Supplementary Information

Dual ligand-enabled iron and halogen-containing carboxylate-based photocatalysis for chloro/fluoro-polyhaloalkylation of alkenes

Wanru Han^{a†}, Zhenyan Zhao^{a†}, Kui Jiang^a, Yu Lan^{a,b,c*}, Xuehan Yu^a, Xiaoyu Jiang^a, Wei Yang^a, Donghui Wei^{a*}, Shi-Jun Li^{a,b*}, and Linbin Niu^{a,b*}

^a College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, Henan

^b State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang 453007, Henan

^c School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331

* Corresponding Authors: lanyu@cqu.edu.cn; donghuiwei@zzu.edu.cn; lishijunzong@zzu.edu.cn; nlb@zzu.edu.cn

⁺ W. Han and Z. Zhao contributed equally to this work.

Table of Contents

1. General information	3
2. Preparation of substrates	5
3. Experimental procedures for chloro/fluoro-polyhaloalkylation of alkenes	6
4. Mechanistic studies	. 16
5. Data for products	. 46
6. Reference	. 57
7. Copies of ¹ H NMR, ¹³ C NMR and ¹⁹ F NMR Spectra	. 58

1. General information

All reagents and catalysts were purchased from commercial sources and used without further purification, and all manipulations were carried out by standard Schlenk techniques. LEDs irradiation was accomplished using the photochemical reactors (Figure **S1**), $\lambda_{max} = 450$ nm (Figure **S2**). Thin layer chromatography (TLC) employed glass 0.20 mm-0.25 mm silica gel plates. Purification of products was accomplished using flash chromatography on silica gel. All the new compounds were characterized by ¹H NMR, ¹³C NMR, ¹⁹F NMR and ESI-HRMS. The known compounds were characterized by ¹H NMR, ¹³C NMR, ¹⁹F NMR and ESI-HRMS. NMR spectra were recorded on a Bruker 400 instrument operating at 400, 101, and 376 MHz for ¹H NMR, ¹³C NMR and ¹⁹F NMR respectively. Chemical shifts (δ) were reported in ppm, and coupling constants (*J*) are in Hertz (Hz). Data was reported in ppm using CDCl₃ (¹H NMR δ 7.26, ¹³C NMR δ 77.16) or DMSO-*d*₆ (¹H NMR δ 2.50, ¹³C NMR δ 39.53) as solvent unless otherwise specified. High-resolution mass data was recorded on mass spectrometers in the ESI mode.

Figure S1. The photochemical reactors.

Figure S2. The wavelength spectrum of photochemical reactors.

2. Preparation of substrates

To the solution of the corresponding acid (3.0 mmol) in dry CH_2Cl_2 (28.0 mL) was added dicyclohexylcarbodiimide (3.6 mmol), 4-dimethylaminopyridine (0.45 mmol) and alcohol (3.0 mmol). The reaction mixture was left stirring for 24 h. After full conversion, the precipitate was removed by filtration and the solvent was removed in vacuum. The residue was purified by silica gel column chromatography to afford the products (Figure **S3**).¹

$$R \xrightarrow{O} OH + HO \xrightarrow{Mn} \frac{4 \text{-DMAP, DCC}}{CH_2 Cl_2, 24 \text{ h, r.t.}} R \xrightarrow{O} O \xrightarrow{Mn}$$

Figure S3. Method A for the synthesis of non-activated alkenes. DCC: Dicyclohexylcarbodiimide, 4-DMAP: 4-Dimethylaminopyridine.

To the solution of the corresponding phenol (0.5 mmol) and K_2CO_3 (1.0 mmol) in acetone (20.0 mL) was added allyl bromide (0.6 mmol). The resulting mixture was then stirred at reflux for 12 h and then filtered through a celite pad and washed with EtOAc. The filtrate was concentrated and the residue was purified by silica gel column chromatography using petroleum ether/EtOAc as the eluent to afford the products (Figure S4).¹

Figure S4. Method B for the synthesis of non-activated alkenes.

To the solution of the heterocycle derivative (5.0 mmol) and K_2CO_3 (10.0 mmol) in acetone (15.0 mL) was added allyl bromide (6.0 mmol). Heat the reaction to 60 °C and stir for 2 h. After this time, quench the reaction with water. Extract the aqueous solution with ethyl acetone (×3), then wash the combined organic layers with brine and dry over Na₂SO₄, and remove the organic solvent under reduced pressure. Subject the residue to flash column chromatography on silica gel with hexanes/ethyl acetate as the eluent to afford the products (Figure **S5**).²

$$\underbrace{\bigwedge_{N}^{N} NH}_{N} + Br \underbrace{\bigwedge_{n}^{N}}_{r.t. \rightarrow 60 \ ^{\circ}C} \underbrace{\underset{2 \ h}{\overset{N}}}_{H_{2}O} \underbrace{\bigwedge_{N}^{N} \bigwedge_{N}}_{N} \underbrace{\underset{N}{}}_{N} \underbrace{\underset{N}{}} \underbrace{\underset{N}{}} \underbrace{\underset{N}{}} \underbrace$$

Figure S5. Method C for the synthesis of non-activated alkenes.

To a 50-mL Schlenk tube, iron(III) chloride (5.0 mmol) and silver trifluoroacetate (15.0 mmol) were dissolved in dichloroethane (15.0 mL) and reacted for 3 h at room temperature. The precipitate AgCl was filtered and the residue was washed with acetone. The corresponding filtrate was concentrated under reduced pressure and the resulting product was dried at 80 °C for 1 h. Iron(III) trifluoroacetate was obtained as red solid (Figure **S6**).³

$$3 \text{ CF}_3\text{COOAg} + \text{ FeCl}_3 \xrightarrow{\text{DCE, r.t.}} \text{Fe}(\text{CF}_3\text{COO})_3 + 3 \text{ AgCl}$$

Figure S6. The synthesis of Fe(CF₃COO)₃.

3. Experimental procedures for chloro/fluoro-polyhaloalkylation of alkenes

General procedure for stoichiometric experiments: A 25-mL Schlenk flask equipped with a magnetic bar was charged with $Fe(CF_3COO)_3$ (0.2 mmol). The flask was evacuated and refilled with N₂ for three times. The vessel was then charged with extra dry CH₃CN (1.0 mL), alkene **1** (0.2 mmol), CCl₃CN (1.0 mL). The reaction mixture was stirred under nitrogen atmosphere and irradiated by 365 nm LEDs for 24 h. After completion of the reaction, the system was diluted with EtOAc. After concentrated under vacuum, the resulting residue was purified by silica gel flash column chromatography to give the product **2**, and by-product (**bp-1**) (Figure **S7**).

Figure S7. Chloro-trifluoromethylation of alkene 1.

Data for bp-1:

5,7,7-Trichloro-7-cyanoheptyl 4-methylbenzoate (bp-1): 18.2 mg colorless liquid was isolated, yield: 25%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.93 (d, J = 8.2 Hz, 2H), 7.24 (d, J = 8.0 Hz, 2H), 4.33 (t, J = 6.3 Hz, 2H), 4.26 – 4.19 (m, 1H), 3.08 – 2.98 (m, 1H), 2.92 – 2.82 (m, 1H), 2.41 (s, 3H), 1.99 – 1.63 (m, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 166.66, 143.67, 129.58, 129.12, 127.49, 115.11, 66.42, 64.18, 56.40, 55.07, 37.97, 28.03, 22.57, 21.68. ESI-HRMS exact mass calculated for [C₁₆H₁₈Cl₃NO₂Na⁺]: 384.0295, found 384.0299.

General procedure for *Standard condition A*: A 25-mL Schlenk flask equipped with a magnetic bar was charged with $Fe(OTf)_3$ (0.02 mmol), L2 (0.03 mmol) and C_nF_mCOONa (0.6 mmol). The flask was evacuated and refilled with N₂ for three times. The vessel was then charged with extra dry CH₃CN (1.0 mL), alkene (0.2 mmol) and CCl₃CN (1.0 mL). The reaction mixture was stirred under nitrogen atmosphere and irradiated by blue LEDs for 24 h. After

completion of the reaction, the system was diluted with EtOAc. After concentrated under vacuum, the resulting residue was purified by silica gel flash column chromatography to give the products (Figure **S8**).

Figure S8. Iron LMCT photocatalysis for radical chloro-polyhaloalkylation of non-activated alkenes.

General procedure for *Standard condition B*: A 25-mL Schlenk flask equipped with a magnetic bar was charged with $Fe(OTf)_3$ (0.02 mmol), L4 (0.02 mmol), C_nX_mCOONa (0.6 mmol) and Selectfluor (0.3 mmol). The flask was evacuated and refilled with N₂ for three times. The vessel was then charged with extra dry CH₃CN (2.0 mL), alkene (0.2 mmol) and anisole (0.08 mmol). The reaction mixture was stirred under nitrogen atmosphere and irradiated by blue LEDs for 12 h. After completion of the reaction, the system was diluted with EtOAc. After concentrated under vacuum, the resulting residue was purified by silica gel flash column chromatography to give the products (Figure S9).

Figure S9. Iron LMCT photocatalysis for radical fluoro-polyhaloalkylation of non-activated alkenes.

General procedure for gram-scale synthesis: A 200-mL Schlenk flask equipped with a magnetic bar was charged with $Fe(OTf)_3$ (1.2 mmol), L2 (1.8 mmol) and CF₃COONa (36.0 mmol). The flask was evacuated and refilled with N₂ for three times. The vessel was then charged with extra dry CH₃CN (60.0 mL), alkene 1 (12.0 mmol), CCl₃CN (60.0 mL). The reaction mixture was stirred under nitrogen atmosphere and irradiated by blue LEDs for 7 days. After completion of the reaction, the system was diluted with EtOAc. After concentrated under vacuum, the resulting residue was purified by silica gel flash column chromatography to give the product 2 (Figure S10).

Figure S10. The gram-scale synthesis.

General procedure for TON experiment: A 50-mL Schlenk flask equipped with a magnetic bar was charged with Fe(OTf)₃ (0.006 mmol), **L2** (0.009 mmol) and CF₃COONa (6.0 mmol). The flask was evacuated and refilled with N₂

for three times. The vessel was then charged with extra dry CH_3CN (10.0 mL), alkene **1** (2.0 mmol) and CCl_3CN (10.0 mL). The reaction mixture was stirred under nitrogen atmosphere and irradiated by blue LEDs for 7 days. After completion of the reaction, the system was diluted with EtOAc. After concentrated under vacuum, the resulting residue was purified by silica gel flash column chromatography to give the product **2**(Figure **S11**).

Figure S11. The TON experiment.

General procedure for chloro-trifluoromethylation of conjugated alkene: A 25-mL Schlenk flask equipped with a magnetic bar was charged with Fe(OTf)₃ (0.02 mmol), L2 (0.03 mmol) and CF₃COONa (0.6 mmol). The flask was evacuated and refilled with N₂ for three times. The vessel was then charged with extra dry CH₃CN (1.0 mL), conjugated alkene (0.2 mmol) and CCl₃CN (1.0 mL). The reaction mixture was stirred under nitrogen atmosphere and irradiated by blue LEDs for 24 h. After completion of the reaction, the system was diluted with EtOAc. After concentrated under vacuum, the resulting residue was purified by silica gel flash column chromatography to give the products. During the investigations of substrate scope, we found that conjugated alkene are not suitable for this reaction. Only product 44 was observed in a yield of 17% (Figure S12).

