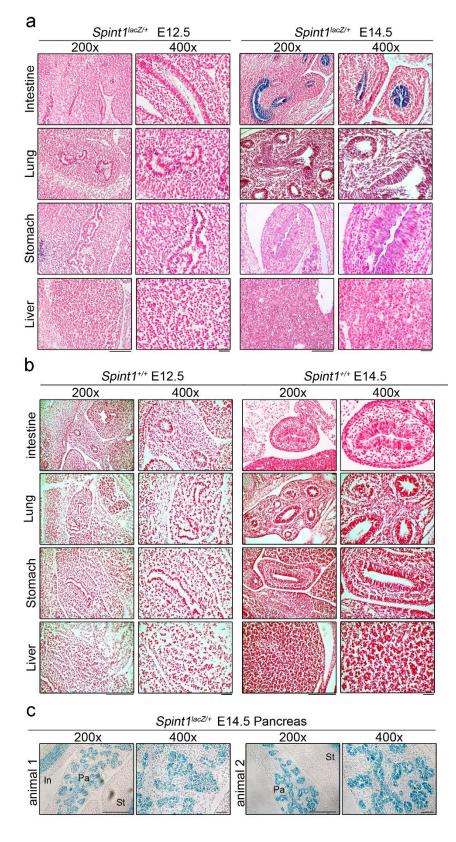

| 1  | Supplementary Information for manuscript                                      |
|----|-------------------------------------------------------------------------------|
| 2  | Spint1 disruption in mouse pancreas leads to glucose intolerance and impaired |
| 3  | insulin production involving HEPSIN/MAFA.                                     |
| 4  | Hsin-Hsien Lin, et al.                                                        |
| 5  | Table of content                                                              |
| 6  | Supplementary Figures                                                         |
| 7  | Supplementary Figure 1 2                                                      |
| 8  | Supplementary Figure 2 5                                                      |
| 9  | Supplementary Figure 3 7                                                      |
| 10 | Supplementary Figure 4 12                                                     |
| 11 | Supplementary Figure 5 14                                                     |
| 12 | Supplementary Figure 6 18                                                     |
| 13 | Supplementary Figure 7 21                                                     |
| 14 | Supplementary Figure 8 24                                                     |
| 15 | Supplementary Figure 9 27                                                     |
| 16 | Supplementary Figure 10 30                                                    |
| 17 | Supplementary Figure 11 31                                                    |
| 18 | Supplementary Methods                                                         |
| 19 | Supplementary Table                                                           |
| 20 | Reference                                                                     |
| 21 |                                                                               |

#### 22 Supplementary Figures

## 23 Supplementary Figure 1




Supplementary Fig. 1. Spatiotemporal expression patterns of *Spint1-lacZ* during
 *Spint1<sup>lacZ/+</sup>* mouse embryo development.

| 27 | <b>a</b> , Generation of $Spint l^{lacZ/+}$ mice. Maps of the targeting vector (upper), wild-type          |
|----|------------------------------------------------------------------------------------------------------------|
| 28 | Spint1 allele (WT Spint1, middle), and recombinant allele in the Spint1 intron 1                           |
| 29 | (Spint1-lacZ-neo, lower). The lacZ-neo fusion cassette was inserted into the first                         |
| 30 | intron of Spint1 via homologous recombination. An extra NdeI site in lacZ cDNA                             |
| 31 | enabled the distinction between wild-type and recombinant alleles using Southern                           |
| 32 | blotting. Probe: a 5' probe used for Southern blotting. WT-F and WT-R: the primer                          |
| 33 | pair for wild-type Spint1 allele. lacZ-F and lacZ-R: the primer pair for Spint1-lacZ                       |
| 34 | allele. 1-6: the exons of <i>Spint1</i> . <i>FRT</i> and <i>loxP</i> : flippase and Cre recognition sites, |
| 35 | respectively. <b>b</b> , Southern blotting and genotyping for wild-type and $Spint1^{lacZ/+}$              |
| 36 | embryonic stem (ES) cells and mice. Wild-type Spint1 (Spint1 <sup>+/+</sup> ) and recombinant              |
| 37 | Spint1 <sup>lacZ/+</sup> ES cell clones were determined using Southern blotting. The probe is              |
| 38 | described in Supplementary Fig. 1a. The sizes of NdeI-cleaved fragments of $Spint1^{+/+}$                  |
| 39 | and Spint1 <sup>lacZ/+</sup> alleles were approximately 11.8 kb and 15 kb, respectively (upper             |
| 40 | panel). Moreover, PCR-based genotyping was performed using mouse tail DNAs and                             |
| 41 | the wild-type (WT) and $lacZ$ primer pairs described in Supplementary Fig. 1a. The                         |
| 42 | PCR products for wild-type and Spint1-lacZ alleles were 656 bp and 461 bp in size                          |
| 43 | after agarose electrophoresis, respectively. c, Representatives of E10.5, E12.5, and                       |

| 44 | E14.5 whole-mount LacZ-stain embryos from wild-type ( $Spint1^{+/+}$ ) and $Spint1^{lacZ/+}$      |
|----|---------------------------------------------------------------------------------------------------|
| 45 | mice. Scale bar, 200 $\mu$ m. (n= 4 per group). <b>d</b> , Representative histology images of     |
| 46 | LacZ-stained E12.5 Spint $1^{lacZ/+}$ and Spint $1^{+/+}$ embryos. The LacZ-stained E12.5         |
| 47 | $Spint 1^{lacZ/+}$ and $Spint 1^{+/+}$ mouse embryos were sectioned sagittally and counterstained |
| 48 | with nuclear fast red. Lu: Lung, St: Stomach, He: Heart, Li: Liver, Pa: Pancreas, In:             |
| 49 | Intestine. Scale bar, 100 $\mu$ m. Source data are provided as a Source Data file.                |
|    |                                                                                                   |

# 51 Supplementary Figure 2



53 Supplementary Fig. 2. The *Spint1-lacZ* expression patterns in the embryonic

**a**, Expression levels of *Spint1-lacZ* in the intestine, lung, stomach and liver in E12.5

and E14.5 *Spint1<sup>lacZ/+</sup>* embryos after X-gal staining. Mouse E12.5 and E14.5

58 *Spint1<sup>lacZ/+</sup>* embryos were incubated with an X-gal solution to reveal LacZ activity.

