
1 Supplementary Text677

1.1 Summary of prior approaches678

Table S1. Prior approaches concerning the identification of m6A modifications. AON: All-or-none modified dataset. KO:
Knockout dataset.

Method Structure Training data Input features

Epinano (2019) (Liu et al. 2019) SVM AON Basecall error & Signal feature
ELIGOS (2021) (Jenjaroenpun et al. 2021) Stat. anal. – Basecall error
Nanocompore (2021) (Leger et al. 2021) GMM – Signal features
nanom6A (2021) (Gao et al. 2021) GBM AON Signal segments
CHEUI (2022) (Mateos et al. 2022) CNN AON Signal segments
m6Anet (2022) (Hendra et al. 2022) MLP In vivo KO Signal features & Sequence
Xron (This work) CRNN AON & In vivo KO Raw signals

1.2 K-mer encoded as integer679

We encoded each k -mer with an integer by initially converting the k -mer string into a base-b integer. For680

example, ‘ACGTM’ is represented as a base-5 integer 012345. This base-5 integer is then converted into a681

base-10 integer (zt), where 012345 is transformed to 11210.682

1.3 Signal segmentation683

To determine the exact alignment between the raw current signals and the corresponding transcription684

positions, a signal segmentation procedure is typically required to assign consecutive signal points (called685

an event) to each base pair. The electrical current signals acquired from the ONT sequencer are 1D time-686

series signals sampled at 4,000 points per second. Under the direct RNA sequencing protocol, the average687

movement speed of RNA through the pore is 70 base pairs per second, resulting in an average of 57688

sampling points per base pair. The signal level and duration of an event are decided by the five nucleotides689

inside the pore, where the middle nucleotide is the one to which we mapped.690

29



1.4 Sampling algorithm691

Algorithm 1 Signal-k -mer Graph Random Walk Sampling
Input:

G(V,E) ▷ Signal-k -mer graph with nodes V and edges E
N ▷ max number of segments to sample
L ▷ max length of each sampled segment
ϵ = 0.1 ▷ exploration when sampling start node
γ = 0.1 ▷ exploration factor when sampling edge

Output:
S ▷ Sampled reads

1: S ← []
2: v.weights = #edges starting with v, for all v ∈ V
3: e.visits = 0, for all e ∈ E
4: while len(S) < N do
5: curr s = []
6:
7: Pick the start node:
8: Generate a random number r ∈ [0, 1]
9: if r < ϵ then

10: v ← random node ∈ V
11: else
12: v ← argmaxx(x.weight, x ∈ V )
13: end if
14:
15: Random walk along the graph:
16: while len(curr s) < L do
17: p = [

√
len(S)/x.visits for x in v.edges] + α ∗ [q(x) for x in v.edges] ▷ Upper Confidence Bound

18: ▷ q(x) is the entropy of sequence x, v.edges are edges starting from node v
19: p = p/p.sum()
20: Generate a random number r ∈ [0, 1]
21: if r < γ then
22: e = random choose e from v.edges
23: else
24: e = choose e according to p
25: end if
26: curr s.append(e)
27: e.visits← e.visits + 1
28: curr v.weights← #{v.edges}/

√
sum([x.visits for x in v.edges])

29: end while
30: S.append(curr s)
31: end while
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Table S2. Basecalling accuracy comparison between Xron and Guppy on three different datasets and their
control datasets. The deletion, insertion, and mismatch rates (%) were calculated as the numbers of deleted, inserted,
and mismatched bases divided by the number of bases in the reference sequence, respectively. The identity rate (%)
was defined as the number of matched bases in the query sequence divided by the number of bases in the reference
sequence (the higher the better). All reported rates are mean values among the aligned reads.

Condition Model Deletion rate (%) Insertion rate (%) Mismatch rate (%) Identity rate (%)(↑)

IVT Control Xron 4.14 11.60 8.51 87.35
Guppy 4.30 2.20 2.95 92.75

IVT m6A Xron 5.09 15.04 6.44 88.48
Guppy 9.11 4.45 12.60 78.28

Yeast ime4∆ KO Xron 9.47 4.54 5.57 84.97
Guppy 4.97 2.80 2.54 92.50

Yeast Xron 9.12 3.83 6.92 83.96
Guppy 4.80 2.38 3.26 91.94

HEK293T METTL3 KO Xron 10.41 1.91 3.68 85.91
Guppy 4.42 2.59 2.39 93.19

HEK293T Xron 9.46 2.08 3.43 87.12
Guppy 11.31 2.45 3.05 85.64
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Supplementary Figure S1. Signal features comparison for all DRACH motifs between modified and unmodified
sites extracted from the Epinano IVT dataset. Box plot comparing the distributions of mean, standard deviation, and
length between modified and unmodified sites for all 18 DRACH motifs. Horizontal lines show the median, the box
denotes the interquartile range, and the whiskers extend to 1.5 times the interquartile range. Points beyond this range
are considered outliers and are removed from the plot.
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Supplementary Figure S2. Overall training pipeline of Xron training. (A) Basecalling the modified and unmodi-
fied reads using a canonical basecaller. (B) Training the NHMM with the corrected synthesized RNA sequence and
IVT reads from human reference data. The trained NHMM was used to generate a signal k -mer graph. (C) The Xron
m6A-distinguishing Basecaller was trained using the cross-linked reads sampled from the signal k -mer graph and then
fine-tuned on the yeast and human datasets, where putative m6A sites were identified through an immunoprecipita-
tion experiment. We applied label smoothing when fine-tuning the model due to the noisy m6A labels, as the m6A
modification for each read was unknown.