	Fe(OTf) ₃ (10 mol% L2 (15 mol%)		
1, 0.2 mmol	CCI ₃ CN:CH ₃ CN (1: 3.0 equiv. N ₂ , r.t., blue LEDs, 2	1) 24 h	2
Entry	Deviation from the standard conditions	Conv. (%)	Yield (%)
1	1	100	84
2	no Fe(OTf) ₃	19	n.d.
3	no L2	20	2
4	darkness	0	n.d.
5	purple LEDs	100	44
6	green LEDs	0	n.d.
7	only CCl ₃ CN as solvent	100	72
8	TFA instead of CF ₃ COONa	14	5
9	with 4 Å MS	100	82

Figure S13. The results of deviation from *Standard condition A*. Yields and conversion rates were determined by GC analysis of the crude reaction mixture, using biphenyl as an internal standard.

Investigations of ligand:

We investigated the substituent effects of bipyridines (Figure **S14**). For para-substituted bipyridines, it was very interesting that only strong electron-donating/withdrawing functional groups (**L2**, **L3**, **L8**) could efficiently dominate the desired transformation (Figure **S15**-a). However, when installing CN group in the ortho/meta-position of bpy, the yields of **2** dropped dramatically, while moderate electron-deficient substituent group COOMe or COOEt showcased good tuning ability as well (Figure **S15**-b). We have tried our best to understand the interesting substituent effects of bipyridines. However, due to the fact that the substituted bipyridine as the ligand not only influences the performance of in situ generated light-harvesting species but also enables the reducibility of [Fe^{II}/L] species (**III**), the substituent effect of bipyridine is complicated.

Figure S14. Investigations on the ligand. Yields were determined by GC analysis of the crude reaction mixture, using biphenyl as an internal standard.

Figure S15. Intriguing ligand effects.

Investigations of solvent:

	Fe(OTf) ₃ (10 mol%) L2 (15 mol%)	
1, 0.2 mmol	Solvent:CCl ₃ CN (1:1) 3.0 equiv. $N_2, r.t., blue LEDs, 24 h$	
Entry	Solvent	Yield (%)
1	CH ₃ CN	84
2	CCI ₃ CN	72
3	benzonitrile	60
4	DCE	80
5	DCM	83
6	DMF	4
7	DMSO	6
8	acetone	80
9	1,4-dioxane	29
10	THF	39
11	EtOAc	58
12	cyclohexane	7
13	toluene	7

Figure S16. Investigations on the solvent. Yields were determined by GC analysis of the crude reaction mixture, using biphenyl as an internal standard.

Investigations of chlorine source:

The investigations of chlorine source for the determination of *Standard condition A* were carried out (Figure **S17**). The results showed that trichloroacetonitrile was competent, while other potential chlorine sources such as trichloromethane, ethyl chloroacetate analogue, NCS (N-chlorosuccinimide), etc. could not yield the desired chloro-trifluoromethylation product. Therefore, the trichloroacetonitrile was chosen as the chlorine source.

Figure S17. Investigations on chlorine source. ^b3.0 equiv. [Cl], 2.0 mL CH₃CN.

Investigations of bromine source:

The investigations of bromine sources for the determination of *Standard condition A* were carried out (Figure **S18**). It was disappointing that no desired bromo-trifluoromethylation products were detected, while we observed these undesired by-products (**b-1**, **b-2** and **b-3**). It indicated that the bromination reagents were activated preferentially, causing that no CF₃ radical from CF₃COO⁻ was generated.

o M		Fe(OTf) ₃ (10 m L2 (15 mol9	$^{\text{hol}\%)}$ $\overset{\text{O}}{\longrightarrow}$ $\overset{\text{Br}}{\frown}$ $\overset{\text{CF}_3}{\frown}$	
1 , 0	.2 mmol 3.0 equ	CF ₃ COONa (3.0 uiv. CH ₃ CN (2.0 ml Blue LEDs,	equiv.) _), N ₂ 45 r.t.	
Entry	[Br]	Yield of 45 (%)	Yield of by-product (%)	
1		n.d.	b-1 , 48%	
2		n.d.	b-2 , 59%	
3	CBr ₄	n.d.	b-3 , 90%	
4	CHBr ₃	n.d.	1	
5	CHBr ₂ CN	n.d.	1	

Figure S18. Investigations on bromine source.

0	+ CICE COONs + Selectfluor -	Fe(OTf) ₃ (10 mol%) L4 (10 mol%)	
S3 , 0.2 mmol	3.0 equiv. 1.5 equiv.	anisole (40 mol%) CH ₃ CN, N ₂ Blue LEDs, r.t.	°0' ₩ ₆
Entry	Deviation from the standard o	conditions Conv. (%)	Yield (%)
1	/	100	75
2	no Fe(OTf) ₃	29	n.d.
3	no L4	20	n.d.
4	no anisole	100	trace
5	darkness	17	n.d.
6	green LEDs	24	n.d.

Figure S19. The results of deviation from *Standard condition B*. Yields and conversion rates were determined by GC analysis of the crude reaction mixture, using biphenyl as an internal standard.

As shown in Figure **S19**, under the standard condition, product **3** could be obtained in 75% yield and 100% conversion rate with anisole (Entry 1). However, there was trace amount of product detected in absence of anisole, but the conversion rate still remained 100% (Entry 4). Based on previous reports,⁴ anisole was considered to act as a redox buffer to reduce the reactivity of N radical cation generated from Selectfluor to avoid alkene converting into aminated products (Figure **S20**).

BF₄ XIII

2BF₄ XI

SET

IX

.C_nX_m

xv

Figure S20. Proposed mechanism for fluoro-polyhaloalkylation of alkenes with anisole as a redox buffer.

Ph^{-O.}

Redox buffer

SET

[Fe^{III}]•Ly

X_mC_n

X = F, Cl, Br

ò

(OOCC_nX_m)_{z-1} IV

4. Mechanistic studies

Details of DFT calculations: All the calculations have been performed using the Gaussian Program (Gaussian 16).⁵ The geometry optimization was conducted with the B3LYP functional and standard 6-31G(d) basis set. The solvent effect was considered by IEFPCM.^{6,7} Harmonic vibrational frequency calculations were performed for all stationary points to confirm whether they are local minima or transition state structures and to derive the thermochemical corrections for the enthalpies and free energies. Furthermore, the entropy in the solution model have been recalculated by the THERMO program⁸ which affords a new solution translational entropy.

Species / ΔG (kcal/mol)	Gibbs free energy	Gibbs free energy with the Fang's entropy correction
IntA / 0.0	-2842.263499	-2842.24605
L2	-724.277027	-724.26669
CF ₃ COO ⁻	-526.333494	-526.32218
CH ₃ CN	-132.745397	-132.73426
CCl ₃ CN	-1511.510476	-1511.49972
IntE / -42.2	-3566.589872	-3566.57998
IntF / -9.9	-3040.216289	-3040.20626
IntG / -16.5	-3172.960958	-3172.95109
IntG1 / -14.7	-3172.958151	-3172.94829
IntB / -20.8	-3305.701959	-3305.69224
IntB1 / -20.9	-3305.702152	-3305.69244
IntB2 / -15.9	-3305.694061	-3305.68434
IntD / -7.8	-4551.712437	-4551.70268
IntD1 / -6.0	-6063.20919	-6063.19964
IntC / -14.8	-3695.4926	-3695.48297
1	-655.279172	-655.26883

Free	energies	പ	nossible	light.	.harvesti	no s	necies
LICC	chei gies	UI.	possible	ngnu	-nai vesu	ug ə	pecies

Table S1. Free energies of possible light-harvesting species.

Cartesian coordination of the optimized structures

Z

IntA

Fe	-0.53682	-0.28552	0.91333
0	-2.27761	-0.20829	-0.30283
С	-2.59755	0.83104	0.33050
0	-1.82692	1.27988	1.23478
0	0.60677	0.59827	-0.54727
С	0.77005	-0.53812	-1.09186
0	0.30095	-1.57113	-0.54475
0	-0.16204	-0.38388	2.94826
С	-0.88894	-1.42008	3.00944
0	-1.42439	-1.87342	1.95968
С	1.46689	-0.63406	-2.45912
С	-1.06988	-2.14651	4.35263
С	-3.93965	1.53461	0.06949
F	-3.78018	2.86353	0.09456
F	-4.44398	1.17618	-1.11415
F	-4.80713	1.18633	1.03496
F	2.38338	0.33031	-2.59413
F	2.05785	-1.82422	-2.60617
F	0.54181	-0.48902	-3.42413
F	-0.11418	-3.08424	4.47047
F	-0.95813	-1.28835	5.37175
F	-2.26597	-2.74121	4.40896

I	.2

С	-1.26392	-2.66566	-0.55264
С	-2.35527	-3.47760	-0.27746
С	-3.54496	-2.86626	0.14354
С	-3.57067	-1.47211	0.25956
С	-2.41058	-0.74688	-0.05388
N	-1.26531	-1.32738	-0.45043
Н	-0.32984	-3.11866	-0.87973
Н	-2.30140	-4.55587	-0.37593
Н	-4.45431	-0.95489	0.60831
С	-2.41077	0.74713	0.05170
С	-3.57079	1.47212	-0.26250
N	-1.26587	1.32786	0.44900
С	-3.54544	2.86628	-0.14646
Н	-4.45410	0.95473	-0.61182
С	-1.26482	2.66614	0.55121
С	-2.35615	3.47786	0.27532
Н	-0.33104	3.11933	0.87890
Н	-2.30256	4.55614	0.37382
0	-4.58543	3.68643	-0.41917
0	-4.58496	-3.68662	0.41557
С	-5.82189	-3.10615	0.84095

Η	-6.22562	-2.43165	0.07860
Η	-6.50581	-3.94178	0.98639
Η	-5.70176	-2.56440	1.78489
С	-5.82196	3.10571	-0.84538
Η	-6.22606	2.43113	-0.08329
Η	-6.50595	3.94121	-0.99127
Н	-5.70109	2.56399	-1.78924

$CF_{3}COO^{-}$

0	-1.77903	-0.70500	1.32873
С	-1.10276	-0.64742	2.37922
0	0.11612	-0.45547	2.56837
С	-1.95920	-0.88489	3.66978
F	-1.28450	-0.68401	4.82663
F	-3.04838	-0.07207	3.71422
F	-2.43252	-2.16142	3.71687

CH₃CN

С	-0.23446	-0.61292	-3.65840
N	-0.38236	-0.62883	-2.50688
С	-0.04884	-0.59288	-5.10516
Н	-0.84193	-1.16563	-5.59240
Η	-0.07850	0.43608	-5.47229
Н	0.91686	-1.03368	-5.36493

പ്പ

CCl₃CN

C-0.24899-0.61426-3.55447N-0.40111-0.63123-2.40471C-0.05889-0.59373-5.00417C1-1.37998-1.54372-5.77409C1-0.115161.11054-5.57186C11.53490-1.32546-5.39077

