

Supplementary Fig. 1. SEM images of the apical and basal cochlea of $Myh1^{+/+}$ and $Myh1^{-/-}$ mice. No clear difference in stereociliary bundles or tectorial membrane imprints were observed between $Myh1^{+/+}$ and $Myh1^{-/-}$ mice at postnatal day 30. Scale bars in 1 µm.

Supplementary Fig. 2. *MYH1* variants associated with non-progressive hearing loss. a Detection rate of individuals identified with bi-allelic variants of *MYH1* in the YUHL cohort. **b** Pedigrees of the five families in the cohort. **c** Audiometric characterization of the probands with *MYH1* variants. **d** Radiologic phenotypes of the probands with *MYH1* variants.

Supplementary Fig. 3. Exome sequencing data analysis pipeline for novel gene discovery.

(a–e) Eight variants of MYH1 were detected in five families with hearing loss. cDNA and amino acid change are indicated above. If no parental DNA is available, we used individual without hearing loss as control for PCR and sanger sequencing.

YUHL100-22

Supplementary Fig. 5. Pure-tone audiogram of YUHL100-22.

YUHL100-22 (75-year-old female) had non-progressive bilateral hearing loss with moderate-to-severe severity.

a Total sequence coverage, **b** Predicted Aligned Error (PAE) score, and **c** Local Distance Difference Test (LDDT) score calculated of WT and mutant MYH1 by ColabFold and AlphaFold2 prediction.

Supplementary Fig. 7. Cluster analysis of wild-type MYH1 MD simulation.

a Principal component analysis of wild-type MYH1 MD simulation. K-means clustering analysis showed two major clusters. Cluster centers are shown as enlarged points. **b** Comparison of structures from each cluster. Two major structural variations are pointed in arrows.

Supplementary Fig. 8. MYH1 does not affect Prestin localization.

a Surface biotinylation assay of Prestin in the absence or presence of MYH1. **b** Immunostaining of Prestin in $Myh1^{+/+}$ and $Myh1^{-/-}$ mice OHCs.

a Expressed MYH1 protein corresponds to the N-terminal 843 of human MYH1 which include SRC Homology 3 (SH3) domain, myosin motor (MYSc) domain, and IQ calmodulin-binding motif. Distribution of MYH1 proteins was largely in cell body. **b** Immunoblotting of MYH1 variants. There was no significant difference in expression among transiently expressed wild-type and variant MYH1 proteins.

a Initial cell adhesion on TGT surface (incubation time, t = 30 min). Adhesion of MYH1 wild-type or variant over-expressing COS-7 cells on 54pN TGT surface and TGT rupture patterns. Scale bar is 20 μ m. **b** Measured projected area of MYH1 wild type or mutant over-expressing COS-7 cells on 54pN TGT surface (n = 12 to 27 individual cells). **c** Cell adhesion and spreading on TGT surface (incubation time, t = 1 hr). Adhesion of MYH1 wild-type or mutant over-expressing COS-7 cells on 54pN TGT surface and TGT rupture patterns. Fluorescence signal loss in the Cy3 channel was induced when a stronger molecular tension above 54 pN was applied on an integrin-cRGDfK bond. Scale bar is 20 μ m. **d** Measured projected area of MYH1 wild type or mutant over-expressing COS-7 cells on 54pN TGT surface (n = 22 to 34 individual cells). The TGT assay in each condition was repeated at least three times. Data are presented as Mean \pm SEM. **P*<0.05; ** *P*<0.01; *** *P*<0.001; **** *P*<0.0001.

ID	Sex	Age of onset	Nucleoti de change	Amino acid change	Exon	Zygosity, segregati on	dbSNP ^a	gnom AD ^ь	KOVA2°	REVEL ^d	Classification ^e	
105 -21	М	Cong	c.2231A >C	p.Lys744 Thr	20	het, M	rs18383 3836	0.0001 44	0.00018882 (2/10592)	0.835	VUS (PM2_Supporting, PP3)	
		enital	c.5416C >A	p.Gln180 6Lys	37	het, F	rs14087 3918	0.0003 06	0.00217926 (23/10554)	0.499	VUS (PM2_Supporting)	
110 -21	F	1 st decad e	1 st decad e	c.582G> C	p.Gln194 His	7	het, M	rs77605 3827	0.0000 24	0.00028339 (3/10586)	0.762	VUS (PM2_Supporting, PP3)
				e	c.2977A >G	p.lle993V al	24	het, F	rs15019 1104	0.0002 77	0.00389956 2 (41/10514)	0.261
162 -21	М	Cong enital	c.4617A >T	p.Gln153 9His	33	homo, M&F	rs37648 50	0.0000 37	0.00094553 71 (10/10576)	0.358	VUS (PM2_Supporting)	
100 -21) M	М	ND	c.1379T >C	p.lle460T hr	14	ND	rs20106 1123	0.0002 77	-	0.882	VUS (PM2_Supporting, PP3)
-22	F	ND	c.2438A >T	p.Glu813 Val	22	ND	rs19133 9081	0.0003 14	0.00103950 (11/10582)	0.533	VUS (PM2_Supporting)	
624 -21	F	Cong enital	c.2495C >G	p.Pro832 Arg	22	homo, M&F	rs53411 0923	0.0005 09	0.00341102 9 (36/10554)	0.799	VUS (BS1_Supporting, PP3)	

Supplementary Table 1. Variants of *MYH1* found in individuals with hearing loss by whole exome sequencing.

