used HG002 data across different coverage levels and 

sequencing technologies. The Y-axis shows the fraction of alleles with an edit distance of 0 

(i.e. perfect matches) between the genotyped and expected alleles. 

 

 



10 

Figure S4: Motif distribution in the set of 864K repeats in the CHM13 reference genome (left), 

as well as the 161K tandem repeats in GRCh38 reference genome from PacBio’s catalogue 

of repeats (right). 

 

Figure S5: Multithreading performances of TREAT/otter. X-axis shows the number of CPUs 

used. Running time is split across internal operations. For this experiment, we used HG002 

data (15× coverage) across different sequencing technologies, and 161K TRs from PacBio 

catalogue. 
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Figure S6: TR genotyping accuracy when using HiFi + non-HiFi data. This analysis was 

performed on PacBio Sequel 2 data of HG002 (~38× coverage), for which both HiFi and the 

complete set of non-HiFi data was available. X-axis shows the read quality of included non-

HiFi data (at 0, only HiFi data was included). The different panels refer to TR size. 
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Figure S7: Population PCA based on single nucleotide polymorphisms (SNPs). We used 40/47 

individuals for which both SNP array data and long-read sequencing was available. For the 

PCA, we used ~30k randomly sampled SNPs with a minor allele frequency >10%. 
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Figure S8: TREAT plot showing the TR in ATXN8 gene across 47 HPRC samples as well as 

two CANVAS patients. The left side of the plot shows the TR allele sizes. Red circles identify 

homozygous genotypes, while Blue/Orange genotypes refer to the shorter and longer alleles 

(when heterozygous), respectively. Individuals are sorted based on a hierarchical clustering 

scheme. The right side of the plot shows the motif composition for each of the two alleles, 

Haplotype 1 and Haplotype 2, along with the relative number of copies. 
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Figure S9: TREAT plot showing the TR in DMD gene across 47 HPRC samples as well as two 

CANVAS patients. The left side of the plot shows the TR allele sizes. Red circles identify 

homozygous genotypes, while Blue/Orange genotypes refer to the shorter and longer alleles 

(when heterozygous), respectively. Individuals are sorted based on a hierarchical clustering 
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scheme. The right side of the plot shows the motif composition for each of the two alleles, 

Haplotype 1 and Haplotype 2, along with the relative number of copies. 

 

 

Figure S10: Otter performances on ~864K TRs from CHM13 reference genome. Solid lines 

refer to Revio and Simplex, respectively for PacBio and ONT. Dotted lines refer to Sequel 2 

and Duplex, respectively for PacBio and ONT. A. Size distribution of the curated set of 864,170 

unique TRs (1,727,475 allele-sequences in total), with an average length of 93 bp. B. 

Assembly-sequence error-rates as a function of the TR-size and sequencing technologies. C. 

Run time of otter as a function of the coverage and sequencing technologies. D. Memory 

consumption of otter as a function of the coverage and different sequencing technologies. 
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Figure S11: Characterisation of the TRs unique to CHM13 compared to GRCh38. Left figure 

shows the TR allele size distribution: TR sizes were subdivided in bins. Right figure shows the 

distribution of TR motif sizes, as performed with TREAT/otter.   
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Figure S12: Electropherogram resulting from the Repeat-Primed PCR (RP-PCR), showing 

experimental validation of the presence of the expanded allele in the parent as well as the 
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child. A. Experimental validation of the two alleles in the centenarian parent. B. Experimental 

validation of the two alleles in the centenarian child. 

 

 

Figure S13: Southern blot showing experimental validation of the alleles relative to the intronic 

ABCA7 TRs. Due to restriction digestion, flanking sequences are present around the VNTR of 

a size of 2038 bp. To calculate the molecular weight of the ABCA7-VNTR alleles, 2038 bp was 

subtracted from the size of the observed bands. Experimental validation was performed for 39 

DNA samples in total. Of these, 15 were cognitively healthy centenarians (1, 5, 4, 7, 11, 12, 

13, 14, 15, 16, 19, 20, 21, 22, 23). For each centenarian, we evaluated blood DNA (BL) as 
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well as brain DNA (BR) DNA. Sequencing data was available for 9/15 centenarians (blood 

DNA), which are highlighted in red, and these were used for the comparison of TR alleles 

between southern blot and sequencing-derived.  