IntE

С	1.67411	-2.37402	0.02045
С	3.00964	-2.74748	0.02442
С	3.97890	-1.73688	-0.06453
С	3.55329	-0.39840	-0.14966
С	2.19839	-0.11411	-0.14593
N	1.26685	-1.09863	-0.06588
Н	0.89101	-3.12141	0.07829
Η	3.26833	-3.79495	0.09494
Н	4.30530	0.37685	-0.21238
С	1.64202	1.25971	-0.22428
С	2.43365	2.39641	-0.34830
N	0.29074	1.33194	-0.16903
С	1.81242	3.65360	-0.41960
Η	3.50900	2.30838	-0.39102
С	-0.30496	2.54210	-0.24658
С	0.40846	3.71530	-0.36985
Η	-1.38747	2.54000	-0.21257
Н	-0.09592	4.67172	-0.42874

Fe	-0.77867	-0.47491	0.03337
0	-0.83348	-0.80685	1.91757
С	-1.81675	-1.19718	2.67627
0	-2.86777	-1.71647	2.35150
0	-2.46926	0.44504	-0.07792
С	-3.57437	0.27452	-0.73504
0	-3.88489	-0.62822	-1.49241
0	-0.86299	-0.76278	-2.19951
С	-1.29398	-1.90071	-1.91771
0	-1.34918	-2.31894	-0.71619
С	-1.50833	-0.92498	4.17076
С	-4.57481	1.42263	-0.44408
С	-1.72687	-2.86478	-3.03454
F	-2.02436	-2.20240	-4.15991
F	-0.71657	-3.71908	-3.30070
F	-2.79657	-3.58412	-2.66566
F	-5.68128	1.31990	-1.19216
F	-4.00943	2.62463	-0.70099
F	-4.94303	1.41497	0.85350
F	-1.33860	0.39748	4.38362
F	-2.50160	-1.34864	4.96456
F	-0.37457	-1.55036	4.54896
0	2.45748	4.81781	-0.53669
С	3.89450	4.82724	-0.58974
Η	4.31978	4.41446	0.32943
Η	4.25537	4.26916	-1.45827
Н	4.17300	5.87521	-0.68507
0	5.30140	-1.93342	-0.07447
С	5.80702	-3.27707	0.00890
Н	5.49979	-3.74991	0.94588

H	5.46781	-3.87278	-0.84325
H	6.89095	-3.18066	-0.01703

IntF

С	0.27918	-2.42935	-0.95270
С	1.48086	-3.07332	-1.18788
С	2.67061	-2.34573	-1.01121
С	2.58943	-0.99729	-0.60813
С	1.34984	-0.42708	-0.39549
N	0.20447	-1.14306	-0.56721
Н	-0.66186	-2.95380	-1.07095
Н	1.47518	-4.10973	-1.49541
Н	3.50739	-0.44088	-0.47205
С	1.13446	0.97491	0.03073
С	2.14743	1.88935	0.24043
N	-0.17307	1.31617	0.20276
С	1.82299	3.20188	0.63915
Η	3.18946	1.63114	0.10515
С	-0.48509	2.56742	0.58470
С	0.47032	3.54168	0.81508
Н	-1.53964	2.78768	0.70389
Н	0.15596	4.53024	1.11964
Fe	-1.57432	-0.16072	-0.18901
0	-2.59675	0.16839	1.61439
С	-2.72839	-1.08383	1.73875
0	-2.27569	-1.85935	0.84980
0	-2.79429	1.23329	-1.21189

С	-2.93606	0.37838	-2.13020	С	2
0	-2.39248	-0.76041	-2.02262	N	1
С	-3.38666	-1.65895	3.00401	Η	1
F	-3.92277	-2.85862	2.75745	Н	3
F	-2.44917	-1.79252	3.95871	Н	4
F	-4.34198	-0.83700	3.45302	С	1
С	-3.71571	0.73509	-3.40658	С	2
F	-2.85435	1.21361	-4.32170	N	C
F	-4.31822	-0.34798	-3.90997	С	1
F	-4.63722	1.67028	-3.15397	Н	3
0	2.85280	4.02710	0.81689	С	-0
0	3.89906	-2.82631	-1.19310	С	0
С	4.06635	-4.19839	-1.59909	Η	-1
Н	3.59667	-4.37262	-2.57069	Η	-0
Н	5.14169	-4.34622	-1.67590	Fe	-0.
Н	3.65065	-4.87533	-0.84818	0	-2
С	2.60572	5.39005	1.21255	С	-3
Н	3.58921	5.84958	1.28853	0	-3
Н	2.01065	5.90835	0.45599	0	-0
Н	2.10298	5.42494	2.18261	С	-1

IntG

С	1.82458	-2.33271	0.32981
С	3.15853	-2.64926	0.47230
С	4.11211	-1.61857	0.38727
С	3.66620	-0.30481	0.16238

С	2.30224	-0.07191	0.02984
N	1.39355	-1.07250	0.10981
Η	1.05867	-3.09738	0.38288
Η	3.47537	-3.66994	0.64619
Η	4.36979	0.51164	0.09601
С	1.72041	1.27380	-0.20507
С	2.48269	2.42569	-0.34687
N	0.36532	1.30254	-0.27525
С	1.83085	3.65131	-0.57216
Η	3.55985	2.37809	-0.28864
С	-0.26036	2.48200	-0.49533
С	0.42566	3.66624	-0.64621
Н	-1.34123	2.44419	-0.55042
Н	-0.09941	4.59680	-0.82130
Fe	-0.64218	-0.50174	-0.08651
0	-2.37155	0.28450	-0.23081
С	-3.43078	0.06592	-0.95919
0	-3.65557	-0.87307	-1.69860
0	-0.62362	-0.99865	-2.14846
С	-1.03956	-2.14602	-1.83267
0	-1.14571	-2.48084	-0.61678
С	-4.47232	1.19843	-0.78104
С	-1.37165	-3.16896	-2.93041
F	-1.73426	-2.55578	-4.06285
F	-0.27896	-3.91660	-3.17959
F	-2.36153	-3.98142	-2.54057
F	-3.92107	2.39637	-1.07974
F	-5.53460	1.02021	-1.57422
F	-4.89978	1.25018	0.49563
С	-1.09936	-1.09365	3.07805

N	-0.92146	-0.88697	1.95397
С	-1.32176	-1.35659	4.48582
Η	-0.39080	-1.20196	5.03705
Η	-2.08940	-0.67785	4.86582
Η	-1.65389	-2.39021	4.61243
0	2.44699	4.82246	-0.72695
0	5.38947	-1.97568	0.53184
С	6.42017	-0.97433	0.45735
Η	6.29244	-0.22711	1.24537
Η	7.35463	-1.51156	0.60820
Η	6.42464	-0.49442	-0.52525
С	3.88444	4.88313	-0.67397
Η	4.32622	4.27224	-1.46578
Η	4.13397	5.93035	-0.83341
Н	4.24912	4.56046	0.30496

IntG1

С	1.94882	-2.53285	-0.13941
С	3.26295	-2.90017	0.05567
С	4.24043	-1.89407	0.16337
С	3.83901	-0.55118	0.06749
С	2.49279	-0.26359	-0.12676
Ν	1.56205	-1.24182	-0.22613
Η	1.17038	-3.27675	-0.25557
Η	3.54694	-3.94314	0.11881
Η	4.56123	0.24844	0.13722

С	1.96383	1.11537	-0.25372
С	2.75000	2.24834	-0.16045
N	0.62061	1.20084	-0.47464
С	2.15931	3.51929	-0.29798
Н	3.81517	2.19427	0.02054
С	0.05897	2.41541	-0.61317
С	0.77802	3.59623	-0.53549
Н	-1.00907	2.42938	-0.78746
Н	0.26126	4.53828	-0.65533
Fe	-0.42496	-0.61303	-0.51381
0	-2.20354	0.54391	-0.60610
С	-2.89024	-0.51570	-0.51577
0	-2.34064	-1.63764	-0.38471
0	-0.42248	-1.04273	-2.37203
С	-0.37567	-2.23651	-2.89529
0	-0.25029	-3.29991	-2.31485
С	-4.42149	-0.41306	-0.62068
С	-0.49316	-2.18338	-4.43765
F	-1.65070	-1.59771	-4.80321
F	0.51922	-1.46401	-4.96209
F	-0.45644	-3.41027	-4.97238
F	-4.76809	-0.27325	-1.91367
F	-5.01416	-1.51059	-0.13672
F	-4.87049	0.65421	0.05630
С	-0.67817	-0.75691	2.76903
N	-0.60427	-0.68084	1.61723
С	-0.77322	-0.85283	4.21346
Н	0.23044	-0.86591	4.64551
Н	-1.32542	0.00718	4.60049
Н	-1.29816	-1.77287	4.48256

0	2.98259	4.56201	-0.18659
С	2.44781	5.89410	-0.30107
Η	2.00396	6.04878	-1.28815
Н	1.70786	6.08106	0.48187
Н	3.29979	6.55857	-0.17072
0	5.49776	-2.30201	0.34642
С	6.55104	-1.32720	0.45046
Η	6.62175	-0.73379	-0.46536
Η	6.39237	-0.67559	1.31414
Н	7.46433	-1.90325	0.58704

IntB

С	1.79897	-2.28718	1.26455
С	3.09188	-2.75002	1.39314
С	4.14909	-1.92854	0.96514
С	3.84370	-0.66935	0.42441
С	2.51068	-0.28040	0.32994
N	1.50027	-1.07896	0.74623
Н	0.96045	-2.89339	1.58485
Н	3.29675	-3.72634	1.81429
Н	4.63003	-0.01102	0.08677
С	2.08758	1.03147	-0.22414
С	2.98217	1.98433	-0.70017
Ν	0.75107	1.24612	-0.22919
С	2.48316	3.20101	-1.19396
Н	4.04407	1.78969	-0.68946

С	0.27215	2.41802	-0.69890
С	1.09298	3.41294	-1.18534
Н	-0.80370	2.53872	-0.66495
Н	0.68252	4.34392	-1.55597
Fe	-0.48612	-0.31780	0.44864
0	-2.07003	0.73608	0.25320
С	-3.15890	0.96177	0.92690
0	-3.53402	0.44671	1.96256
0	-0.60891	-1.20441	-1.24943
С	-1.62357	-1.70613	-1.89259
0	-2.75588	-1.90490	-1.49481
С	-4.03353	2.02948	0.22058
С	-1.22912	-2.07271	-3.34652
F	-0.80684	-0.97790	-4.01340
F	-0.22386	-2.97258	-3.35577
F	-2.26229	-2.59664	-4.02016
F	-4.48697	1.56172	-0.96017
F	-5.09027	2.37543	0.96710
F	-3.31615	3.14807	-0.03049
С	-0.22247	0.95198	3.55604
N	-0.27557	0.50059	2.49237
С	-0.15787	1.51827	4.89230
Н	0.72757	1.14062	5.40934
Н	-0.10149	2.60758	4.82597
Н	-1.05294	1.23582	5.45217
0	3.23460	4.19384	-1.67657
0	5.38349	-2.41915	1.10990
С	6.51054	-1.63122	0.68957
Н	6.56592	-0.69825	1.25766
Н	7.38574	-2.24272	0.90148