59 After incubation, embryos were dissected and counterstained by nuclear fast red. **b**,

60 Images of the intestine, lung, stomach, and liver in E12.5 and E14.5  $Spint1^{+/+}$ 

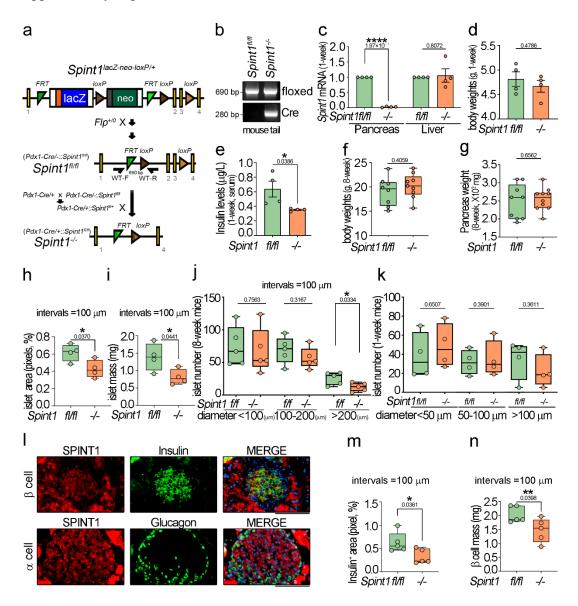
61 embryos after X-gal-staining. Representative X-gal-stained embryo sections were

62 counterstained by nuclear fast red. These images were used as controls for

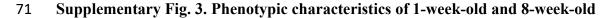
63 Supplementary Fig. 2a. c, High expression levels of *Spint1-lacZ* in the E14.5 pancreas

64 of two different embryos. Representative microscopic images of pancreatic sections

of X-gal-stained E14.5 *Spint1*<sup>lacZ/+</sup> embryos without counterstaining. In: Intestine, St:


66 Stomach, Pa: Pancreas. The results showed that the whole primordial pancreatic duct

67 and acini-like structures exhibited strong lacZ signals. Scale bar, 100  $\mu$ m for 200×


54

<sup>68</sup> panels; 20  $\mu$ m for 400× panels.

69 Supplementary Figure 3



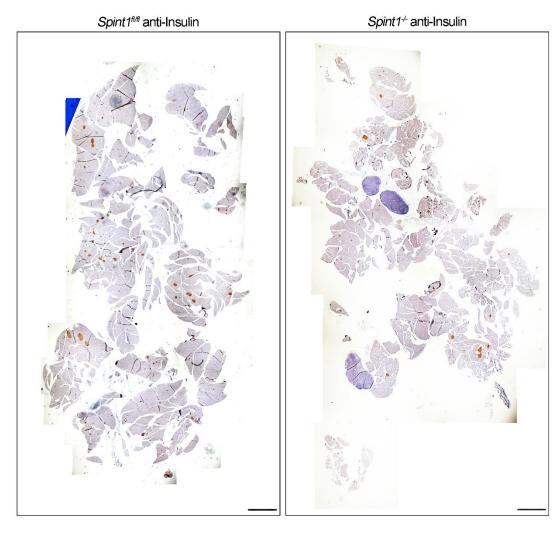
70

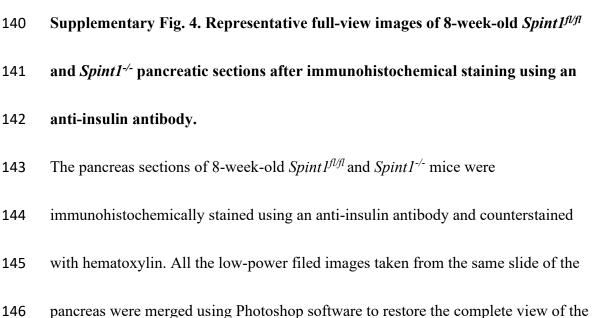


- 72 mice with pancreas-specific *Spint1* deficiency.
- 73 a, Generation of pancreas-specific *Spint1*-deficient (*Spint1*<sup>-/-</sup>) mice. The *Spint1*<sup>lacZ-neo-</sup>

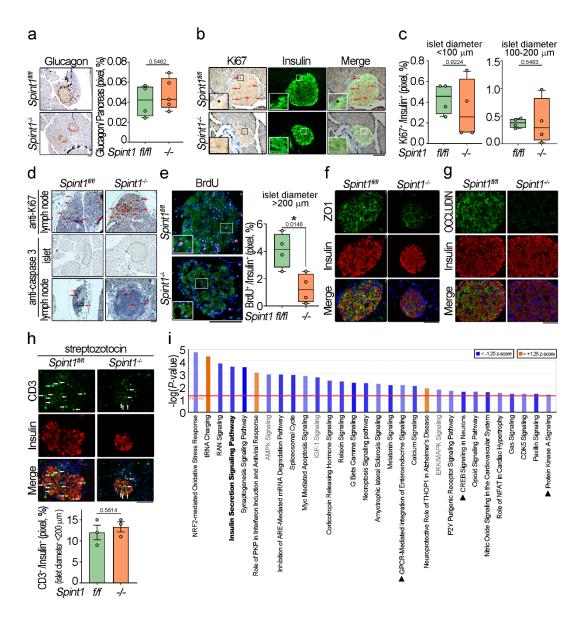
74 *loxP/+* mice, harboring the recombinant allele *Spint1-lacZ-neo* (top), were mated with

FLP-expressing mice (Flp/+) to remove the *lacZ* reporter cassette and generate the


| 76 | loxP-floxed wild-type Spint1 control mice (Spint1 <sup>fl/fl</sup> , middle). For generating the                         |
|----|--------------------------------------------------------------------------------------------------------------------------|
| 77 | pancreas-specific Spint1-deficient mice (bottom), the Spint1 <sup>fl/fl</sup> mice were crossed                          |
| 78 | with $Pdx1$ -Cre/+ mice to delete exons 2 and 3 in the mouse pancreas, resulting in the                                  |
| 79 | generation of $Pdx1$ - $Cre/+::Spint1^{fl/fl}$ (namely $Spint1^{-/-}$ ) mice. <b>b</b> , Genotyping for                  |
| 80 | Spint1 <sup>fl/fl</sup> and Spint1 <sup>-/-</sup> mice. Primers WT-F and WT-R (depicted in Supplementary                 |
| 81 | Fig. 1a) were used to amplify the <i>lacZ-neo</i> reporter-deleted intron 1 region in the                                |
| 82 | floxed wild-type allele, employing mouse tail DNA. The sizes of the floxed wild-type                                     |
| 83 | Spint1 PCR product and Cre PCR product were 690 bp and 280 bp, respectively. c,                                          |
| 84 | Validation of Spint1 expression in the pancreas and livers of 1-week-old Spint1-/- mice                                  |
| 85 | using Q-RT-PCR. The pancreas (left) and liver (right) were isolated from 1-week-old                                      |
| 86 | Spint 1 <sup>fl/fl</sup> and Spint 1 <sup>-/-</sup> mice and subjected to RNA extraction and reverse transcription.      |
| 87 | The mRNA levels of Spint1 were measured using Q-RT-PCR with normalization to                                             |
| 88 | Gapdh (4 mice per group). <b>d</b> , Body weights analysis of 1-week-old Spint $I^{fl/fl}$ and                           |
| 89 | Spint1 <sup>-/-</sup> mice (n= 4 mice per group). <b>e</b> , Examination of the serum insulin levels in 1-               |
| 90 | week-old Spint1 <sup>fl/fl</sup> and Spint1 <sup>-/-</sup> mice using an ELISA kit (4 mice per group). f, Body           |
| 91 | weights analysis of 8-week-old $Spint l^{fl/fl}$ and $Spint l^{-/-}$ mice (n= 8 for $Spint l^{fl/fl}$ mice               |
| 92 | and n= 9 for Spint1 <sup>-/-</sup> mice). <b>g</b> , Pancreas weights analysis of 8-week-old Spint1 <sup>fl/fl</sup> and |
| 93 | Spint1 <sup>-/-</sup> mice (n= 9 for Spint1 <sup>fl/fl</sup> mice and n= 10 for Spint1 <sup>-/-</sup> mice). h-j,        |
| 94 | Quantification of islet area percentage, islet mass, and islet numbers in 8-week-old                                     |