 

 

Figure S14: Systematic analysis of coverage drops. A. Distribution of local vs. global ratio, for 

each technology. B. Number of problematic regions identified, for each technology. C. Venn 

showing the overlap between problematic regions across technologies. D-G. Shows the 

pairwise comparison of TR coverage across sequencing technologies in problematic regions 

in Duplex (D), Revio (E), Sequel 2 (F), and Simplex (G). Please note that the x-axis range was 

deliberately kept the same as the y-axis range. H. Comparison of sequence characteristics 

between the problematic and non-problematic regions. I. Dinucleotide frequency between 

problematic and non-problematic regions. 
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Figure S15: PacBio HiFi sequencing of 246 Alzheimer’s disease patients and 248 cognitively healthy 

centenarians. A. Fraction of AD patients and cognitively healthy centenarians, and the relative gender 

characteristics. B. Coverage distribution of the AD patients and cognitively healthy centenarians. 

Individuals were sequenced with a Sequel2 instrument using 1-4 SMRT cells, for each individual. 
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Supplementary Methods 

Long-read sequencing with PacBio Sequel II and publicly 

available data from ONT and PacBio instruments 

We downloaded publicly available unaligned long-reads from ONT ‘Duplex’ long-read 

sequencing data from the Human Pangenome Reference Consortium (HPRC). Specifically, 

we downloaded all available FASTQ files R10.4 chemistry base-called with ‘Dorado_v0.1.1’ 

available in the AWS HPRC bucket (https://registry.opendata.aws/hpgp-data/submissions). 

We aligned the long-read data to the GRCh38 (build GRCh38.p14) and the CHM13 reference 

genome (v2.0) using minimap2 (2.21-r1071) with the ‘-x map-ont’ command.(Li 2018) 

 

Similarly, we downloaded publicly available PacBio Revio HiFi and non-HiFi data from HPRC. 

Specifically, we downloaded the ‘hifi’ and ‘fail’ unaligned BAM files of the 

‘m84039_230117_233243_s1’ sequencing run available in the same AWS HPRC bucket. We 

then aligned both read-sets to GRCh38 and CHM13 using pbmm2 (version 1.3.0) with the ‘--

preset CCS --unmapped’.(Wenger et al. 2019) 

 

Finally, we generated long-read sequencing of HG002 with PacBio’s Sequel 2. Briefly, raw 

reads are first processed using PacBio’s ccs algorithm (v6.0.0, 

https://github.com/PacificBiosciences/ccs) to generate high-fidelity (HiFi) reads with custom 

parameters (min-passes 0, min-rq 0, keeping kinetics information). We retained both HIFI 

reads (read-quality >99%, number of passes >3), and lower-quality non-HiFi reads. We then 

separately merged all HiFi and non-HiFi reads, and aligned them to the GRCh38 and CHM13 

reference genome using pbmm2 using the --preset CCS --unmapped command for HIFI reads, 

and the --preset SUBREAD --unmapped command for non-HIFI reads. 

https://registry.opendata.aws/hpgp-data/submissions
https://github.com/PacificBiosciences/ccs
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Comparison of otter and TREAT with existing tools 

Generation of data with reduced coverage: For each of the four long-read datasets (PacBio 

Sequel 2 and Revio, and ONT Simplex and Duplex), we generated six reduced-coverage BAM 

files using samtools (v1.13) ‘view’ command with the ‘-s’ argument to randomly reduce 

genome-wide coverage to 5×, 10×, 15×, 20×, 25×, and 30×.1 This was done for both GRCh38 

and CHM13 aligned datasets.(Danecek et al. 2021) 

 

Generation of ground truth dataset of HG002: To generate the ‘ground-truth’ set of the 

expected allele-sequences for the 161K TRs in HG002, we whole-genome aligned the HG002 