Abbreviations are as follows: ND, no data; M, heterozygous variant that is maternally inherited; F, heterozygous variant that is paternally inherited; M&F, homozygous variant.

^a dbSNP database (<u>http://www.ncbi.nlm.nih.gov/SNP</u>).

^b gnomAD browser (http://exac.broadinstitute.org/).

^cAF archived from KOVA2 (the Korean Variant Archive 2; approximately n = 5,305).

^d <u>REVEL</u> (rare exome variant ensemble learner) score predicting the deleteriousness of variants colored in red.

^e Classifications of variants are based on VIP-HL (http://hearing.genetics.bgi.com/), an online platform for classifying variants according to the ACMG guidelines adapted for hearing loss. PM2_Supporting and BS1_Supporting are criteria given when the MAF of variants are in the range of 0.00007≤AF<0.0007 or 0.0007≤AF<0.003, respectively. For the reliable curation of variants identified in Korean, we utilized AF from the KOVA2 database as filtering AF for PM2 and BS1. PP3 is assigned for variants with a REVEL score above 0.7.

	Supplementary	v Table 2.	Other	candidate	aenes in	patients.
--	---------------	------------	-------	-----------	----------	-----------

Individual	Gene	variant position (hg19)	Transcript	Nucleotide change	Amino acid change	Exon	dbSNP	gnomAD	KOVA2	REVEL
100-21	FAT3	chr11:92531314_G/A	NM 001009791 2	c.5135G>A	p.Gly1712Glu	9	rs753513948	0.0002788	0.002308	0.288
		chr11:92532352_G/A	NW_001000701.2	c.6173G>A	p.Arg2058His	9	rs199620788	0.0003941	0.002405	0.26
	ZRANB3	chr2:135960455_C/T	NM 022142.2	c.3088G>A	p.Gly1030Arg	20	rs746258198	0.00002893	0.00123	0.871
		chr2:135985381_C/A	NIVI_032143.3	c.2158+1G>T	-	14	rs76757575	0.00009516	0.000797	-
	GTSE1	chr22:46725399_G/A		c.2071G>A	p.Asp691Asn	11	rs779875611	0.00003246	9.48E-05	0.368
		chr22:46725971_C/T	NW_010420.0	c.2164C>T	p.GIn722*	12	rs776761037	0.000004061	0.000571	-
105-21	FAM104B	chrX:55172708_T/G	NM_138362.3	c.157A>C	p.lle53Leu	3	rs1047034	0.00001142	-	0.098
110-21	DNAH7	chr2:196673555_G/C	NIM 019907 2	c.9934C>G	p.Leu3312Val	53	rs200669357	0.0000583	0.000661	0.496
		chr2:196837160_T/C	NW_010097.2	c.1864A>G	p.Met622Val	16	rs780113708	0.0000082	-	0.129
162-21	SMS	chrX:22002471_G/A	NM_004595.4	c.800G>A	p.Gly267Glu	8	-	-	-	0.649
	DMD	chrX:31515027_G/A	NM_004006.2	c.8425C>T	p.Arg2809Cys	57	rs143389016	0.00000575	-	0.324
624.24		chr16:85688428_C/A		c.628C>A	p.Pro210Thr	5	rs563709852	0.0001181	0.000844	0.119
624-21	GSE1	chr16:85695115/GCCCGG	NIVI_014015.5	c.2014_2019dup	p.Gly672_Pro673dup	9	rs770052395	-	-	-

OVA2	REVEL	Result				
02308	0.288	identified on trans in effected sibling (100.22)				
02405	0.26	identified as trans in anected sibiling (100-22)				
00123	0.871	not converse dia 400.22				
000797	-	not segregated in 100-22				
18E-05	0.368	not converse dia 400.22				
000571	-	not segregated in 100-22				
	0.098	hemizygous variant				
000661	0.496	identified as sis, all inherited from unoffected methor				
	0.129	identified as cis, all innerited from unaffected mother				
	0.649	OMIM-listed gene > Phenotype unmatched				
	0.324	OMIM-listed gene > Phenotype unmatched				
000844	0.119	identified as cis, all inherited from unaffected mother				
	-					

Individual	Region	Area (cm ²)	Bone mineral content (g)	Bone mineral density (g/cm ²)	T-score	Z-score
	Neck	3.52	1.62	0.461	-3.7	-1.6
105-21	Troch	3.77	1.37	0.362	-3.3	
100-21	Inter	7.71	4.23	0.548	-4.5	-1.1
	Total	15.01	7.22	0.481	-4.5	-1.7
	Neck	5.26	3.93	0.747	-1.4	-1.4
110-21	Troch	11.59	7.62	0.657	-0.5	
110 21	Inter	22.9	20.95	0.915	-1.8	-1.7
	Total	39.76	32.5	0.817	-1.6	-1.6

Supplementary Table 3. Dual-energy X-ray absorptionmetry results.

Variable	Value
EP	30 mV
GMET	30 nS
X 0	20 nm
S0	16 nm
S1	35 nm
TMET	0.05 ms
Gĸ,f	1 ns
G _{K,n}	50 ns
Vh,K,f	−24 mV
Vh,K,n	−92 mV
S _{K,f}	6.4 mV
SK,n	17 mV
Ек	−92 mV
Clin, WT/KO	4 pF
αωτ	25.76 mV
ακο	29.10 mV
Q _{max,WT}	3662 fC
Q _{max,KO}	1195 fC
Vh,Pres,WT	−37.02 mV
V _{h,Pres,KO}	−47.51 mV

Supplementary Table 4. Parameters used for simulating OHC circuit.