| 95  | Spint 1 <sup>-/-</sup> and Spint 1 <sup>fl/fl</sup> mice using sections taken at 100 $\mu$ m intervals throughout the |
|-----|-----------------------------------------------------------------------------------------------------------------------|
| 96  | whole mouse pancreas. h, Each pancreas underwent serial sections (300 sections per                                    |
| 97  | pancreas), and one out of every 20 serial sections (100 $\mu$ m intervals for each section)                           |
| 98  | was taken for H&E staining to reveal islet areas. ImageJ determined the percentage of                                 |
| 99  | islet area in a whole pancreas area based on the merged full-view microscopic images                                  |
| 100 | of 15 sections per mouse (4 mice per group). i, The islet mass was calculated by                                      |
| 101 | multiplying the islet area percentage in <b>h</b> by pancreas weight in <b>g</b> ( $n = 4$ per group). <b>j</b> ,     |
| 102 | Islet number quantification in the pancreas of 8-week-old $Spint l^{fl/fl}$ and $Spint l^{-/-}$ mice.                 |
| 103 | The islets with a diameter below 100 $\mu$ m were defined as small islets, those with a                               |
| 104 | diameter between 100 $\mu m$ and 200 $\mu m$ as medium islets, and those with a diameter                              |
| 105 | above 200 $\mu$ m as large islets. The islet diameters were measured using ImageJ from                                |
| 106 | H&E-stained microscopic images, with one section selected from every 20 serial                                        |
| 107 | sections (300 sections per pancreas), comprising 15 sections per mouse and four mice                                  |
| 108 | per group. <b>k</b> , Islet number quantification in the pancreas of 1-week-old $Spint I^{fl/fl}$ and                 |
| 109 | Spint1 <sup>-/-</sup> mice. The islets with a diameter below 50 $\mu$ m were defined as small islets,                 |
| 110 | those with a diameter between 50 $\mu m$ and 100 $\mu m$ as medium islets, and those with a                           |
| 111 | diameter above 100 $\mu$ m as large islets. The islet diameters were measured using                                   |
| 112 | ImageJ from H&E-stained microscopic images, with one section selected from every                                      |
| 113 | 20 serial sections (300 sections per pancreas), comprising 15 sections per mouse and 4                                |

| 114 | mice per group. I, Immunofluorescence images of SPINT1, glucagon ( $\alpha$ cell), and                    |
|-----|-----------------------------------------------------------------------------------------------------------|
| 115 | insulin ( $\beta$ cell) in mouse islets using immunofluorescence microscopy. Mouse                        |
| 116 | pancreatic sections were immunohistochemically stained using an anti-SPINT1                               |
| 117 | antibody. Subsequently, the sections were stripped, followed by immunofluorescent                         |
| 118 | staining using anti-glucagon or anti-insulin antibodies (detailed procedures in Method                    |
| 119 | sections). The IHC results of SPINT1 were pseudo-colored in red (left panels), while                      |
| 120 | insulin or glucagon was visualized by fluorochrome-labeled secondary antibody                             |
| 121 | (green, middle panels). Nuclei were counterstained with DAPI (blue). Their merged                         |
| 122 | images were shown in the right panels. Scale bar, 20 $\mu$ m. m-n, Quantification of                      |
| 123 | percentages of the insulin-positive area and $\beta$ cell mass in 8-week-old Spint $l^{fl/fl}$ and        |
| 124 | Spint1 <sup>-/-</sup> mice, using sections taken at 100 $\mu$ m intervals throughout the whole mouse      |
| 125 | pancreas. m, Each pancreas underwent serial sections (300 sections per pancreas) in                       |
| 126 | which one out of every 20 serial sections (100 $\mu$ m intervals for each section) was                    |
| 127 | taken for immunohistochemical stained using an anti-insulin antibody and were                             |
| 128 | determined based on the merged full-view microscopic images of 15 sections per                            |
| 129 | mouse (4 mice per group) using ImageJ. <b>n</b> , The $\beta$ cell mass was calculated by                 |
| 130 | multiplying the insulin-positive area percentage in $\mathbf{k}$ by the pancreas weight in $\mathbf{g}$ . |
| 131 | Statistical significance was assessed using a two-tailed Student's <i>t</i> -test for all panels.         |
| 132 | For bar plots, bars are represented as mean $\pm$ SEM. In the box plots, the boxes span                   |


| 133 | from the 25th to | the 75th p | percentiles, | with a line | e indicating | the median. | Whiskers |
|-----|------------------|------------|--------------|-------------|--------------|-------------|----------|
|-----|------------------|------------|--------------|-------------|--------------|-------------|----------|

- extend to values within 1.5 times the interquartile range, defined as the difference
- between the 25th and 75th percentiles. \*, P < 0.05; \*\*, P < 0.01; \*\*\*\*, P < 0.001.
- 136 Below the asterisks are the precise statistical results. Source data are provided as a
- 137 Source Data file.





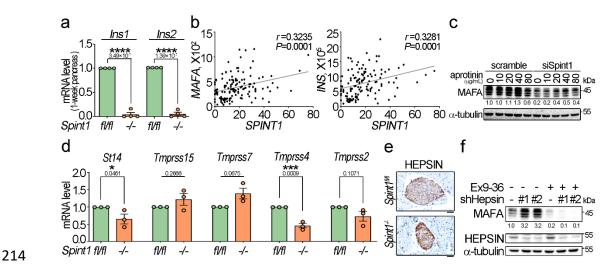
- 147 pancreas. The area of whole pancreas in this study was calculated based on the full-
- 148 view images. Scale bar, 250 mm.





152 Supplementary Fig. 5. Islet phenotypes in 8-week-old mice with pancreas-specific

153 Spint1 deficiency analyzed through proliferation and apoptosis markers, tight


- 154 junction proteins, and islet CD3<sup>+</sup> cells percentage.
- **a**, Percentages of glucagon-positive areas in the pancreas of 8-week-old *Spint1*<sup>fl/fl</sup> and
- 156 *Spint1<sup>-/-</sup>* mice. Pancreatic sections were immunohistochemically stained for glucagon
- 157 ( $\alpha$  cell) and counterstained with hematoxylin. Glucagon-positive areas in the pancreas