T2T assembly (v0.7, https://github.com/marbl/HG002) to GRCH38 using minimap2 with the ‘-

ax asm10’ parameter.2 We extracted the corresponding allele sequences per parental and 

maternal contigs by iterating through each contig-alignment and extracting the corresponding 

TR sequences by calculating the start and end coordinates using the CIGAR string. We 

omitted TRs that were non-spanning (e.g. soft/hard-hard clipped alignments within the TR 

sequence), originated from unexpected chromosomes (e.g. mismatching chromosomes 

between GRCH38 and CHM13), and had more or less than two alignments (e.g. two parental 

sequences). We were able to identify a total of 322,772 parental and maternal allele-

sequences in the HG002 T2T assembly, corresponding to 161,111/161,382 (99.8%) GRCh38-

annotated TRs. 

 

Curated set of 864K TRs: We downloaded the CHM13 reference genome as well as the 

following repeat annotations from the UCSC Genome Browser 

(https://hgdownload.soe.ucsc.edu/gbdb/hs1/): SimpleRepeat, RepeatMasker, CenSat, and 

SegDups. We extracted Satellite and Simple_repeat annotations from RepeatMasker,3 and 

combined them with annotations from SimpleRepeat, merging all annotations within <=100 bp 

of each other. We excluded annotations that were <=10 kbp of centromeric sequences 

https://www.zotero.org/google-docs/?UJQoOb
https://github.com/marbl/HG002
https://www.zotero.org/google-docs/?70KX94
https://hgdownload.soe.ucsc.edu/gbdb/hs1/
https://www.zotero.org/google-docs/?PJ3fy8
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(Censat) and segmental duplications (SegDups), and removed TRs from both sex 

chromosomes.  

 

Evaluation of genotyping accuracy: We evaluated genotype accuracy by comparing the 

reported TR allele-sequences of each tool with the expected allele-sequences from the HG002 

T2T assembly. Briefly, we assume at most two observed and expected allele sequences per 

TR, and duplicate single observed allele-sequences, as some tools (e.g. otter) reports only a 

single allele-sequence per TR in homozygous situations. Note that this differs from TRs that 

are deleted, which are designed as ‘N’ and ‘NDNNN’ sequences in otter and LongTR, 

respectively. For each tool and each TR, we calculated two distances using the following 

procedure: let {o1, o2} and {e1, e2} be the observed and expected allele-sequences for a 

given TR, and dist(x, y) be the edit distance for strings x and y. We compute dist(o1, e1), 

dist(o1, e2), dist(o2, e1), dist(o2,e2), and used the two distances with the minimum values. 

The raw edit distance was calculated using WFA-lib2 (https://github.com/smarco/WFA2-

lib).(Marco-Sola et al. 2023) The normalized edit distance was obtained as the ratio between 

the raw edit distance, and the size of the expected allele. 

 

Selection of genes from CHM13 reference genome: The full list of genes in CHM13 was 

downloaded from UCSC Table Browser (https://genome.ucsc.edu/cgi-bin/hgTables), 

specifying T2T CHM13v2.0/hs1 as Assembly, NCBI RefSeq as Group under Genes and Gene 

Predictions, and RefSeq All (hub_3671779_ncbiRefSeq) Table. This table was further curated 

by removing antisense transcript, Long Intergenic Non-Coding RNAs (LINC), and RNA genes. 

In case multiple occurrences of the same gene existed, the largest gene (based on chromStart 

and chromEnd coordinates) was used. The curated list of genes included 24,429 entries.  

 

Commands used for benchmarking: Genotyping accuracy was based on running otter 

standalone with the following command: 

https://github.com/smarco/WFA2-lib
https://github.com/smarco/WFA2-lib
https://genome.ucsc.edu/cgi-bin/hgTables
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otter assemble -A 5000,0.1 -c 150 -b [input.bed] -r [reference.fasta] 

-R [output_name] -t 4 [input.bam] | samtools view -bh | samtools sort 

> [output_name].bam 

Motif accuracy and running performances was based on running TREAT’s unified workflow: 