A B C

Supplementary Figure S3. Model trained on HEK293T cell line data and evaluated on yeast and Arabidopsis
datasets. A model is fine-tuned using human HEK293T cell line data, and then evaluated on the (A) yeast ime4 KO
dataset using ROC-AUC, and on the (B) Arabidopsis datasets using ROC-AUC and (C) PRAUC. The model has a
similar performance compared to those fine-tuned on the yeast dataset.
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Supplementary Figure S4. Ablation study of Xron model. To validate the necessity of finetuning Xron on IP data, an
ablation study was conducted. We evaluate the performance of Xron on three biological replicates (A-C) of yeast data,
with and without IP data finetuning. The plots show a dramatic decrease in model performance without finetuning using
IP data. Xron model was finetuned using the first replicate of the yeast data.

A B

Supplementary Figure S5. Evaluation on all three replicates of Xron model on human HEK293T cell line. The
AUC (A) and PR (B) curve of the Xron model, which is fine-tuned on the first replicate of the yeast dataset, are based
on all three replicates of the HEK293T cell line.
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Supplementary Figure S6. K-mer frequency comparison between the canonical basecaller and m6A-aware
basecaller. To check for any potential context bias in the basecaller, we examined the k -mer frequency of the base-
called sequences on the HEK293T cell line, where the canonical basecaller exhibits the most significant performance
drop. The results show that, compared to the m6A-aware basecaller, the canonical basecaller has a more deviated
k -mer distribution in several k -mers from DRACH motifs. This deviation indicates a reason for the lower identity rate
when basecalling these m6A-modified reads using a canonical basecaller.
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Supplementary Figure S7. K-mer frequency for modified and unmodified sites. K-mer frequency of DRACH motifs
is analyzed among the Saccharomyces (yeast), HEK293T cell line, and Arabidopsis datasets. Bar plot comparing the
proportion of methylated/unmethylated motifs counted for every site (A) or every read (B), where n reads aligned on the
same site count as 1 in (A) and as n in (B). The bar plot center gives the mean frequency of the 18 fivemer DRACH motif
among the 3 replicates while the error bar represents the 95% confidence interval. Separate plots for different datasets
(Saccharomyces (yeast), HEK293T cell line, and Arabidopsis) were given for each site (C - E), and each read (F - H)
to make a clear comparison the frequency between the methylated and canonical motifs. All reads are basecalled using
Xron basecaller.
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Supplementary Figure S8. Clustering of modification states Clustering plot of 6 genes with multiple modification
sites. Clustering was conducted using the SciPy hierarchical linkage module with Yule distance. Asynchronous modifi-
cation is observed near the end of the CDS and in the 3′ UTR region in all 6 transcripts (ENST00000340990, n = 921;
ENST00000305885, n = 997; ENST00000530028, n = 1201; ENST00000007390, n = 780; ENST00000316660,
n = 1296; ENST00000273258, n = 1062).

37



References692

Baum LE, Petrie T, Soules G & Weiss N. 1970. A Maximization Technique Occurring in the Statistical693

Analysis of Probabilistic Functions of Markov Chains. Ann Math Stat 41: 164–171. doi: 10.1214/aoms/694

1177697196695

Graves A, Fernández S, Gomez F & Schmidhuber J (2006). “Connectionist Temporal Classification: La-696

belling Unsegmented Sequence Data with Recurrent Neural Networks”. In: Proceedings of the 23rd697

International Conference on Machine Learning, 369–376. doi: 10.1145/1143844.1143891.698

Hughes JP, Guttorp P & Charles SP. 1999. A Non-Homogeneous Hidden Markov Model for Precipitation699

Occurrence. J Roy Statistical Society 48: 15–30. doi: 10.1111/1467-9876.00136700

Li H. 2018. Minimap2: Pairwise Alignment for Nucleotide Sequences. Bioinformatics 34: 3094–3100. doi:701

10.1093/bioinformatics/bty191702

Meligkotsidou L & Dellaportas P. 2011. Forecasting with Non-Homogeneous Hidden Markov Models. Statist703

Comput 21: 439–449. doi: 10.1007/s11222-010-9180-5704

Netzer O, Lattin JM & Srinivasan V. 2008. A Hidden Markov Model of Customer Relationship Dynamics.705

Marketing Sci 27: 185–204. doi: 10.1287/mksc.1070.0294706

Oxford Nanopore Technologies (2021). Guppy. Version 5.0.11.707

Simpson JT, Workman RE, Zuzarte P, David M, Dursi LJ & Timp W. 2017. Detecting DNA Cytosine Methy-708

lation Using Nanopore Sequencing. Nat Methods 14: 407–410. doi: 10.1038/nmeth.4184709

Sutton RS & Barto AG. 2018. In Reinforcement Learning: An Introduction. MIT press, Cambridge, Mas-710

sachusetts.711

Teng H, Cao MD, Hall MB, Duarte T, Wang S & Coin LJ. 2018. Chiron: Translating Nanopore Raw Signal712

Directly into Nucleotide Sequence Using Deep Learning. Gigascience 7: giy037. doi: 10.1093/gigascie713

nce/giy037714

Workman RE, Tang AD, Tang PS, Jain M, Tyson JR, Razaghi R, Zuzarte PC, Gilpatrick T, Payne A, Quick715

J, et al. 2019. Nanopore Native RNA Sequencing of a Human Poly (A) Transcriptome. Nat Methods 16:716

1297–1305. doi: 10.1038/s41592-019-0617-2717

38