| 158 | were analyzed using ImageJ, with percentages calculated by dividing glucagon-                                       |
|-----|---------------------------------------------------------------------------------------------------------------------|
| 159 | positive pixels by total pancreas pixels (3 sections per pancreas and four mice per                                 |
| 160 | group). Representative microscopic images were shown in the left panel. Scale bar, 20                               |
| 161 | $\mu$ m. <b>b</b> , Detection of Ki67-positive $\beta$ cells in the pancreatic islets of 8-week-old                 |
| 162 | Spint 1 <sup>fl/fl</sup> and Spint 1 <sup>-/-</sup> mice. Pancreatic sections underwent IHC using an anti-Ki67      |
| 163 | antibody (left panel) and subsequent immunofluorescence microscopy using an anti-                                   |
| 164 | insulin antibody (middle panel). Ki67-positive $\beta$ cells are shown in the merged images                         |
| 165 | (right panel). Scale bar, 20 $\mu$ m. High-magnification images are shown in the insets at                          |
| 166 | the lower left corner of each panel. <b>c</b> , The percentages of Ki67 <sup>+</sup> $\beta$ cells in the small-    |
| 167 | diameter islets (< 100 $\mu$ m) and medium-diameter (100-200 $\mu$ m) of 8-week-old                                 |
| 168 | Spint $I^{fl/fl}$ and Spint $I^{-/-}$ mice. The percentages of Ki67 <sup>+</sup> $\beta$ cells (detected by insulin |
| 169 | expression) in the medium and small islets of the pancreas were statistically                                       |
| 170 | calculated from 6 sections under 300 $\mu$ m intervals per pancreas (4 mice per group)                              |
| 171 | and shown in the left and right panels. The percentages of large islets (islet diameter >                           |
| 172 | 200 $\mu$ m) are shown in Fig. 2 <b>d</b> . <b>d</b> , Detection of caspase 3 and Ki67 in the lymph nodes           |
| 173 | or islets of 8-week-old Spint1 <sup>fl/fl</sup> and Spint1 <sup>-/-</sup> mice. Representative                      |
| 174 | immunohistochemistry images of Ki67 and caspase 3 in the lymph nodes or islets of                                   |
| 175 | Spint 1 <sup>fl/fl</sup> and Spint 1 <sup>-/-</sup> mice are presented. As some caspase-3-positive signals in the   |
| 176 | mouse lymph nodes (bottom panel), no definite caspase 3 signal can be seen in the                                   |

| 177 | pancreatic islets (middle panel) of Spint1 <sup>-/-</sup> mice (3 sections per pancreas                                               |
|-----|---------------------------------------------------------------------------------------------------------------------------------------|
| 178 | and three mice per group). Scale bar, 20 $\mu$ m. <b>e</b> , Analysis of bromodeoxyuridine                                            |
| 179 | (BrdU) incorporation rate in the pancreatic $\beta$ cells of 8-week-old <i>Spint1</i> <sup>fl/fl</sup> and <i>Spint1</i> <sup>-</sup> |
| 180 | $^{/-}$ mice. Mice were daily treated with sterile drinking water containing BrdU (1                                                  |
| 181 | mg/mL) for 14 days. Representative images after immunofluorescence microscopy                                                         |
| 182 | showed the merged signals for BrdU (pink), insulin (green), and DAPI (blue) in the                                                    |
| 183 | left panel. Scale bar, 20 $\mu$ m. The rates of BrdU incorporation in $\beta$ cells were                                              |
| 184 | quantified in the large pancreatic islets [6 sections per pancreas (300 µm intervals)                                                 |
| 185 | and four mice per group], as shown in the right panel. High-magnification images are                                                  |
| 186 | shown in the insets at the lower left corner of each panel. f-g, Immunofluorescence                                                   |
| 187 | analysis of ZO1 (f) and OCCLUDIN (g) in the pancreatic islets of 8-week-old                                                           |
| 188 | Spint1 <sup>fl/fl</sup> and Spint1 <sup>-/-</sup> mice. Mouse pancreatic sections were subjected to                                   |
| 189 | immunofluorescence microscopy to detect ZO1 (green) or OCCLUDIN (green) in                                                            |
| 190 | insulin-positive (red) cells (3 sections per mouse, 3 mice per group). Nuclei were                                                    |
| 191 | counterstained with DAPI (blue). Scale bar, 20 $\mu$ m. <b>h</b> , Analysis of CD3 <sup>+</sup> immune cells                          |
| 192 | in the pancreatic islets of Spint1 <sup>fl/fl</sup> and Spint1 <sup>-/-</sup> mice following streptozotocin                           |
| 193 | treatment. After streptozotocin treatment in Fig. 2k, the mouse pancreatic sections                                                   |
| 194 | were subjected to immunohistochemical staining to detect CD3 <sup>+</sup> immune cells (green)                                        |
| 195 | among insulin <sup>+</sup> regions (red). White arrows mark the Ki67 <sup>+</sup> $\beta$ cells in the CD3 and                        |

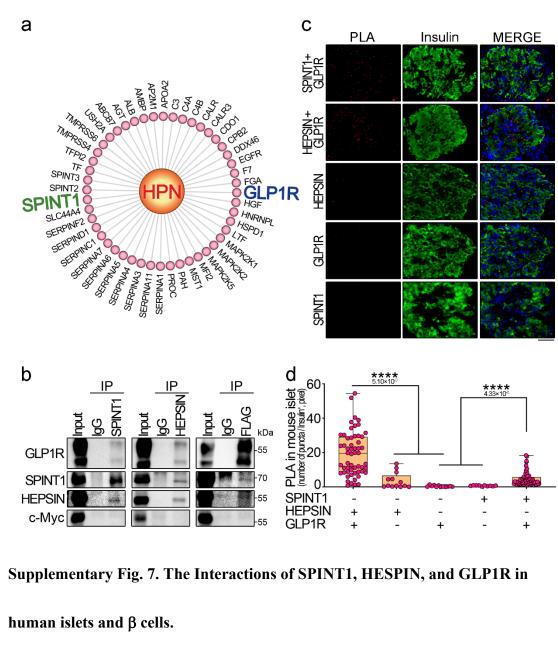
| 196 | merge images. Nuclei were counterstained with DAPI (blue). Scale bar, 20 $\mu m$ . The                                     |
|-----|----------------------------------------------------------------------------------------------------------------------------|
| 197 | percentages of CD3 <sup>+</sup> cells relative to insulin <sup>+</sup> regions (3 sections per mouse, 3 mice               |
| 198 | per group) are presented in the bottom panel. i, Ingenuity Pathway Analysis (IPA) of                                       |
| 199 | the differential protein profiles in Spint1-/- islets compared to Spint1 <sup>fl/fl</sup> islets. Thirty                   |
| 200 | signal pathways were identified under the criteria of the -log (P-value) value over                                        |
| 201 | 1.25. Statistical analysis was performed using a two-sided Fisher's exact test, and the                                    |
| 202 | false discovery rate was controlled using the Benjamini-Hochberg procedure to                                              |
| 203 | correct P values. The down-regulated pathways in $Spint1^{-/-}$ islets compared to                                         |
| 204 | Spint l <sup>fl/fl</sup> islets are highlighted by blue bars, while orange ones indicate the up-                           |
| 205 | regulated pathways. Black triangles mark GPCR, CREB, and PKA signaling                                                     |
| 206 | pathways. Statistical significance was assessed using a two-tailed Student's t-test for                                    |
| 207 | <b>a</b> , <b>c</b> , <b>e</b> and <b>h</b> . For bar plots, bars are represented as mean $\pm$ SEM. In the box plots, the |
| 208 | boxes span from the 25th to the 75th percentiles, with a line indicating the median.                                       |
| 209 | Whiskers extend to values within 1.5 times the interquartile range, defined as the                                         |
| 210 | difference between the 25th and 75th percentiles. *, $P < 0.05$ . Below the asterisks are                                  |
| 211 | the precise statistical results. Source data are provided as a Source Data file.                                           |