TREAT assembly -i [input.bam] -b [input.bed] -r [reference.fasta] -t 

4 -o [output_dir] -w 20 -wAss 20 

The command used to evaluate genotyping and motif accuracy in TRGT was the 

following:(Dolzhenko et al. 2024)  

TRGT genotype -g [reference.fasta] -r [input.bam] -b [input.bed] -o 

[output_name] -t 4 

The command used to evaluate genotyping accuracy in LongTR was the following:(Ziaei Jam 

et al. 2024)  

LongTR –bams [input.bam] –fasta [reference.fasta] –regions 

[input.bed] –tr-vcf [output_name].vcf.gz –skip-assembly –bam-samps 

[sample_name] –bam-libs [sample_name] –max-tr-len 5000 –min-reads 5 

 

TREAT 

Reads analysis: The reads analysis extracts all reads spanning a given region of interest using 

Samtools.(Danecek et al. 2021) Then, TR genotyping is performed using an iterative clustering 

framework. A minimum number of reads supporting each allele needs to be satisfied (by 

default, this equals 2). An iterative k-means clustering (k=2) framework is used to identify the 

TR allele sizes, while controlling for a maximum deviation of the TR sizes within each allele 

based on the median absolute deviation (MAD, by default, 10% of median allele size, 

modifiable with the ‘--haploDev’ parameter). This framework recognizes homozygous calls 

and its iterative nature makes it robust to outliers. TR content characterization (motif and 

number of copies) in the reads analysis first identifies motifs and copy numbers at the 
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individual read level (see Methods). Then, the most frequently observed motifs across all 

individual reads are prioritised. The output VCF file produced with the reads analysis does not 

contain the allele sequences, but only allele size and motif composition. 

 

Motif identification, identical both assembly and reads analyses: For motif content 

characterization, pytrf python extension is used (https://github.com/lmdu/pytrf). First, we run 

pytrf with default parameters (specifying min_motif_size=1 and max_motif_size=100). In case 

no repeat pattern is found, we relax pytrf parameters (min_seed_repeat=2 and 

min_seed_length=8). 

 

Motif representation: TREAT reports two representations of TR motifs and relative copy 

numbers: an individual-based and a reference-based. The individual-based motif represents 

the motif observed in an individual’s TR alleles. The reference-based motif forces the copy 

number estimation to be based on the size of the motif found in the reference genome. 

Assuming a TR with the sequence “AGGA AGGA CGGC CGGC” in an individual, with the 

relative TR in the reference genome being “AGGA AGGA AGGA”, (i) the reference-based 

motif would be AGGA (the motif observed in the reference genome), repeated 4 times in the 

individual and 3 time in the reference genome, and (ii) the individual-specific representation 

would be (AGGA)2(CGGC)2. Both motifs are generated and reported to the user in the 

gVCF/VCF file. 

 

Outlier analysis: In the outlier analysis, TREAT optionally accepts a file reporting TR-specific 

pathogenic thresholds, and will report any instance of TRs exceeding the provided threshold 

in any individual. 

 

TREAT commands used in this study: TREAT assembly analysis was done using the following 

command: 

https://github.com/lmdu/pytrf/blob/master/docs/installation.rst
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TREAT.py assembly -b input.bed -i input1.bam,input2.bam,input3.bam -

o outputDirectory -w 20 -wAss 20 -t 4 -r reference_ghcr38.fa  

The above command was used (i) in the comparison of alleles between the reads and 

assembly analyses; (ii) in the analysis of clinically relevant regions using the genomes of 47 

HPRC, the 2 CANVAS, and the 10 parent-child duos; (iii) for the benchmarking with other tools 

in the evaluation of motif identification accuracy; (iv) in the case-control analysis. 

The reads analysis was performed using the following command: 

TREAT.py reads -b input.bed -i input1.bam,input2.bam,input3.bam -w 20 

-t 4 -o outputDirectory -r reference_grch38.fa 

The above command was used (i) in the comparison of alleles between the reads and 

assembly analyses. 