~ •

Η	6.45860	-1.41980	-0.38216
С	4.66507	4.04778	-1.71052
Н	4.95433	3.20452	-2.34378
Н	5.03964	4.97517	-2.13991
Н	5.06644	3.91954	-0.70129
С	-2.13650	-2.73682	1.87962
N	-1.37906	-1.97580	1.44935
С	-3.08310	-3.69171	2.42197
Η	-3.84552	-3.15785	2.99499
Η	-3.55853	-4.23771	1.60335
Н	-2.56180	-4.39531	3.07579

IntB1

С	-1.14368	-2.65572	0.12719
С	-2.24690	-3.48213	0.17132
С	-3.52789	-2.90279	0.15077
С	-3.63348	-1.50399	0.08256
С	-2.46994	-0.74197	0.03819
N	-1.24268	-1.31117	0.06358
Η	-0.13702	-3.05599	0.13950
Η	-2.13793	-4.55836	0.22170
Η	-4.60180	-1.02668	0.06646
С	-2.47006	0.74222	-0.04057
С	-3.63372	1.50401	-0.08575
N	-1.24289	1.31168	-0.06501
С	-3.52836	2.90283	-0.15376

Н	-4.60195	1.02650	-0.07040
С	-1.14411	2.65624	-0.12847
С	-2.24747	3.48243	-0.17338
Н	-0.13751	3.05671	-0.13995
Н	-2.13868	4.55869	-0.22362
Fe	0.44955	0.00046	0.00035
0	1.63822	1.50212	-0.07663
С	2.76507	1.79209	0.50655
0	3.38305	1.14869	1.33238
0	1.63850	-1.50098	0.07931
С	2.76462	-1.79201	-0.50476
0	3.38192	-1.14984	-1.33204
С	3.30064	3.15929	0.01089
С	3.30010	-3.15895	-0.00826
F	3.58320	-3.10603	1.30945
F	2.37305	-4.12661	-0.18949
F	4.41153	-3.52316	-0.66025
F	2.37376	4.12698	0.19264
F	4.41215	3.52297	0.66303
F	3.58370	3.10700	-1.30687
С	0.39388	-0.14439	-3.29601
Ν	0.37391	-0.08335	-2.14152
С	0.42022	-0.22169	-4.74512
Н	-0.44951	-0.78149	-5.09778
Н	0.39843	0.78687	-5.16516
Н	1.33358	-0.72896	-5.06568
0	-4.56537	3.74429	-0.20127
0	-4.56476	-3.74446	0.19766
С	-5.90308	-3.21887	0.17690
Н	-6.08731	-2.66143	-0.74585

Η	-6.55589	-4.08893	0.21714
Н	-6.08380	-2.58135	1.04697
С	-5.90359	3.21838	-0.18131
Н	-6.08818	2.66080	0.74128
Н	-6.55657	4.08829	-0.22183
Н	-6.08367	2.58091	-1.05154
С	0.38435	0.14356	3.29689
N	0.37021	0.08396	2.14224
С	0.40287	0.21861	4.74620
Н	1.43081	0.35708	5.09020
Η	-0.20762	1.06273	5.07631
Н	0.00078	-0.70690	5.16566

IntB2

С	-0.80400	0.09856	-2.65922
С	-1.90842	0.14157	-3.48329
С	-3.18741	0.13152	-2.90030
С	-3.28617	0.07693	-1.50073
С	-2.12123	0.03185	-0.74149
N	-0.89431	0.04414	-1.31410
Η	0.19569	0.10729	-3.07438
Η	-1.80012	0.18394	-4.55981
Н	-4.25232	0.07335	-1.01911
С	-2.12125	-0.03130	0.74145
С	-3.28620	-0.07609	1.50068
N	-0.89434	-0.04383	1.31408

С	-3.18747	-0.13057	2.90026
Н	-4.25234	-0.07236	1.01904
С	-0.80405	-0.09816	2.65923
С	-1.90850	-0.14085	3.48327
Н	0.19562	-0.10708	3.07441
Н	-1.80023	-0.18312	4.55980
Fe	0.77165	-0.00016	0.00013
0	0.89802	1.92877	0.05005
С	1.86817	2.79126	0.07667
0	3.06969	2.59229	0.07747
0	0.89719	-1.92912	-0.05026
С	1.86705	-2.79194	-0.07693
0	3.06864	-2.59337	-0.07800
С	1.31839	4.24083	0.11155
С	1.31677	-4.24133	-0.11157
F	0.55028	-4.48613	0.97227
F	0.55163	-4.43386	-1.20694
F	2.30606	-5.14562	-0.13254
F	0.55306	4.43343	1.20678
F	2.30799	5.14477	0.13293
F	0.55223	4.48612	-0.97241
С	3.11475	-0.04261	2.32061
Ν	2.19328	-0.04051	1.62169
С	4.26439	-0.04457	3.20499
Н	4.86524	0.84987	3.02289
Н	3.92483	-0.04858	4.24391
Н	4.86838	-0.93559	3.01691
0	-4.22670	-0.17499	3.73757
0	-4.22661	0.17631	-3.73762
С	-5.56348	0.16569	-3.20678

Н	-5.73808	1.04263	-2.57714
Н	-6.21898	0.20023	-4.07499
Н	-5.74862	-0.75119	-2.64022
С	-5.56357	-0.16391	3.20671
Н	-5.73848	-1.04079	2.57709
Н	-6.21909	-0.19818	4.07492
Н	-5.74835	0.75304	2.64012
С	3.11496	0.04184	-2.32039
N	2.19335	0.03972	-1.62167
С	4.26479	0.04374	-3.20454
Н	4.86855	0.93496	-3.01666
Н	4.86580	-0.85050	-3.02198
Н	3.92544	0.04725	-4.24353

IntD

С	1.82878	-2.30730	0.33518
С	3.16016	-2.62300	0.49715
С	4.11609	-1.59410	0.41304
С	3.67411	-0.28171	0.16976
С	2.31291	-0.04834	0.01957
N	1.40110	-1.04810	0.09766
Η	1.06218	-3.07124	0.38688
Н	3.47363	-3.64221	0.68492
Н	4.37958	0.53292	0.10118
С	1.73539	1.29542	-0.23483
С	2.49682	2.44856	-0.36248

Ν	0.38135	1.32044	-0.33612
С	1.84622	3.67166	-0.60815
Н	3.57229	2.40516	-0.27692
С	-0.24374	2.49793	-0.57279
С	0.44243	3.68267	-0.71326
Н	-1.32344	2.45784	-0.64637
Н	-0.08090	4.61150	-0.90193
Fe	-0.61525	-0.47939	-0.17663
0	-2.35159	0.28414	-0.21691
С	-3.43589	0.05538	-0.90874
0	-3.68112	-0.89620	-1.62366
0	-0.65744	-1.03027	-2.18244
С	-1.05868	-2.18048	-1.83902
0	-1.12850	-2.49338	-0.61813
С	-4.46652	1.19570	-0.72143
С	-1.41377	-3.21437	-2.91920
F	-1.86542	-2.61175	-4.02471
F	-0.30895	-3.91648	-3.23381
F	-2.34634	-4.06373	-2.47389
F	-3.92481	2.37910	-1.08781
F	-5.56305	0.99290	-1.45928
F	-4.83428	1.29389	0.57021
С	-1.10289	-1.12762	3.05150
Ν	-0.91228	-0.89636	1.93710
С	-1.34811	-1.42989	4.46787
0	2.46198	4.84291	-0.75315
0	5.39020	-1.95068	0.57568
С	6.42421	-0.95165	0.50522
Н	6.28807	-0.19797	1.28553
Н	7.35534	-1.48986	0.67181

Η	6.44114	-0.48050	-0.48133
С	3.89797	4.90966	-0.66460
Η	4.36114	4.29701	-1.44256
Η	4.14685	5.95720	-0.82244
Η	4.23852	4.59267	0.32475
Cl	-2.35669	-0.11669	5.14867
Cl	0.23641	-1.51526	5.29812
Cl	-2.20112	-3.00207	4.55143

IntD1

С	0.92575	-0.43756	2.82260
С	1.78932	-0.39824	3.89616
С	3.17366	-0.43158	3.65226
С	3.61883	-0.50816	2.32217
С	2.68059	-0.54555	1.29688
N	1.34765	-0.50702	1.54254
Η	-0.14556	-0.41131	2.97857
Η	1.41585	-0.34181	4.91087
Η	4.67441	-0.53742	2.09753
С	3.05264	-0.62439	-0.13862
С	4.36554	-0.67571	-0.59051
N	2.00542	-0.63626	-0.99876
С	4.60868	-0.73882	-1.97368
Η	5.18590	-0.66729	0.11116
С	2.23853	-0.68826	-2.32925
С	3.51091	-0.74025	-2.85406

Н	1.36288	-0.67668	-2.96670
Н	3.67215	-0.78151	-3.92394
Fe	0.10085	-0.65224	-0.17088
0	-0.77826	-0.39298	-1.82532
С	-1.68755	0.37282	-2.36111
0	-2.36953	1.21972	-1.82029
0	-0.15814	-2.51926	0.02163
С	-1.16505	-3.29299	-0.28996
0	-2.29966	-2.97048	-0.57813
С	-1.84883	0.06695	-3.87122
С	-0.75043	-4.78495	-0.24372
F	0.25705	-5.02095	-1.10856
F	-0.32337	-5.11966	0.99032
F	-1.77413	-5.58576	-0.56468
F	-2.33669	-1.17664	-4.04814
F	-2.68027	0.93359	-4.46103
F	-0.65506	0.13458	-4.50120
С	0.30010	2.83117	-0.11657
N	0.23948	1.67812	-0.08565
С	0.37430	4.29562	-0.15865
0	5.81842	-0.79448	-2.53113
0	3.97034	-0.38680	4.72147
С	5.39816	-0.40937	4.54317
Н	5.72971	0.45588	3.96236
Н	5.81456	-0.36011	5.54749
Н	5.71362	-1.33680	4.05735
С	6.98894	-0.79463	-1.69333
Н	6.98879	-1.66218	-1.02779
Н	7.83254	-0.85601	-2.37815
Н	7.05007	0.13042	-1.11341

С	-2.81305	-0.08147	1.34271
N	-1.72196	-0.22249	0.99321
С	-4.19983	0.09797	1.79005
Cl	1.02056	4.86993	1.41252
Cl	1.46869	4.75869	-1.50174
Cl	-1.27659	4.93392	-0.43688
Cl	-4.84041	1.58774	1.03202
Cl	-4.18760	0.24511	3.57691
Cl	-5.13944	-1.33603	1.27543

IntC

С	2.49131	-1.96743	0.48780
С	3.85432	-2.15434	0.58019
С	4.70566	-1.06372	0.32713
С	4.13234	0.17440	-0.00749
С	2.74740	0.27682	-0.07988
N	1.93780	-0.78034	0.16282
Η	1.80195	-2.78424	0.66661
Н	4.26989	-3.11948	0.84154
Η	4.75524	1.03415	-0.20351
С	2.03818	1.53705	-0.41794
С	2.69114	2.72348	-0.72749
N	0.68480	1.45078	-0.40365
С	1.92667	3.86353	-1.03088
Η	3.77000	2.76554	-0.73627
С	-0.04951	2.54724	-0.69951