Supplementary Fig. 6. Analysis of the expression levels of Ins1, Ins2, selected 215 serine proteases, and HEPSIN in *Spint1<sup>fl/fl</sup>* and *Spint1<sup>-/-</sup>* mouse pancreas/islets, the 216 effect of aprotinin, *Hepsin* silencing, and Ex9-36 on the MAFA protein levels, as 217 well as correlations between *SPINT1* and *MAFA/INS* expression in human β 218 219 cells. a, Analysis of *Ins1* and *Ins2* expression levels in the pancreas of 1-week-old *Spint1*<sup>fl/fl</sup> 220 and Spint1<sup>-/-</sup> mice. Mouse pancreas RNAs were extracted and subjected to Q-RT-PCR 221 analysis with normalization to *Gapdh* (n= 4 mice per group). The results showed that 222 the expression levels of *Ins1* and *Ins2* were significantly reduced in the pancreas of 1-223 week-old *Spint1<sup>-/-</sup>* mice compared to *Spint1<sup>fl/fl</sup>* mice. **b**, Correlation of the expression 224

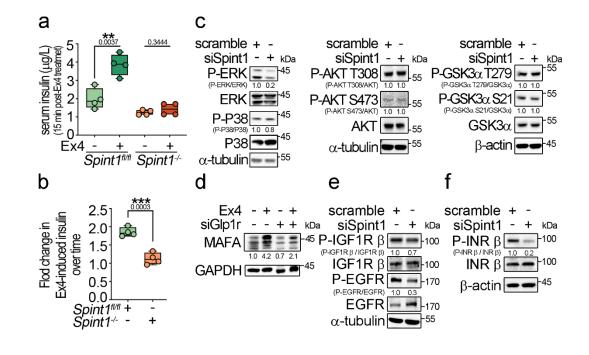
levels between SPINT1 and MAFA (left panel) and between INS and SPINT1 (right


panel) in human pancreatic islets using the GSE164416 dataset. The Pearson

| 227 | correlation coefficients ( $r$ ) are shown in figures (n= 133 per group) and statistical                        |
|-----|-----------------------------------------------------------------------------------------------------------------|
| 228 | significance was determined using a two-sided Pearson's correlation test. Gray lines                            |
| 229 | represent the linear regression line. c, Effect of a broad serine protease inhibitor,                           |
| 230 | aprotinin, on the expression of MAFA in Spint1-silenced NIT-1 cells. NIT-1 cells were                           |
| 231 | transfected with siSpint1 or scramble siRNA and then incubated with regular culture                             |
| 232 | media in the presence of 0, 10, 20, 40, and 80 $\mu$ g/mL aprotinin for 24 hours. Cell                          |
| 233 | lysates were collected and subjected to immunoblot analysis using an anti-MAFA                                  |
| 234 | antibody. $\alpha$ -tubulin was used as a loading control. The intensities of MAFA bands                        |
| 235 | were measured using ImageJ, normalized to $\alpha$ -tubulin, and statistically calculated                       |
| 236 | from three independent experiments. The mean values relative to the control of                                  |
| 237 | scramble siRNA without aprotinin are presented at the bottom of the MAFA image. d,                              |
| 238 | Q-RT-PCR analysis of St14 (matriptase), Tmprss15, Tmprss7, Tmprss4, and Tmprss2                                 |
| 239 | mRNA levels in 8-week-old Spint1 <sup>fl/fl</sup> and Spint1 <sup>-/-</sup> mouse islets. Isolated mouse islets |
| 240 | were subjected to RNA extraction and Q-RT-PCR with normalization to Gapdh. The                                  |
| 241 | expression levels of each gene were statistically calculated from three independent                             |
| 242 | experiments (n= 3 mice per group). e, IHC analysis of HEPSIN in the pancreas of                                 |
| 243 | Spint 1 <sup>fl/fl</sup> and Spint 1 <sup>-/-</sup> mouse islets. Mouse pancreas samples were                   |
| 244 | immunohistochemically stained, and representative images are shown here. The                                    |
| 245 | results were further statistically calculated for HEPSIN expression and shown in Fig.                           |

| 246 | 4i. Scale bar, 20 $\mu$ m. f, Ex9-36 treatment reversed the effect of <i>Hepsin</i> silencing on                           |
|-----|----------------------------------------------------------------------------------------------------------------------------|
| 247 | MAFA expression. NIT-1 cells were infected with two different Hepsin-targeting                                             |
| 248 | shRNAs (shHepsin #1 and #2) lentivirus for 48 hours and then treated with GLP1R                                            |
| 249 | antagonist Ex9-36 for 24 hours. Cell lysates were collected and subjected to western                                       |
| 250 | blot analysis using anti-MAFA and anti-HEPSIN antibodies, with $\alpha$ -tubulin serving as                                |
| 251 | a loading control. Statistical significance was determined using a two-tailed Student's                                    |
| 252 | <i>t</i> -test for <b>a</b> and <b>d</b> . All data were represented as mean $\pm$ SEM. *, <i>P</i> <0.05; ***, <i>P</i> < |
| 253 | 0.001; ****, $P < 0.0001$ . Below the asterisks are the precise statistical results. Source                                |
| 254 | data are provided as a Source Data file.                                                                                   |

259


260



- **a**, Analysis of HEPSIN interactomes using STRING database (<u>http://string-db.org</u>).
- 263 The results revealed many potential HEPSIN-interacting proteins; among them,
- 264 GLP1R caught our attention because of its important role in pancreatic  $\beta$  cells. **b**,
- 265 Determination of SPINT1, HEPSIN, and GLP1R interactions in a complex using co-

| 266 | immunoprecipitation assays. HEK293T cells were transiently transfected with Spint1,          |
|-----|----------------------------------------------------------------------------------------------|
| 267 | Hepsin, and Glp1r plasmids. Cell lysates were then subjected to immunoprecipitation          |
| 268 | (IP) using anti-SPINT1 (left panel), anti-HEPSIN (middle panel), and anti-FLAG-tag           |
| 269 | antibodies (right panel, for N-terminally FLAG-tagged GLP1R). IgG served as IP               |
| 270 | control. Immunoprecipitated proteins were then subjected to immunoblotting using             |
| 271 | anti-SPINT1, anti-HEPSIN, and anti-FLAG-tag antibodies, with c-Myc as input                  |
| 272 | control. c, Examination of the protein-protein interaction among SPINT1, HEPSIN,             |
| 273 | and GLP1R in human islets using the proximity ligation assay (PLA). Human                    |
| 274 | pancreatic sections were subjected to PLA using two pairs of primary antibodies: anti-       |
| 275 | GLP1R vs. anti-SPINT1 and anti-GLP1R vs. anti-HEPSIN. Positive interaction                   |
| 276 | signals in PLA were visualized as red puncta. The samples were also                          |
| 277 | immunohistochemically stained using an anti-insulin antibody (green). Nuclei were            |
| 278 | counterstained with DAPI (blue). A set of representative images after the PLA                |
| 279 | analysis was shown. Scale bar, 20 $\mu$ m. <b>d</b> , Quantification of PLA results in human |
| 280 | islets in <b>c</b> . The red puncta in insulin-positive areas were counted and statistically |
| 281 | calculated from three independent experiments using a two-tailed Student's t-test. In        |
| 282 | the box plots, the boxes span from the 25th to the 75th percentiles, with a line             |
| 283 | indicating the median. Whiskers extend to values within 1.5 times the interquartile          |
| 284 | range, defined as the difference between the 25th and 75th percentiles. ****, $P <$          |

- 285 0.0001. Below the asterisks are the precise statistical results. Source data are provided
- as a Source Data file.