TREAT plots were generated with the following command: 

TREAT.py plots -v samples.vcf.gz -o plots_folder -r all 

TREAT outlier analysis was performed with the following command: 

TREAT.py analysis -a outlier -v samples.vcf.gz -o analysis_folder -r 

all 

TREAT case-control analysis was performed with the following command: 

TREAT.py analysis -a case-control -v samples.vcf.gz -l 

case_control_labels.txt -o analysis_folder -r all 

 

Otter 

Otter algorithm details: In the context of TR genotyping, otter will attempt to identify a candidate 

set of unique allele-sequences by clustering spanning-reads via pairwise-sequence alignment. 

To deal with high somatic variation and/or sequencing errors, otter will first estimate local 

base-line error-rates per region. More specifically, we apply a gaussian-kernel density 

estimator across a one-dimensional distribution of all spanning pairwise-sequence distances 
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in a region. For single homozygous allele-sequences, this distribution will be unimodal with 

centre at 0, representing the baseline error-rate of the sequences. When two or more unique 

allele-sequences are present, the distribution will be multi-modal such, that ε0, ε1, ε2, …, εm 

are global maximas, and ε1, ε2, …, εm represent sequence errors between reads from 

different allele-sequences. We thus identify global maximas and minimas through a simple 

peak-finding procedure by sampling n points (by default N=100) through this distribution. Otter 

uses this information to perform a hierarchical clustering of the reads and stopping when the 

distance exceeds the densest peak among ε1, ε2, …, εm, ultimately partitioning reads into 

initial clusters representing candidate allele-sequences. 

 

Non-spanning reads are assigned to each cluster by aligning each non-spanning read to all 

spanning reads and identifying the closest sequence based on maximum sequence similarity. 

Cluster membership of closest spanning read is extended to the non-spanning read if it meets 

a given sequence similarity threshold (default 90%), and if the sequences similarity of 

spanning reads in other clusters differs by no less than a given threshold (default 1%). 

 

Otter then generates consensus sequences per cluster based on a pseudo-partial order 

alignment procedure inspired by Ye and Ma, 2016.(Ye and Ma 2016) First, otter identifies a 

representative sequence per cluster by identifying the spanning read that minimises the global 

sum of pairwise distances. This read, regarded as the backbone of the consensus, is then 

converted to a weighted directed acyclic graph (DAG) where each nucleotide is an individual 

node, and the weight of each edge represents the number reads traversing two pair of nodes 

(initially set to 1).  All other reads in the cluster (both spanning and non-spanning) are aligned 

to the representative read via an affine-gap alignment, and the DAG is updated with new 

nodes, edges, and weights. The weights are normalized based on scaling procedure 

described by Ye and Ma, 2016,(Ye and Ma 2016) and the heaviest weighted path in the DAG 

is identified by maximising the path with total sum of weighted edges, solved via dynamic 
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programming. The heaviest weighted path is then chosen as the consensus sequence per 

cluster. 

 

Otter commands used in this study: Benchmarking of otter across 864K TRs in ONT’s Duplex 

and Simplex data, as well as PacBio’s Revio an Sequel 2 data was performed with four 

threads, a coordinate offset of 5 nucleotides, and local realignment with the (given) CHM13 

reference genome via the following command: 

otter assemble -t 4 -r chm13.fa -o 5 --sam -R sample sample.bam 

Integration of non-HIFI data for the assembly of intronic TRs in RFC1 and ABCA7 was 

performed with the following additional parameters: 

-s 0.8 -f 200 -A500,0.1 

This enables more sensitivity during local re-alignment: realign 200-bp flanking sequence with 

a minimum sequence similarity of 80%, and coverage thresholds for clusters containing allele-

sequences above 500 bp to 10%.  