С	0.52364	3.76025	-1.01186
Н	-1.12470	2.41821	-0.68114
Н	-0.08792	4.62327	-1.24327
Fe	-0.15207	-0.40906	0.02286
0	-1.94609	0.20233	-0.27127
С	-2.96226	-0.17713	-0.99022
0	-3.06542	-1.15978	-1.70055
0	-0.04410	-1.10876	-2.02143
С	-0.38823	-2.23334	-1.58352
0	-0.50201	-2.43857	-0.33462
С	-4.16040	0.78875	-0.81213
С	-0.62288	-3.40343	-2.55162
F	-0.93272	-2.96153	-3.77548
F	0.50409	-4.13788	-2.63503
F	-1.61112	-4.19408	-2.11313
F	-3.78645	2.07009	-1.00619
F	-5.15390	0.50882	-1.66152
F	-4.64392	0.69059	0.44913
0	2.43155	5.05737	-1.34327
0	6.01677	-1.29327	0.42799
С	6.94402	-0.22247	0.17550
Н	6.79365	0.59635	0.88474
Н	7.93170	-0.65659	0.31909
Н	6.84581	0.14156	-0.85108
С	3.85898	5.23529	-1.39305
Н	4.30288	4.59032	-2.15640
Н	4.00946	6.27948	-1.66038
Н	4.30871	5.03509	-0.41679
С	2.39826	0.04460	5.13812
С	1.51555	-0.10748	4.07401

2	0.33680	-0.85305	4.24587
2	0.04854	-1.44187	5.49015
2	0.93856	-1.28658	6.54750
2	2.11147	-0.54514	6.37291
ł	3.30762	0.62156	5.00761
ł	1.72499	0.34955	3.11415
ł	-0.86203	-2.01469	5.61782
ł	0.71982	-1.74196	7.50755
ł	2.80263	-0.42597	7.20144
2	-0.58299	-1.00737	3.11044
)	-0.33764	-0.51081	1.98424
)	-1.67742	-1.67961	3.36133
2	-2.69442	-1.83493	2.31539
2	-3.89857	-2.51070	2.94348
ł	-2.25835	-2.43321	1.51208
ł	-2.93592	-0.84024	1.93693
2	-5.02093	-2.69860	1.91233
I	-3.59796	-3.48156	3.35413
ł	-4.25629	-1.89950	3.78025
2	-6.27666	-3.34898	2.52178
ł	-5.28956	-1.72824	1.47737
ł	-4.65687	-3.31971	1.08333
ł	-5.98588	-4.30820	2.97463
ł	-6.66245	-2.72021	3.33353
2	-7.35856	-3.58789	1.50414
2	-8.58461	-3.06435	1.54668
ł	-7.08940	-4.23918	0.67100
ł	-9.32257	-3.27366	0.77756
ł	-8.89631	-2.40838	2.35670
I	-0.07031	-2.40030	2.55070

1			
С	0.26672	2.10723	1.09541
C	1.63864	1.86713	1.09282
С	2.40242	2.15593	-0.04710
С	1.77964	2.68806	-1.18584
С	0.40621	2.92687	-1.17938
С	-0.35101	2.63746	-0.04100
Н	-0.32077	1.88222	1.98011
Н	2.13526	1.45635	1.96499
Н	2.37070	2.91097	-2.06631
Н	-0.07368	3.33862	-2.06179
Н	-1.42064	2.82473	-0.03938
С	3.86663	1.87974	0.00275
0	4.44410	1.41439	0.97218
0	4.49454	2.19972	-1.14445
С	5.92361	1.96359	-1.18631
С	6.41991	2.38445	-2.55961
Н	6.11099	0.90271	-0.99232
Н	6.39926	2.54026	-0.38668
С	7.93139	2.17352	-2.71282
Н	5.88382	1.81020	-3.32524
Н	6.17177	3.44070	-2.72096
С	8.45107	2.60166	-4.09809
Н	8.46585	2.73887	-1.93863
Н	8.17369	1.11535	-2.54634

Η	7.89242	2.04522	-4.86513	Η	10.23836	1.30649	-4.17403
Η	8.23662	3.66506	-4.26139	Н	11.89385	3.03039	-4.63961
С	9.92303	2.34648	-4.27406	Н	10.57538	4.32869	-4.63199
С	10.84257	3.27937	-4.52621				

Table S2. Cartesian coordinates of the optimized structures.

TD-DFT calculations of active species (IntB): The strongest absorption peak in range of experimental blue LEDs.

Excited State 9:	2.7293 eV	454.27 nm	f = 0.0269	$ = 8.830$
140B ->146B	-0.29224			
140B ->147B	-0.13503			
141B ->145B	0.47187			
141B ->146B	0.24184			
141B ->147B	-0.24184			
142B ->145B	-0.37854			
142B ->146B	-0.44382			
142B ->147B	-0.25705			
143B ->145B	0.24768			
143B ->146B	-0.17240			
143B ->147B	0.18416			

Table S3. TD-DFT calculations of active species IntB.

Figure S21. The calculated UV-Vis absorption spectrum of IntB.

Figure S22. The calculated UV-Vis absorption spectrum of IntE.

The neutral species **IntE** did not show obvious blue light absorption (Figure **S22**), and its excited state would not undergo effective LMCT due to the weak oxidizing ability.

Figure S23. The calculated UV-Vis absorption spectrum of IntF.

Figure S24. The key orbitals for the most possible absorption peak.

Free energies of the key species in the calculations

Species	Gibbs free energy	Gibbs free energy with the Fang's entropy correction
IntB	-3305.701959	-3305.69224
TS-B	-2779.530112	-2779.5203
CF ₃ :	-337.56521	-337.55589
CO ₂	-188.590143	-188.5811435
Int1	-655.279172	-655.26883
2-ts	-992.83103	-992.82083
Int3	-992.88293	-992.87267
Int4	-1511.51048	-1511.49973
5-ts	-2504.37128	-2504.36133
Int6	-1051.29444	-1051.28358
Product	-1453.13961	-1453.12941
7-ts	-1706.53846	-1706.52833
2b-ts	-1706.53846	-1706.52833
Int2b	-1706.56759	-1706.55746

Table S4. Free energies of the key species in the calculations.

Through DFT calculations, we can conclude that the CCl₂CN radical is responsible for the oxidation of iron(II) to regenerate iron(III) under the standard catalytic condition (Figure **S25**). As we can see, the addition of CF₃ radical to alkene **1** (Δ G = 2.4 kcal/mol) and the oxidation of iron(II) to iron(III) by CCl₂CN radical (Δ G = 5.7 kcal/mol) should both occur prior to the radical relay between CCl₂CN radical and **1** (Δ G = 15.1 kcal/mol). Therefore, compared to the stoichiometric reaction, the iron photocatalyzed condition that involves the oxidation of iron(II) to iron(III) by CCl₂CN radical can avoid the formation of CCl₂CN radical addition by-product.

Species	Energy
IntB	-2779.802282
IntB-re	-3306.15977
Int6	-1051.278898
Product	-1051.423348
IntB-ox	-3305.990416

 Table S5. Energy for the relevant species.

Cartesian coordination of the key species

CF ₃ [•]	

С	-0.07951	0.96759	-3.78974
F	-0.19969	2.28854	-3.82591
F	1.08347	0.57756	-4.29574
F	-1.09408	0.37638	-4.40765

CO_2

0	-1.35731	0.21979	-2.17243
С	-0.22717	0.40175	-1.93515
0	0.90278	0.58339	-1.69692

the server

Int1

С	0.26672	2.10723	1.09541
С	1.63864	1.86713	1.09282
С	2.40242	2.15593	-0.04710
С	1.77964	2.68806	-1.18584
С	0.40621	2.92687	-1.17938
С	-0.35101	2.63746	-0.04100
Н	-0.32077	1.88222	1.98011
Н	2.13526	1.45635	1.96499
Н	2.37070	2.91097	-2.06631
Н	-0.07368	3.33862	-2.06179
Н	-1.42064	2.82473	-0.03938
С	3.86663	1.87974	0.00275
0	4.44410	1.41439	0.97218
0	4.49454	2.19972	-1.14445
С	5.92361	1.96359	-1.18631
С	6.41991	2.38445	-2.55961

Η	6.11099	0.90271	-0.99232
Η	6.39926	2.54026	-0.38668
С	7.93139	2.17352	-2.71282
Η	5.88382	1.81020	-3.32524
Η	6.17177	3.44070	-2.72096
С	8.45107	2.60166	-4.09809
Η	8.46585	2.73887	-1.93863
Η	8.17369	1.11535	-2.54634
Η	7.89242	2.04522	-4.86513
Η	8.23662	3.66506	-4.26139
С	9.92303	2.34648	-4.27406
С	10.84257	3.27937	-4.52621
Н	10.23836	1.30649	-4.17403
Η	11.89385	3.03039	-4.63961
Н	10.57538	4.32869	-4.63199

2-ts

С	7.15945	0.06788	0.34764
С	6.04774	0.90685	0.35295
С	4.75515	0.36409	0.32340
С	4.58535	-1.02794	0.28842
С	5.70057	-1.86433	0.28314
С	6.98692	-1.31891	0.31268
Η	8.15833	0.49235	0.37063
Η	6.16181	1.98496	0.37987
Н	3.58613	-1.44656	0.26568

Η	5.56672	-2.94128	0.25600
Н	7.85343	-1.97336	0.30850
С	3.59977	1.30625	0.33075
0	3.70605	2.52180	0.36036
0	2.41250	0.67161	0.30119
С	1.23126	1.51045	0.30714
С	0.01782	0.59636	0.26649
Н	1.26829	2.17744	-0.55999
Н	1.24426	2.13064	1.20902
С	-1.29584	1.38795	0.27260
Н	0.07126	-0.03008	-0.63236
Н	0.05068	-0.07983	1.12949
С	-2.53484	0.47362	0.23217
Η	-1.34427	2.02025	1.16826
Η	-1.32011	2.06807	-0.58913
Н	-2.46593	-0.16782	-0.65962
Н	-2.53186	-0.19651	1.10051
С	-3.82544	1.23678	0.18165
С	-4.85437	1.07201	1.04008
Н	-3.93652	1.93978	-0.64446
Н	-5.74351	1.69210	0.98217
Н	-4.75588	0.44312	1.92115
С	-6.13890	-0.79522	0.05884
F	-7.21620	-0.33746	-0.58584
F	-6.51586	-1.64280	1.02215
F	-5.33111	-1.42093	-0.80101

Int3

С	0.14643	2.22592	1.14119
С	1.50800	1.93346	1.16101
С	2.30195	2.19791	0.03583
С	1.71975	2.75829	-1.11081
С	0.35655	3.04945	-1.12677
С	-0.43078	2.78435	-0.00299
Н	-0.46451	2.01970	2.01450
Н	1.97338	1.49988	2.03940
Н	2.33406	2.96211	-1.97989
Η	-0.09191	3.48296	-2.01527
Η	-1.49233	3.01244	-0.01875
С	3.75348	1.86595	0.10952
0	4.29600	1.37564	1.08677
0	4.41311	2.16567	-1.02539
С	5.83228	1.87392	-1.04321
С	6.36829	2.27607	-2.40709
Н	5.97467	0.80638	-0.84769
Н	6.31631	2.43083	-0.23461
С	7.87213	2.00460	-2.53390
Н	5.82299	1.72440	-3.18275
Η	6.16519	3.34153	-2.57093
С	8.43320	2.40495	-3.90788
Η	8.41485	2.54879	-1.75049
Н	8.06871	0.93779	-2.36296