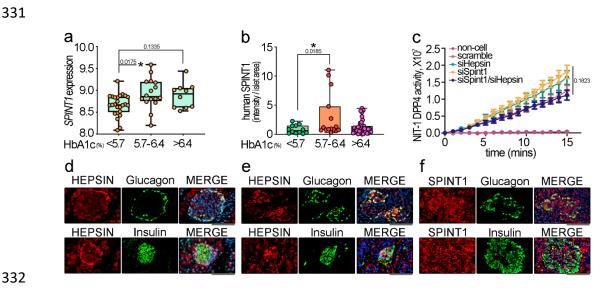


289

Supplementary Fig. 8. Examination of the Extendin-4 inducing insulin levels in *Spint1* knockout mice and exploring the roles of SPINT1 and HEPSIN in

## 292 GLP1R-related signaling pathways.

| <b>293 a</b> , Effect of Ex4 on upregulating insulin level in $Spint 1^{fl/fl}$ and $Spint 1^{-/-}$ mice | 293 | a, Effect of Ex4 on u | pregulating insulin | level in Spint lfl/fl | and Spint1 <sup>-/-</sup> mice 1 |
|----------------------------------------------------------------------------------------------------------|-----|-----------------------|---------------------|-----------------------|----------------------------------|
|----------------------------------------------------------------------------------------------------------|-----|-----------------------|---------------------|-----------------------|----------------------------------|


294 minutes post-administration. We injected Ex4 into mice following oral gavage of

- 295 glucose. Details of the experimental procedure are provided in Fig. 6k. Insulin levels
- were measured 15 minutes post-administration using an ELISA kit (n = 4 per group).
- **297 b**, Ex4-induced fold change in time-integrated insulin increases in  $Spint l^{fl/l}$  and
- 298 Spint1<sup>-/-</sup> mice described in Fig. 6l. Ex4 upregulated the normalized insulin response
- 299 over time (represented by insulin AUC/  $\beta$  cell mass) approximately twofold in
- 300 Spint  $l^{fl/fl}$  mice compared to that in Spint  $l^{-/-}$  mice after Ex4 treatment. **c**, Spint 1

| 301 | silencing on the phosphorylation levels of ERK, P38, AKT, and GSK3 $\alpha$ in NIT-1                             |
|-----|------------------------------------------------------------------------------------------------------------------|
| 302 | cells. Cells were transfected with siSpint1. Scramble RNAs were used as a control.                               |
| 303 | Two days after transfection, cell lysates were collected and subjected to western blot                           |
| 304 | analysis using anti-phospho-ERK, anti-ERK, anti-phospho-P38, anti-P38, anti-                                     |
| 305 | phospho-AKT(T308), anti-phospho-AKT(S473), anti-AKT, anti-phosphoGSK3 $\alpha$                                   |
| 306 | (T279), anti-phospho-GSK3 $\alpha$ (S21) and anti-GSK3 $\alpha$ antibodies. $\alpha$ -tubulin and $\beta$ -actin |
| 307 | served as loading controls. Western blot results were statistically calculated from                              |
| 308 | three independent experiments. The mean values after quantification are shown at the                             |
| 309 | bottom of each blot. d, Examination of GLP1R's role in the MAFA expression in                                    |
| 310 | NIT-1 cells. Cells were transfected with siGlp1r or scramble RNA (control). Two                                  |
| 311 | days after transfection, cells were treated with or without 25 nM Exendin-4 (Ex4) for                            |
| 312 | 24 hours. Cell lysates were then collected and subjected to immunoblotting using anti-                           |
| 313 | MAFA and anti-GAPDH antibodies. The mean values of MAFA protein levels were                                      |
| 314 | statistically calculated with normalization to GADPH from three independent                                      |
| 315 | experiments using ImageJ and shown at the bottom of the MAFA blot. e-f,                                          |
| 316 | Immunoblot analysis of the tyrosine phosphorylation levels of EGFR, IGF1R, and                                   |
| 317 | INR in Spint1-silenced NIT-1 cells. Cells were transfected with siSpint1. Scramble                               |
| 318 | RNAs were used as a control. Two days after transfection, cell lysates were collected                            |
| 319 | and subjected to western blot analysis using anti-phosphoEGFR (P-EGFR), anti-                                    |

```
25
```

| 320 | EGFR, anti-phosphoIGF1R (P-IGF1R), anti-IGF1R, anti-phospho-Insulin receptor (P-                 |
|-----|--------------------------------------------------------------------------------------------------|
| 321 | INR), and anti-Insulin receptor (INR). $\alpha$ -tubulin served as a loading control. ImageJ     |
| 322 | measured the mean values of tyrosine phosphorylation levels of these proteins with               |
| 323 | normalization to their corresponding protein levels from three independent                       |
| 324 | experiments. Statistical significance was determined using a two-tailed Student's t-             |
| 325 | test for all panels. In the box plots, the boxes span from the 25th to the 75th                  |
| 326 | percentiles, with a line indicating the median. Whiskers extend to values within 1.5             |
| 327 | times the interquartile range, defined as the difference between the 25th and 75th               |
| 328 | percentiles. **, $P < 0.01$ ; ***, $P < 0.001$ . Below the asterisks are the precise statistical |
| 329 | results. Source data are provided as a Source Data file.                                         |



Supplementary Fig. 9. Analysis of *SPINT1* expression in human diabetes
patients, DPP4 activities in *Spint1-* or *Hepsin-silenced* NIT-1 cells, and the

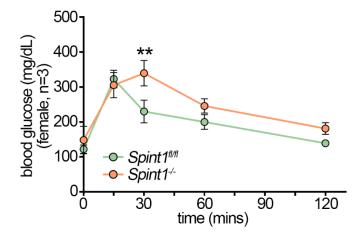
expression patterns of SPINT1 and HEPSIN in mouse and human islets.

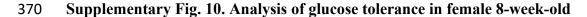
**a**, Analysis of *SPINT1* mRNA levels in prediabetes and diabetes patients. Using the

337 GSE38642 dataset, we categorized the patients into three groups based on their blood

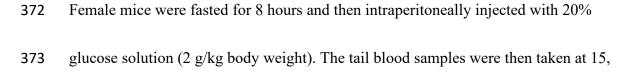
338 glycated hemoglobin (HbA1c) values (orange spots) levels. Non-diabetes (n = 25):

HbA1c < 5.7%, Prediabetes (n = 16): HbA1c 5.7% to 6.4%, and Diabetes (n = 10):