 

Cohort and sequencing details 

Cohort of Alzheimer’s Disease patients and cognitively healthy centenarians: We whole-

genome sequenced using PacBio Sequel 2 instrument 494 individuals. Of these, 246 were 

clinically diagnosed with probable AD from the Amsterdam Dementia Cohort (ADC).(van der 

Flier and Scheltens 2018) The diagnosis of probable AD in ADC cohort was based on the 

clinical criteria formulated by the National Institute of Neurological and Communicative 

Disorders and Stroke – Alzheimer’s Disease and Related Disorders Association (NINCDS-

ADRDA) and based on the National Institute of Aging-Alzheimer Association (NIA-AA). All 

subjects underwent a standard diagnostic assessment including neurological examination, 

blood tests, magnetic resonance imaging, electroencephalogram, and cerebrospinal fluid 

(CSF) analysis (available for most patients). In addition to AD patients, we sequenced 248 
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cognitively healthy centenarians from the 100-plus Study.(Holstege et al. 2018) This study 

includes Dutch-speaking individuals who (i) can provide official evidence for being aged 100 

years or older, (ii) self-report to be cognitively healthy, which is confirmed by a proxy, (iii) 

consent to the donation of a blood sample, (iv) consent to (at least) two home visits from a 

researcher including an interview and neuropsychological test battery. The Medical Ethics 

Committee of the Amsterdam UMC approved all studies. All participants and/or their legal 

representatives provided written informed consent for participation in clinical and genetic 

studies. 

 

Sequencing with PacBio Sequel 2: All samples were sequenced using a PacBio Sequel 2 

instrument. Specific details about the sample preparation, sequencing, and data analysis, are 

available elsewhere.9 Briefly, raw reads are first processed using PacBio’s ccs algorithm 

(v6.0.0, https://github.com/PacificBiosciences/ccs) to generate high-fidelity (HIFI) reads with 

custom parameters (min-passes 0, min-rq 0, keeping kinetics information).(Salazar et al. 

2023) We retained both HiFi reads (read-quality >99%, number of passes >3), and lower-

quality non-HiFi reads. We then separately merged all HiFi and non-HiFi reads, and aligned 

them to the GRCh38 and CHM13 reference genome using pbmm2 using the ‘--preset CCS --

unmapped’ command for HiFi reads, and the ‘--preset SUBREAD --unmapped’ command for 

non-HiFi reads.(Salazar et al. 2023)  

Southern Blotting 

Southern blotting (SB) assay was used to determine the size of the TR in ABCA7 gene (Chr 

19:1049514-1049953, based on GRCh37) for 11 cognitively healthy centenarians from the 

100-plus Study. gDNA from blood samples were isolated using automated isolation technology 

(PerkinElmer Chemagen Technology) and stored at 4°C. To check if isolated gDNA was high 

in molecular weight it was run on a 0.8% agarose gel containing ethidium bromide on 220 

volts for 60-70 minutes. Hereafter 3 μg of gDNA isolated from blood material underwent 

https://www.zotero.org/google-docs/?Q4Ihdd
https://github.com/PacificBiosciences/ccs
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restriction digestion for 5-6 hours at 37°C using BamHi (New England Biolabs) according to 

manufactures’ protocol.  

 

Gel-electrophoresis and blotting: Samples that underwent restriction digestion were run on a 

0.8% agarose gel (agarose LE, Lonza) for ~17 hours overnight (O/N) on 60V. DIG molecular 

weight marker #2 (Roche) was used as a marker to determine size of the DIG-labelled DNA 

fragment of interest later on. After running, to check for full digestion of the gDNA, gel was 

incubated in MilliQ-water containing ~0.2-0.5 μg/mL ethidium bromide for 30 minutes, 

whereafter DNA was visualised using UV-light. Gel was then rinsed with MilliQ-water (MQ-

water) and incubated in a depurination buffer (250mM HCl) for 10 minutes, gently shaking at 

room temperature (RT). Hereafter, gel was rinsed with MQ-water and incubated in a 

denaturation buffer (0.5 M NaOH; 1.5 M NaCl) for 30 minutes, gently shaking at RT. Gel was 

then rinsed with MQ-water and incubated in a neutralisation buffer (0.5 M Tris-HCl pH 7.5; 1.5 

M NaCl) for 30 minutes, gently shaking at RT. After this, gel was equilibrated in a 20× SSC 

buffer for a minimum of 10 minutes whilst building the blotting set up (description of full set up 

can be found in appendix 1). Blotting of the DNA onto a positively charged nylon membrane 

(Roche) was carried out. 