Η	7.85137	1.88479	-4.69060
Η	8.25572	3.47539	-4.08627
С	9.88674	2.10148	-4.06667
С	10.74588	2.81624	-5.06092
Н	10.28788	1.20654	-3.59760
Н	11.80750	2.72504	-4.80960
Н	10.50295	3.88477	-5.10244
С	10.59748	2.29538	-6.48209
F	10.91897	0.98457	-6.57966
F	11.39734	2.96542	-7.34553
F	9.32795	2.42477	-6.93980

Int4

С	-0.81019	1.09728	0.00580
Ν	0.34969	1.09807	0.00495
С	-2.27266	1.09708	0.00531
Cl	-2.85192	-0.60364	-0.05964
Cl	-2.85228	1.89122	1.51068
Cl	-2.85143	2.00354	-1.43526

5-ts

С	-7.09199	0.33838	-0.08247
С	-5.87091	1.00740	-0.04883
С	-4.67031	0.28294	-0.05030
С	-4.70312	-1.11901	-0.08561
С	-5.92734	-1.78494	-0.11914
С	-7.12139	-1.05879	-0.11765
---	----------	----------	----------
Η	-8.01912	0.90307	-0.08121
Н	-5.82817	2.09068	-0.02114
Η	-3.77477	-1.67797	-0.08668
Н	-5.95041	-2.86993	-0.14642
Н	-8.07323	-1.58077	-0.14385
С	-3.39142	1.04778	-0.01392
0	-3.32066	2.26574	0.01662
0	-2.30770	0.24788	-0.01879
С	-1.01950	0.90836	0.01363
С	0.04989	-0.17134	-0.01609
Η	-0.95794	1.51805	0.92064
Н	-0.94491	1.57928	-0.84796
С	1.46179	0.42722	0.01044
Н	-0.09030	-0.83739	0.84393
Н	-0.08299	-0.78103	-0.91810
С	2.54862	-0.65426	-0.01516
Н	1.59670	1.09263	-0.85207
Н	1.58461	1.04498	0.90665
Н	2.45050	-1.32688	0.84708
Н	2.39201	-1.29637	-0.90102
С	3.95207	-0.14493	-0.10853
С	5.06416	-1.15237	-0.13518
Η	4.10836	0.76681	-0.68130
Н	4.82931	-1.91536	-0.89156
Η	5.15127	-1.68404	0.81790
С	6.42353	-0.59588	-0.50212
F	6.38257	0.08158	-1.67437
F	7.32289	-1.59470	-0.64666

F	6.91622	0.25219	0.42514
С	4.50988	1.88820	3.80320
С	3.19401	1.92474	4.39752
N	2.12161	1.93758	4.84597
Cl	5.13509	3.52350	3.51753
Cl	4.25558	0.98812	1.99526
Cl	5.62324	0.89247	4.76001

___ 0

Int6

С	-3.64616	2.84247	-0.25751
С	-2.35786	3.26561	-0.56035
N	-1.27062	3.62380	-0.81635
Cl	-4.18799	2.81267	1.36750
Cl	-4.71032	2.34420	-1.50413

st fr

Product

С	8.68152	0.49170	0.09723
С	7.43767	0.66702	0.69877
С	6.29677	0.06839	0.14532
С	6.41235	-0.70825	-1.01711
С	7.65911	-0.88131	-1.61623
С	8.79347	-0.28284	-1.06112
Н	9.56228	0.95684	0.52892
Н	7.33111	1.26424	1.59772

Η	5.53001	-1.17032	-1.44399
Н	7.74632	-1.48270	-2.51578
Η	9.76311	-0.41976	-1.53039
С	4.99024	0.28761	0.82856
0	4.84822	0.95677	1.83928
0	3.96940	-0.33587	0.20955
С	2.65981	-0.17691	0.80711
С	1.66958	-0.95469	-0.04421
Η	2.41573	0.88942	0.84421
Н	2.69371	-0.54988	1.83569
С	0.24150	-0.85039	0.50704
Η	1.70265	-0.57100	-1.07115
Η	1.98153	-2.00536	-0.08509
С	-0.76279	-1.63027	-0.34784
Η	0.21482	-1.23388	1.53567
Н	-0.05692	0.20268	0.55683
Н	-0.76428	-1.25141	-1.37698
Η	-0.44743	-2.68093	-0.39982
С	-2.19366	-1.63537	0.18927
С	-3.10789	-2.54898	-0.62673
Η	-2.20755	-1.93428	1.23889
Η	-2.59996	-3.51261	-0.73595
Н	-3.27469	-2.14948	-1.63022
С	-4.45499	-2.85980	-0.00733
F	-4.33304	-3.26386	1.28018
F	-5.06057	-3.86308	-0.68502
F	-5.30752	-1.81348	-0.01422
Cl	-2.86558	0.08676	0.20782

• L.C.

2b-ts

С	5.07266	-1.17410	0.98958
С	3.76322	-0.76442	1.22878
С	2.73522	-1.14348	0.35348
С	3.03032	-1.93803	-0.76437
С	4.34220	-2.34619	-1.00016
С	5.36347	-1.96561	-0.12539
Н	5.86547	-0.87835	1.66959
Н	3.51855	-0.15027	2.08847
Н	2.23507	-2.23105	-1.43956
Н	4.56830	-2.96098	-1.86583
Н	6.38426	-2.28544	-0.31213
С	1.35181	-0.67769	0.65560
0	1.05910	0.01442	1.61725
0	0.45425	-1.10263	-0.25701
С	-0.92778	-0.71240	-0.05843
С	-1.65499	-1.69300	0.85497
Н	-1.35790	-0.71193	-1.06255
Н	-0.95441	0.30185	0.34640
С	-3.14256	-1.34593	0.99356
Н	-1.54277	-2.70587	0.44954
Н	-1.17678	-1.68302	1.84103
С	-3.88776	-2.32972	1.91753
Н	-3.24956	-0.32844	1.39141
Н	-3.61750	-1.34714	0.00510
Н	-3.79799	-3.35359	1.53658
н	-3.38902	-2.31825	2.90012

С	-5.32750	-1.98056	2.12294
С	-6.38031	-2.84981	1.97481
Η	-5.54451	-0.94429	2.37989
Η	-7.36058	-2.56934	2.34687
Η	-6.19110	-3.91540	1.87716
С	-7.12324	-2.73246	-0.13101
С	-8.25399	-3.58971	-0.04265
N	-9.16079	-4.30616	0.11921
Cl	-7.52562	-1.04216	-0.42095
Cl	-5.83165	-3.35974	-1.15217

Int2b

С	-7.34997	-0.41334	0.87151
С	-6.11010	-0.93371	0.50866
С	-5.11228	-0.08891	0.00152
С	-5.36689	1.28355	-0.13807
С	-6.60899	1.80062	0.22680
С	-7.60064	0.95473	0.73094
Η	-8.11975	-1.07091	1.26326
Η	-5.89707	-1.99215	0.61075
Η	-4.59481	1.93571	-0.52888
Η	-6.80381	2.86302	0.11811

Η	-8.56708	1.36098	1.01397
С	-3.80368	-0.69761	-0.37176
0	-3.54641	-1.88527	-0.25798
0	-2.93241	0.21059	-0.85610
С	-1.62085	-0.27041	-1.24454
С	-0.66087	-0.28115	-0.06026
Η	-1.29127	0.42928	-2.01606
Η	-1.72469	-1.26646	-1.68080
С	0.75417	-0.70092	-0.47607
Η	-0.63858	0.71985	0.38774
Η	-1.04438	-0.96878	0.70226
С	1.73799	-0.71519	0.70397
Η	0.72339	-1.70035	-0.92980
Η	1.13119	-0.02011	-1.24995
Η	1.78169	0.28163	1.16644
Η	1.33448	-1.37743	1.49250
С	3.11285	-1.15730	0.32504
С	4.29804	-0.89305	1.19167
Η	3.24369	-1.81130	-0.53267
Η	4.76952	-1.82738	1.52904
Η	4.01302	-0.33206	2.08790
С	5.43352	-0.08216	0.51402
С	6.54675	0.15128	1.43812
Ν	7.40613	0.31875	2.19978
Cl	6.10087	-0.98014	-0.92120
Cl	4.82469	1.54331	-0.03005

Table S6. The coordination of the key species involved.

General procedure for UV-Vis experiments: UV-Vis absorption spectra were recorded in CH_3CN (1.0 mL) in 1 cm path quartz cuvettes using an Agilent 8453 spectrophotometer. $Fe(OTf)_3$ (0.01 mmol), Ligand (0.01 mmol), CF₃COONa (0.02 mmol) in 1.0 mL CH₃CN. The solution was stirred under darkness or 450 nm blue LEDs illumination and diluted before measurement.

Figure S26. UV-Vis spectra of light-harvesting species.

Figure S27. UV-Vis spectra for Fe(III)/ligand (L1/L2)-based species.

Figure S28. UV-Vis spectra for Fe(III)/ligand (L3/L8)-based species.

Figure S29. UV-Vis spectra of ligand-Fe(II) species. The solution was stirred under darkness and diluted before measurement.

General procedure for radical trapping experiment: Following general procedure of *Standard condition A*, a 25mL Schlenk flask equipped with magneton was charged with $Fe(OTf)_3$ (0.02 mmol), L2 (0.03 mmol), CF₃COONa (0.6 mmol), 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) (0.6 mmol) or butylated hydroxytoluene (BHT) (0.6 mmol). The flask was evacuated and refilled with N₂ for three times. The vessel was then charged with extra dry CH₃CN (1.0 mL), CCl₃CN (1.0 mL) and alkene 1 (0.2 mmol). The reaction mixture was stirred under nitrogen atmosphere and irradiated by blue LEDs for 24 h. After completion of the reaction, the system was diluted with EtOAc. Yields and conversion rates were determined by GC analysis of the crude reaction mixture, using biphenyl as an internal standard. Then crude reaction mixture was used for **ESI-HRMS** detection. **BHT-CF₃**: **ESI-HRMS** exact mass calculated for $[C_{16}H_{23}F_{3}ONa^{+}]$: 311.1593, found 311.1608 (Figures **S30** and **S31**).

Figure S30. Radical trapping experiment.

Figure S31. ESI-HRMS detection of BHT-CF3.

General procedure for radical clock experiment: Following general procedure of *Standard condition A*, a 25-mL Schlenk flask equipped with magneton was charged with $Fe(OTf)_3$ (0.02 mmol), L2 (0.03 mmol), CF₃COONa (0.6 mmol). The flask was evacuated and refilled with N₂ for three times. The vessel was then charged with extra dry CH₃CN (1.0 mL), CCl₃CN (1.0 mL) and N,N-diallyl-4-methylbenzenesulfonamide **41** (0.2 mmol). The reaction mixture was stirred under nitrogen atmosphere and irradiated by blue LEDs for 24 h. After completion of the reaction, the system was diluted with EtOAc. After concentrated under vacuum, the resulting residue was purified by silica gel flash column chromatography to give the product **42** in a yield of 63% (Figure S32).

Figure S32. Radical clock experiment.