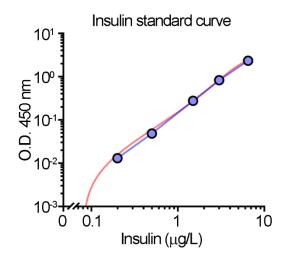

HbA1c > 6.4%. The *SPINT1* expression levels in the human pancreas among these


- 341 three groups were statistically calculated. **b**, Analysis of SPINT1 expression levels in
- the islets of human pancreas samples with different HbA1c levels after IHC analysis.
- 343 Human pancreas samples (n=66) were obtained from the Department of Pathology,
- 344 National Taiwan University Hospital. All cases were categorized into two groups

| 345 | [undiagnosed diabetes (n = 27) and diagnosed diabetes (n = 39, HbA1c > $6.4\%$ )]                   |
|-----|-----------------------------------------------------------------------------------------------------|
| 346 | according to their clinical records. The undiagnosed diabetes group was further                     |
| 347 | classified into two sub-groups according to their HbA1c values: HbA1c $< 5.7\%$ (n =                |
| 348 | 12) and HbA1c 5.7% to 6.4% (n = 15). Human pancreatic sections underwent IHC for                    |
| 349 | SPINT1 detection, and ImageJ was employed to measure the intensity of SPINT1                        |
| 350 | signals per islet. c, Analysis of DPP4 activities in Spint1- or Hepsin-silenced NIT-1               |
| 351 | cells. NIT-1 cells were transfected with siSpint1 or siHepsin. Control cells were                   |
| 352 | transfected with scramble RNAs. DPP4 activities were measured every 1 minute                        |
| 353 | using a spectrophotometer at the wavelength 450 nm and statistically calculated from                |
| 354 | three independent experiments ( $n = 3$ ). <b>d-f</b> , Localization of SPINT1 and HEPSIN in        |
| 355 | the $\alpha$ cells (glucagon) and $\beta$ cells (insulin) of pancreatic islets. Mouse (d) and human |
| 356 | (e and f) pancreatic sections were subjected to immunofluorescence microscopy using                 |
| 357 | anti-SPINT1 or anti-HEPSIN antibodies, visualized as red. Nuclei were                               |
| 358 | counterstained with DAPI (blue). Subsequently, the samples were stripped (see                       |
| 359 | Methods section) and subjected to immunofluorescence microscopy for insulin                         |
| 360 | (green) and glucagon (green) detection. Scale bar, 20 $\mu$ m. Statistical significance was         |
| 361 | assessed by a one-way ANOVA with the Tukey's post-hoc test for all panels. In the                   |
| 362 | box plots, the boxes span from the 25th to the 75th percentiles, with a line indicating             |
| 363 | the median. Whiskers extend to values within 1.5 times the interquartile range,                     |


- defined as the difference between the 25th and 75th percentiles. \*, P < 0.05. Below the
- asterisks are the precise statistical results. Source data are provided as a Source Data

366 file.






371 *Spint1<sup>fl/fl</sup>* and *Spint1<sup>-/-</sup>* mice.



- 374 30, 60, and 120 minutes after injection and used to examine the glucose levels using a
- 375 glucometer (n = 3 per group). A two-way ANOVA followed by Sidak's multiple
- 376 comparison analysis assessed statistical significance. All data were represented as
- 377 mean  $\pm$  SEM. \*\*, *P* <0.01. Source data are provided as a Source Data file.



# 380 Supplementary Fig. 11. Insulin standard curve.

381 The logit-log plot represents the insulin ELISA standard curve, measured in

382 quadruplicate using four-parameter logistic regression. It was generated by plotting

- insulin concentrations ranging from 0 to 6.5  $\mu$ g/L, including values of 0.2, 0.5, 1.5,
- and 3.0  $\mu$ g/L (n=3). Source data are provided as a Source Data file.

# 386 Supplementary Methods

| 387 | Liquid chromatography with tandem mass spectrometry (LC-MS/MS)                                |
|-----|-----------------------------------------------------------------------------------------------|
| 388 | LC-MS/MS analysis was performed on a nanoACQUITY UPLC system (Waters,                         |
| 389 | Milford, MA) connected to the LTQ Orbitrap Velos hybrid mass spectrometer                     |
| 390 | (Thermo Electron, Bremen, Germany) equipped with a PicoView nanospray interface               |
| 391 | (New Objective, Woburn, MA). Peptide mixtures were loaded onto a 75 $\mu$ m ID, 25            |
| 392 | cm length C18 BEH column (Waters, Milford, MA) and were separated using a                     |
| 393 | segmented gradient at a 300 nl/min flow rate. Briefly, survey full scan MS spectra            |
| 394 | were acquired in the orbitrap (m/z 350–1600) with the resolution set to 60 K at m/z           |
| 395 | 400 and automatic gain control (AGC) target at $10^6$ . The 20 most intense ions were         |
| 396 | sequentially isolated for collision-induced dissociation MS/MS fragmentation and              |
| 397 | detection in the linear ion trap (AGC target at 10 <sup>4</sup> ). Charge state screening was |
| 398 | enabled for +2, +3, +4, and higher.                                                           |
| 399 | Data analysis, Functional annotation, and Ingenuity Pathway Analysis                          |
| 400 | Raw MS data were analyzed using the MaxQuant program (version 2.2.0.0). The                   |
| 401 | proteins and peptides required a false discovery rate (FDR) of 0.01 and a minimum             |
| 402 | peptide length of 6 amino acids. MS/MS spectra were searched against the                      |
| 403 | UNIPROTKB/SWISS-PROT database. SILAC states of peptides were determined                       |
| 404 | using the MaxQuant program based on mass differences between SILAC peptide                    |

| 405 | pairs. Next, the information was used for searches with fixed Arg10 or Lys8                          |
|-----|------------------------------------------------------------------------------------------------------|
| 406 | modifications. We chose those identified proteins present in Spint1-/-/NIT-1 and                     |
| 407 | Spint 1 <sup>fl/fl</sup> /NIT-1 samples for further analysis. Differentially regulated proteins were |
| 408 | sorted into two groups according to the Spint1-/-/NIT-1 to Spint1/fl/NIT-1 protein ratio             |
| 409 | $(\log_2 (ratio) > 0.5, up$ -regulated group; $\log_2 (ratio) < -0.5, down$ -regulated). Each        |
| 410 | protein group was uploaded to the Database for Annotation, Visualization, and                        |
| 411 | Integrated Discovery (DAVID) (https://david.ncifcrf.gov/tools.jsp) gene                              |
| 412 | bioinformatics resources to identify Gene Ontology (GO) terms. All annotated                         |
| 413 | proteins with their protein ratios were analyzed using the Ingenuity Pathway Analysis                |
| 414 | (IPA) software (QIAGEN Inc., Hilden, Germany) to identify the highly regulated                       |
| 415 | pathways, which were ranked according to their log ratios ( $-\log P$ value).                        |
| 416 | Measurement of DPP4 activity                                                                         |
| 417 | The siRNA-transfected NIT-1 cells were replaced with serum-free media                                |
| 418 | containing 10 µM of a DPP4 artificial substrate (H-Gly-Pro-AMC, Merck Millipore).                    |
| 419 | After the administration of the DPP4 synthetic substrate, the fluorescence intensity                 |
| 420 | (excision wave: 360 nm; emission wave: 460 nm) was measured every minute within                      |
| 421 | the 15-minute period using a spectrophotometer.                                                      |
| 422 | Co-immunoprecipitation analysis                                                                      |