 

Hybridization of DIG-labelled probe: After blotting, the membrane was retrieved from the 

blotting set-up, whereafter the DNA on the membrane was crosslinked for 3 minutes using 

UV-light. The membrane was then rinsed using MQ- water and transferred into a hybridization 

bottle where it was incubated in preheated (52°C) DIG Easy Hyb (Roche) for 2 hours, rotating 

at 52°C. DIG labelled probe was generated using PCR DIG Probe Synthesis Kit (Roche). 

Primers were designed as described by deRoeck et al., 2018.(On Behalf of the BELNEU 

Consortium et al. 2018) The following primers were used: forward primer: 5’-

AGCTCTGTAACTGCCAGTGC-3’; reverse primer: 5’-CCGTAGGCTCGTCCAGGAT-3’. 

Probe was denatured by cooking at 95°C for 5 minutes, immediately chilling on ice afterwards. 

To make a hybridization solution, preheated (52°C) DIG Easy Hyb (Roche) was combined with 



31 

a denatured probe. Membrane was incubated in hybridization solution 16 hours O/N, rotating 

at 52°C. 

 

Imaging: After hybridization, the membrane was incubated in a low stringency buffer (2× SSC 

containing 0.1% SDS) for 5 minutes, gently shaking at RT, then rinsed with MQ water and 

incubated again in low stringency buffer for 5 minutes gently shaking at RT. Hereafter, 

membrane was incubated in preheated (68°C) high stringency buffer (0.1× SSC containing 

0.1% SDS) for 15 minutes, gently shaking at 68 °C and rinsed with MQ water thereafter 

incubating in preheated high stringency buffer again for 15 minutes, gently shaking at 68°C. 

Then, the membrane was incubated in a washing buffer (made fresh using DIG Wash and 

Block Buffer Set (Roche)) for 2 minutes gently shaking at RT. After washing, the membrane 

was incubated in a freshly made blocking buffer (DIG Wash and Block Buffer Set (Roche)) for 

1.5 – 2.5 hours shaking gently at RT. Antibody solution was made using Anti-Digoxigenin-AP 

antibody (Roche) diluted to 1:10000 in blocking buffer. Membrane was incubated in antibody 

solution for 30 minutes, shaking gently at RT. Hereafter, the membrane was washed twice for 

15 minutes using a washing buffer, gently shaking at RT. Membrane was then equilibrated in 

a freshly made detection buffer (DIG Wash and Block Buffer Set (Roche)) for 3 minutes, 

shaking gently at RT. Membrane was placed on a transparent sheet thereafter CDP-star 

substrate (Roche) was applied dropwise to the membrane, immediately covering applied 

areas with a second transparent sheet to prevent dehydration. Membrane was then protected 

from the light when transferring to the imager (UVITEC Cambridge Alliance 4.7). Imaging was 

performed for 10 to 15 minutes using the chemiluminescent option on the imager, whereafter 

images were analysed using the Alliance software provided by UVITEC. 

 

Analysis: Using the alliance software, the molecular weight of the band signals on the 

membrane representing ABCA7-VNTR allele length were determined by comparison with 

known marker fragment sizes. Due to restriction digestion flanking sequences are present 
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around the VNTR of a size of 2038 bp. To calculate the molecular weight of the ABCA7-VNTR 

in the analysed samples, 2038 bp was subtracted from the size of the observed bands.  

A curated set of genome-wide set TRs in CHM13 

We curated a genome-side set of TR in CHM13 based on available annotations at UCSC 

genome browser (downloaded March 3, 2023). First, we downloaded all available repeat 

annotations from RepeatMasker and retained all available TR-annotations. We then remove 

TRs that overlapped or were within 10 kbp of centromeric and/or segmental duplications (>= 

5 kbp) annotations. All resulting TRs within 100 bp of each other were merged to a single 

composite TR annotation, and TRs > 5 kbp were removed. This forms the curated set of 

genome-wide TRs in CHM13. For CHM13-unique TRs, we used UCSC liftOver (version 

downloaded March 1, 2023) to ‘lift’ the TR annotations to the GRCH38 reference genome, and 

retained only those that were fully ‘Deleted’ as reported by liftOver. 
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