General procedure for light on/off experiment: Following general procedure of *Standard condition A*, a 25-mL Schlenk flask equipped with magneton was charged with $Fe(OTf)_3$ (0.02 mmol), L2 (0.03 mmol) and CF₃COONa (0.6 mmol). The flask was evacuated and refilled with N₂ for three times. The vessel was then charged with extra dry CH₃CN (1.0 mL), CCl₃CN (1.0 mL) and alkene 1 (0.2 mmol). The reaction mixture was stirred under nitrogen atmosphere. Keep blue LEDs light on in light-on time span and turn off in light-off time span. After completion of the reaction, the system was diluted with EtOAc. Yields were determined by GC analysis of the crude reaction mixture, using biphenyl as an internal standard. Observed product 2 formation occurred only during periods of light irradiation, which ruled out a radical chain mechanism.

General procedure for kinetic studies of $Fe(OTf)_3/L2$: Following general procedure of *Standard condition A*, a 25-mL Schlenk flask equipped with magneton was charged with $Fe(OTf)_3$ (n mol%), L2 (1.5n mol%), and CF₃COONa (82.2 mg, 0.6 mmol). The flask was evacuated and refilled with N₂ for three times. The vessel was then charged with extra dry CH₃CN (1.0 mL), CCl₃CN (1.0 mL) and alkene 1 (0.2 mmol). The reaction mixture was stirred under nitrogen atmosphere and irradiated by blue LEDs for 8 h. After completion of the reaction, the system was diluted with EtOAc. Yields were determined by GC analysis of the crude reaction mixture, using biphenyl as an internal standard (Table S7).

n	$[\mathbf{Fe}^{\mathbf{III}}] (\mathrm{mol}^*\mathrm{L}^{-1})$	Yield (%)	Initial rate (mol*L ⁻¹ *h ⁻¹)
0	0	0	0
1	0.001	7	0.000875
3	0.003	15	0.001875
5	0.005	18	0.00225
6	0.006	20	0.0025
7	0.007	24	0.003
9	0.009	27	0.003375

10	0.01	30	0.00375
12	0.012	34	0.00425

Table S7. The kinetic studies of Fe(OTf)₃/L2.

Kinetic experiments of alkene 43 in different mixture solvents: Following general procedure of *Standard condition A*, a 25mL Schlenk flask equipped with magneton was charged with $Fe(OTf)_3$ (0.02 mmol), L2 (0.03 mmol) and CF₃COONa (0.6 mmol). The flask was evacuated and refilled with N₂ for three times. The vessel was then charged with extra dry CH₃CN or DCM (1.0 mL), CCl₃CN (1.0 mL) and alkene 43 (0.2 mmol). The reaction mixture was stirred under nitrogen atmosphere and irradiated by blue LEDs. After the reaction reached the specified time (10 h, 12 h, 14 h), the system was diluted with EtOAc. Yields were determined by GC analysis of the crude reaction mixture, using biphenyl as an internal standard (Figure S33).

(i) CH₃CN and CCl₃CN as solvents;

(ii) DCM and CCl₃CN as solvents.

Figure S33. Kinetic experiments in different mixture solvents.

ESI-HRMS detection of IntB: Fe(OTf)₃ (0.1 mmol), **L2** (0.1 mmol) and CF₃COONa (0.2 mmol) were diluted in extra dry CH₃CN (2.0 mL). The mixture was stirred in darkness for 8 h. After concentrated under vacuum, crude reaction mixture was used for **ESI-HRMS** detection. The corresponding mass of **IntB** was detected. Exact mass calculated for $[C_{20}H_{18}F_{6}FeN_{4}O_{6}^{+}]$: 580.0480, found: 580.0475 (Figure **S34**).

Figure S34. ESI-HRMS detection of IntB.

Regarding the roles of the dual ligands, now, we may say that OMe/CF₃-substituted bipyridine is responsible for the visible light absorption of **IntB** rather than UV light (based on the UV-Vis experiments, Figure 4d and Figures **S26**-**S29**), and CH₃CN/CCl₃CCN as the second ligand is beneficial to stabilize the whole structure of **IntB/IntD** (by comparing the calculation data of **IntB/IntD** and **IntF**, Figures **5a** and **5b**, Figures **S21** and **S23**, Tables **S1-S2**).

5. Data for products

5-Chloro-7,7,7-trifluoroheptyl 4-methylbenzoate (2): 46.4 mg colorless liquid was isolated, yield: 84%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.96 – 7.89 (m, 2H), 7.24 (d, J = 8.0 Hz, 2H), 4.32 (t, J = 6.3 Hz, 2H), 4.19 – 4.08 (m, 1H), 2.71 – 2.45 (m, 2H), 2.41 (s, 3H), 1.97 – 1.87 (m, 1H), 1.86 – 1.72 (m, 4H), 1.64 – 1.56 (m, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 166.80, 143.75, 129.69, 129.22, 127.66, 125.35 (q, J = 277.6 Hz), 64.41, 54.04 (q, J = 3.3 Hz), 42.58 (q, J = 28.4 Hz), 37.73, 28.18, 22.78, 21.78. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -63.79 (s, 3F). **ESI-HRMS** exact mass calculated for [C₁₅H₁₉ClF₃O₂⁺]: 323.1020, found 323.1033.

Methyl 12-chloro-10,12,12-trifluorododecanoate (3): 45.3 mg white solid was isolated, yield: 75%. ¹H NMR (400 MHz, Chloroform-*d*) δ 4.95 – 4.72 (m, 1H), 3.66 (s, 3H), 2.82 – 2.38 (m, 2H), 2.30 (t, *J* = 7.5 Hz, 2H), 1.80 – 1.66 (m, 1H), 1.65 – 1.57 (m, 3H), 1.47 – 1.23 (m, 10H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 174.42, 127.96 (td, *J* = 2.6, 292.5, Hz), 88.55 (dt, *J* = 172.6, 3.0 Hz), 51.60, 47.14 (q, *J* = 24.2 Hz), 35.16 (d, *J* = 20.7 Hz), 34.21, 29.33, 29.24, 29.23, 29.20, 25.04, 24.68 (d, *J* = 4.3 Hz). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -48.57 – -50.37 (m, 2F), -181.11 – 181.18 (m, 1F). **ESI-HRMS** exact mass calculated for [C₁₃H₂₂ClF₃O₂Na⁺]: 325.1153, found 325.1156.

3-Chloro-5,5,5-trifluoropentyl 4-methylbenzoate (4): 49.4 mg colorless liquid was isolated, yield: 84%. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.02 – 7.91 (m, 2H), 6.96 – 6.88 (m, 2H), 4.58 – 4.39 (m, 2H), 4.39 – 4.28 (m, 1H), 3.85 (s, 3H), 2.81 – 2.52 (m, 2H), 2.42 – 2.29 (m, 1H), 2.29 – 2.06 (m, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 166.44, 144.04, 129.69, 129.29, 127.18, 125.21 (q, J = 277.6 Hz), 61.05, 50.83 (q, J = 3.2 Hz), 42.57 (q, J = 28.7 Hz), 37.10, 21.74. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -63.98 (s, 3F). ESI-HRMS exact mass calculated for [C₁₃H₁₄ClF₃O₂Na⁺]: 317.0527, found 317.0536.

9-Chloro-11,11,11-trifluoroundecyl 4-methylbenzoate (5): 62.1 mg colorless liquid was isolated, yield: 82%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.93 (d, J = 8.2 Hz, 2H), 7.23 (d, J = 8.1 Hz, 2H), 4.30 (t, J = 6.6 Hz, 2H), 4.15 – 4.04 (m, 1H), 2.69 – 2.51 (m, 2H), 2.40 (s, 3H), 1.88 – 1.63 (m, 4H), 1.53 – 1.22 (m, 10H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 166.84, 143.54, 129.66, 129.13, 127.89, 125.42 (q, J = 277.6 Hz), 64.96, 54.27 (d, J = 3.1 Hz), 42.53 (q, J = 28.4 Hz), 38.15, 29.37, 29.23, 28.87, 28.82, 26.09, 25.97, 21.72. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -63.82 (s, 3F). **ESI-HRMS** exact mass calculated for [C₁₉H₂₆ClF₃O₂Na⁺]: 401.1466, found 401.1465.

3-Chloro-5,5,5-trifluoropentyl 4-methoxybenzoate (6): 49.0 mg colorless liquid was isolated, yield: 79%. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.00 – 7.95 (m, 2H), 6.95 – 6.90 (m, 2H), 4.57 – 4.42 (m, 2H), 4.38 – 4.29 (m, 1H), 3.85 (s, 3H), 2.79 – 2.56 (m, 2H), 2.41 – 2.31 (m, 1H), 2.18 – 2.08 (m, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 166.06, 163.64, 131.67, 125.21 (q, J = 277.6 Hz), 122.27, 113.80, 60.90, 55.48, 50.84 (q, J = 3.3 Hz), 42.52 (q, J = 28.6 Hz), 37.12. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -63.65 (s, 3F). ESI-HRMS exact mass calculated for [C₁₃H₁₄ClF₃O₃Na⁺]: 333.0476, found 333.0475.

5-Chloro-7,7,7-trifluoroheptyl 4-methoxybenzoate (7): 46.6 mg colorless liquid was isolated, yield: 69%. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.05 – 7.94 (m, 2H), 6.95 – 6.87 (m, 2H), 4.30 (t, J = 6.2 Hz, 2H), 4.18 – 4.01 (m, 1H), 3.84 (s, 3H), 2.72 – 2.44 (m, 2H), 1.96 – 1.85 (m, 1H), 1.84 – 1.67 (m, 4H), 1.65 – 1.53 (m, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 166.37, 163.44, 131.60, 125.33 (q, J = 277.6 Hz), 122.75, 113.68, 64.22, 55.44, 54.00 (q, J = 3.1 Hz), 42.45 (q, J = 28.4 Hz), 37.66, 28.13, 22.70. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -63.66 (s, 3F). **ESI-HRMS** exact mass calculated for [C₁₅H₁₈ClF₃O₃Na⁺]: 361.0789, found 361.0788.

5-Chloro-7,7,7-trifluoroheptyl 4-cyanobenzoate (8): 52.6 mg colorless liquid was isolated, yield: 79%. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.12 – 8.07 (d, 2H), 7.75 – 7.67 (d, 2H), 4.34 (t, J = 6.3 Hz, 2H), 4.16 – 4.07 (m, 1H), 2.69 – 2.44 (m, 2H), 1.94 – 1.85 (m, 1H), 1.84 – 1.66 (m, 4H), 1.64 – 1.51 (m, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 164.82, 134.02, 132.17, 129.98, 125.22 (q, J = 277.6 Hz), 117.90, 116.29, 65.23, 53.88 (q, J = 3.0 Hz), 42.27 (q, J = 28.4 Hz), 37.42, 27.83, 22.48. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -63.75 (s, 3F). **ESI-HRMS** exact mass calculated for [C₁₅H₁₆ClF₃NO₂⁺]: 334.0816, found 334.0828.