# 422 Co-immunoprecipitation analysis

| 423 | HEK293T cells were seeded at a density of $2x10^6$ cells in a 10-cm plate with          |
|-----|-----------------------------------------------------------------------------------------|
| 424 | DMEM. The next day, cells were transfected with three plasmids, each encoding           |
| 425 | 3xFlag-Glp1r-myc, Spint1-his-myc, and Hepsin-his-myc cDNA, using Lipofectamine          |
| 426 | 3000. After 48 hours, cells were lysed using immunoprecipitation (IP) buffer (1% Triton |
| 427 | X-100 in PBS), and cell lysates were centrifuged at 12,000 rpm at 4°C for 15 minutes.   |
| 428 | The supernatants were then collected and subjected to IP using anti-SPINT1, anti-       |
| 429 | HEPSIN, and anti-FLAG (for Flag-GLP1R protein, F3165, Sigma-Aldrich) antibodies         |
| 430 | at 4°C overnight. The samples were then incubated with protein A magnetic beads         |
| 431 | (28978116, Cytiva, USA) at 4°C for 2 hours, and the beads were then isolated using a    |
| 432 | magnetic rack. The beads were washed three times using IP buffer, and the proteins      |
| 433 | were eluted using elution buffer (1M glycine, pH 2.0). The samples were then subjected  |
| 434 | to immunoblotting analysis.                                                             |

**BrdU incorporation assay** 

*Spint1<sup>fl/fl</sup>* and *Spint1<sup>-/-</sup>* mice were treated with 1 mg/mL BrdU (HY-15910,
MedChemExpress) in their sterile drinking water for 14 days. BrdU-containing
drinking water was refreshed daily. After the BrdU treatment, mouse pancreases were
isolated and subjected to immunofluorescence microscopy. Before inoculation with the
anti-BrdU antibody (66241-1-lg, Proteintech), samples were incubated in 1M HCL for
30 minutes. After overnight incubation with anti-BrdU antibody, samples were treated

with fluorescent secondary antibody for 30 minutes. Following three PBS washes,
samples were explored to 0.25% Sudan Black B to minimize autofluorescence.
Subsequently, PBS washes were performed before covering with fluorescence
mounting reagent.

#### 446 Streptozotocin treatment to induce mouse diabetes

To induce mouse diabetes, mice were intraperitoneally injected with 40 mg/kg streptozotocin (STZ, Sigma-Aldrich) per day for five days, following a protocol established previously<sup>1</sup>. STZ solution was freshly prepared from STZ stock solution with a concentration of 6 mg/mL in 50 mM of sodium citrate buffer (pH 4.5). Mice then received a standard diet with 10% sucrose water. Five days after the treatment with STZ injection and 10% sucrose water, the mice were supplied with regular water.

#### 453 Lentiviral particle preparation and infection

The small hairpin RNAs [shHepsin #1 (TRCN0000054789) and shHepsin #2 (TRCN0000054790)] for HEPSIN depletion were obtained from the National RNAi Core Facility of Academia Sinica, Taiwan. An shRNA against luciferase (shLuc) was used as a control. Lentivirus was produced from the HEK293T transfectants with cotransfection of pCMVdR8.91, pMD.G, and pLKO.1-puro shRNA plasmids (with a ratio of 9: 1: 10) using Lipofectamine 3000 (DNA: liposome = 5  $\mu$ g: 15  $\mu$ L), according to the recommended protocol (Invitrogen, CA, USA). The conditioned media of the 461 transfected cells containing lentiviral particles were collected at 48 hours. For infection,

462 NIT-1 cells were seeded with a density of  $1 \times 10^6$  cells per 60-mm culture dish, and

463 50% (v/v) of the lentivirus-containing medium was added in a regular culture medium.

464 After incubation for 48 hours, the cells were subjected to Western Blot assay.

#### 465 Human pancreatic tissues

The Department of Pathology, National Taiwan University Hospital (NTUH) provided archived human pancreas tissues with the approval of the Research Ethics Committee of NTUH (case number: 202306101RINB). Written informed consent was obtained from all patients, and the protocol followed the Declaration of Helsinki. These archived human pancreatic tissues were obtained from patients previously admitted to NTUH, diagnosed with benign pancreatic neoplasms, and undergoing pancreatectomy; thirty-nine had diabetes, while twenty-seven did not.

# Supplementary Table S1

Table S1. Primers used to Southern Blot and Genotyping

Southern Blot probe (5'-3') TCAACCTTGATT

TCAACCTTGATTTTAGCCAAGAGTGACTTTGAACTCCTGATCTTCCTGCC

|                       | length (bp)                                                                              | Forward primer (5'-3')                       | Reverse primer (5'-3') |
|-----------------------|------------------------------------------------------------------------------------------|----------------------------------------------|------------------------|
| Spint1-lacZ<br>Spint1 | 461<br>656 (for wild-type <i>Spint1</i> )<br>690 (for <i>loxP</i> floxed <i>Spint1</i> ) | CAGGTGAAGGAAGCCTCAAG<br>GTCCAGCCCATCTTTAGCAG |                        |
| Cre                   | 280                                                                                      | ATGCTTCTGTCCGTTTGCCG                         | TGAGTGAACGAACCTGGTCG   |

# Supplementary Table S2

Table S2. Primers used to qPCR Forward primer (5'-3') mouse Reverse primer (5'-3') Spint1 CCGAAGGAGGGCTTCATCAAC GTTCAGTACCAGGGGCTTCTGC Mafa TTCAGCAAGGAGGAGGTCAT CCGCCAACTTCTCGTATTTC Hepsin TACCTTCCCTTTCGAGACCCT CCATAGAACTGTGTGTTACCCCA St14 CGCGGGACTCAAGTACAACTCC GCCTCGCTTCTCCACTTTCTTG Tmprss15 GCTGTGTGCGTTTTCTTAATGG GCACTCCCTAGTCCCAGAAGAT Tmprss7 TGTTGGAATGTTCCGCATCAC GGTTTACCACTTGCTGTACTGT Tmprss4 CAACCCCTCAACAACCGTGAT CTCAGCAGCACTGCAATGAT Tmprss2 ATGCTCCGAGGATTACAACGC CGAGGGCTAAACACAGCGATT lns1 GGGGAGCGTGGCTTCTTCTA ACCTCCAACGCCAAGGTCTG lns2 GGGGAGCGTGGCTTCTTCTAC CCACCTCCAGTGCCAAGGTC Gapdh AGGTCGGTGTGAACGGATTTG GGGGTCGTTGATGGCAACA Forward primer (5'-3') Reverse primer (5'-3') human TGGGTGGTCTGAGCTAGTCAC GACTTGAAGGTACAACCCCAG SPINT1 TTGTACAGGTCCCGCTCTTT AGCGAGAAGTGCCAACTCC MAFA CCCCTGCCCCTCACAGAATA AGTCAGCGCCATTGCAGAC HEPSIN TCCACAATGCCACGCTTCTGCA INS ACGAGGCTTCTTCTACACACCC GAPDH GAATTCGTCATGGATGACCTTGGCCAG AAAGGATCCACTGGCGTCTTCACCACC

# **Supplementary Table S3**

|            | company     | Catalog No. | Purpose        | Conditions       |
|------------|-------------|-------------|----------------|------------------|
| Rt-mSPINT1 | R&D         | 1141-PI-010 | Cell treatment | 0, 0.4, 0.8, and |
| protein    |             |             |                | 1.6 μg/mL        |
| His-tag    | ProteinTech | 66005-1-Ig  | Western blot   | 1:100 in 5%      |
| monoclonal |             |             |                | Milk             |
| antibody   |             |             |                |                  |

#### Recombinant protein and antibody used

# Reference

1. Wu KK, Huan Y. Streptozotocin-Induced Diabetic Models in Mice and Rats.

Current Protocols in Pharmacology, (2008).