5-Chloro-7,7,7-trifluoroheptyl 2-methoxybenzoate (9): 41.2 mg colorless liquid was isolated, yield: 61%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.77 (dd, *J* = 7.9, 1.8 Hz, 1H), 7.50 – 7.41 (m, 1H), 7.01 – 6.92 (m, 2H), 4.31 (t, *J* = 6.2 Hz, 2H), 4.16 – 4.07 (m, 1H), 3.88 (s, 3H), 2.71 – 2.44 (m, 2H), 1.95 – 1.85 (m, 1H), 1.84 – 1.70 (m, 4H), 1.65 – 1.56 (m, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 166.34, 159.18, 133.53, 131.55, 125.32 (q, *J* = 277.6 Hz), 120.30, 120.17, 112.09, 64.34, 55.97, 54.03 (q, *J* = 3.1 Hz), 42.45 (q, *J* = 28.4 Hz), 37.66, 28.07, 22.69. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -63.79 (s, 3F). **ESI-HRMS** exact mass calculated for [C₁₅H₁₈ClF₃O₃Na⁺]: 361.1789, found 361.0799.

3-*Chloro-5,5,5-trifluoropentyl 3,5-bis(trifluoromethyl)benzoate* (10): 60.0 mg colorless liquid was isolated, yield: 72%. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.46 (s, 2H), 8.07 (s, 1H), 4.70 – 4.55 (m, 2H), 4.36 – 4.27 (m, 1H), 2.83 – 2.56 (m, 2H), 2.51 – 2.36 (m, 1H), 2.27 – 2.14 (m, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 163.83, 132.49 (q, *J* = 34.1 Hz), 132.17, 129.85 (d, *J* = 2.9 Hz), 126.86 – 126.60 (m), 125.16 (q, *J* = 277.5 Hz), 122.99 (q, *J* = 272.8 Hz), 62.65, 50.63 (q, *J* = 3.2 Hz), 42.63 (q, *J* = 28.8 Hz), 36.83. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -63.32 (s, 6F), -63.97 (s, 3F). **ESI-HRMS** exact mass calculated for [C₁₄H₁₀ClF₉O₂Na⁺]: 439.0118, found 439.0119.

5-Chloro-7,7,7-trifluoroheptyl 3,5-dimethoxybenzoate (11): 61.8 mg colorless liquid was isolated, yield: 84%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.66 (dd, J = 8.4, 1.9 Hz, 1H), 7.52 (d, J = 1.9 Hz, 1H), 6.87 (d, J = 8.4 Hz, 1H), 4.30 (t, J = 6.2 Hz, 2H), 4.17 – 4.06 (m, 1H), 3.91 (s, 3H), 3.91 (s, 3H), 2.71 – 2.44 (m, 2H), 1.97 – 1.85 (m, 1H), 1.84 – 1.66 (m, 4H), 1.64 – 1.52 (m, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 166.41, 153.07, 148.70, 125.29 (q, J = 277.6 Hz), 123.57, 122.84, 112.01, 110.32, 64.35, 56.05 (d, J = 2.9 Hz), 54.00 (q, J = 3.3 Hz), 54.00 (q, J = 3.3 Hz), 42.47 (q, J = 28.4 Hz), 37.62, 28.14, 22.66. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -63.79 (s, 3F). ESI-HRMS exact mass calculated for [C₁₆H₂₀ClF₃O₄Na⁺]: 391.0894, found 391.0891.

2-(5-Chloro-7,7,7-trifluoroheptyl)-2H-benzo[d][1,2,3]triazole (12): 45.1 mg colorless liquid was isolated, yield: 74%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.85 (dd, J = 6.5, 3.1 Hz, 2H), 7.36 (dd, J = 6.6, 3.1 Hz, 2H), 4.73 (t, J = 7.0 Hz, 2H), 4.11 – 4.00 (m, 1H), 2.67 – 2.38 (m, 2H), 2.25 – 2.04 (m, 2H), 1.89 – 1.70 (m, 2H), 1.69 – 1.57 (m, 1H), 1.55 – 1.42 (m, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 144.39, 126.37, 125.24 (q, J = 277.6 Hz), 118.02, 56.14, 53.72 (q, J = 3.1 Hz), 42.40 (q, J = 28.5 Hz), 37.35, 29.24, 23.12. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -63.79 (s, 3F). ESI-HRMS exact mass calculated for [C₁₃H₁₆ClF₃N₃⁺]: 306.0979, found 306.0985.

5-Chloro-7,7,7-trifluoroheptyl naphthalene-2-sulfonate (13): 53.6 mg colorless liquid was isolated, yield: 68%. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.49 (s, 1H), 7.99 (t, *J* = 7.8 Hz, 2H), 7.93 (d, *J* = 8.0 Hz, 1H), 7.86 (d, *J* = 8.6 Hz, 1H), 7.73 – 7.60 (m, 2H), 4.09 (t, *J* = 6.2 Hz, 2H), 4.01 (m, 1H), 2.66 – 2.33 (m, 2H), 1.87 – 1.51 (m, 5H), 1.53 – 1.37 (m, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 135.33, 132.82, 131.99, 129.81, 129.73, 129.49, 129.36, 128.07, 127.95, 125.23 (d, *J* = 277.6 Hz), 122.51, 70.39, 53.75 (q, *J* = 3.1 Hz), 42.28 (q, *J* = 28.4 Hz), 37.25, 28.18, 22.08. ¹⁹F

NMR (376 MHz, Chloroform-*d*) δ -63.73 (s, 3F). **ESI-HRMS** exact mass calculated for [C₁₇H₁₈ClF₃O₃SNa⁺]: 417.0509, found 417.0512.

5-Chloro-7,7,7-trifluoroheptyl 4-methylbenzenesulfonate (14): 48.0 mg colorless liquid was isolated, yield: 67%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.76 (d, J = 8.3 Hz, 2H), 7.33 (d, J = 8.0 Hz, 2H), 4.09 – 3.98 (m, 3H), 2.63 – 2.44 (m, 2H), 2.42 (s, 3H), 1.80 – 1.70 (m, 1H), 1.70 – 1.50 (m, 4H), 1.49 – 1.38 (m, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 144.97, 132.99, 129.95, 127.87, 125.25 (q, J = 277.6 Hz), 70.09, 53.78 (q, J = 3.1 Hz), 42.27 (q, J = 28.4 Hz), 37.25, 28.11, 22.05, 21.60. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -63.79 (s, 3F). ESI-HRMS exact mass calculated for [C₁₄H₁₈ClF₃O₃SNa⁺]: 381.0509, found 381.0508.

I-((*3-Chloro-5,5,5-trifluoropentyl)oxy*)-*4-methylbenzene* (15): 41.5 mg colorless liquid was isolated, yield: 78%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.10 (d, J = 8.3 Hz, 2H), 6.82 (d, J = 8.5 Hz, 2H), 4.50 – 4.41 (m, 1H), 4.21 – 4.10 (m, 2H), 2.75 – 2.62 (m, 2H), 2.40 – 2.33 (m, 1H), 2.30 (s, 3H), 2.18 – 2.08 (m, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 156.50, 130.54, 130.11, 125.35 (q, J = 277.6 Hz), 114.56, 64.11, 51.14 (q, J = 3.3 Hz), 42.69 (q, J = 28.6 Hz), 37.85, 20.60. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -63.61 (s, 3F). ESI-HRMS exact mass calculated for [C₁₂H₁₅ClF₃O⁺]: 267.1758, found 267.0756.

3-Chloro-1,1,1-trifluoroheptadecane (**16**): 44.0 mg colorless liquid was isolated, yield: 67%. ¹H NMR (400 MHz, Chloroform-*d*) δ 4.15 – 4.07 (m, 1H), 2.69 – 2.45 (m, 2H), 1.88 – 1.68 (m, 2H), 1.60 – 1.50 (m, 1H), 1.48 – 1.39 (m, 1H), 1.31 – 1.24 (m, 22H), 0.89 (t, *J* = 6.8 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 125.48 (q, *J* = 277.5 Hz), 54.34 (q, *J* = 3.1 Hz), 42.62 (q, *J* = 28.3 Hz), 38.26, 32.11, 29.87, 29.85, 29.83, 29.82, 29.78, 29.68, 29.57, 29.54, 29.04, 26.08, 22.87, 14.26. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -63.89 (s, 3F). **ESI-HRMS** exact mass calculated for [C₁₇H₃₂ClF₃Na⁺]: 351.2037, found 351.2039.

3-Chloro-5,5,5-trifluoro-3-methylpentyl 4-methoxybenzoate (17): 44.1 mg colorless liquid was isolated, yield: 66%. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.00 – 7.94 (m, 2H), 6.95 – 6.87 (m, 2H), 4.62 – 4.49 (m, 2H), 3.85 (s, 3H), 2.87 – 2.69 (m, 2H), 2.44 – 2.26 (m, 2H), 1.78 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 166.15, 163.61, 131.68, 125.02 (q, J = 278.7 Hz), 122.39, 113.79, 65.55 (d, J = 2.1 Hz), 61.12, 55.50, 47.13 (q, J = 27.8 Hz), 42.30, 30.49. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -60.53 (s, 3F). ESI-HRMS exact mass calculated for [C₁₄H₁₆ClF₃O₃Na⁺]: 347.0632, found 347.0631.

1-Chloro-2-(trifluoromethyl)cyclododecane (18): 34.0 mg colorless liquid was isolated, yield: 63%, d.r. = 4:1. Characterization data for a mixture of rotamers: ¹H NMR (400 MHz, Chloroform-*d*) δ 4.28 – 4.12 (m, 1H), 2.64 – 2.51 (m, 1H), 2.20 – 1.95 (m, 1H), 1.84 – 1.59 (m, 4H), 1.55 – 1.22 (m, 15H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 127.71 (q, *J* = 281.6 Hz), 55.23, 44.10 (q, *J* = 24.6 Hz), 34.96, 24.80, 23.52, 22.91, 22.87, 22.82, 22.65, 22.48, 21.72, 21.23. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -64.30 (s, 3F). **ESI-HRMS** exact mass calculated for [C₁₃H₂₂ClF₃Na⁺]: 293.1254, found 293.1270.

Methyl 10,12,12,12-tetrafluorododecanoate (19): 30.9 mg white solid was isolated, yield: 54%. ¹H NMR (400 MHz, Chloroform-*d*) δ 4.89 – 4.65 (m, 1H), 3.66 (s, 3H), 2.58 – 2.39 (m, 1H), 2.38 – 2.20 (m, 3H), 1.80 – 1.67 (m, 1H), 1.65 – 1.55 (m, 3H), 1.51 – 1.28 (m, 10H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 174.41, 125.64 (dq, *J* = 3.3, 276.8 Hz), 87.74 (dq, *J* = 172.0, 3.2 Hz), 51.58, 39.52 (qd, *J* = 28.4, 23.0 Hz), 35.12 (d, *J* = 20.7 Hz), 34.19, 29.32, 29.23, 29.22, 29.19, 25.03, 24.68 (d, *J* = 4.3 Hz). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -64.18 (d, *J* = 7.6 Hz, 3F), -181.82 (q, *J* = 7.6 Hz, 1F). **ESI-HRMS** exact mass calculated for [C₁₃H₂₂F₄O₂Na⁺]: 309.1448, found 309.1456.

12-Bromo-1,1,1,3-tetrafluorododecane (**20**): 30.1 mg colorless liquid was isolated, yield: 47%. ¹H NMR (400 MHz, DMSO-*d*₆) δ 4.98 – 4.58 (m, 1H), 3.52 (t, J = 6.7 Hz, 2H), 2.83 – 2.56 (m, 2H), 1.87 – 1.73 (m, 2H), 1.70 – 1.50 (m, 2H), 1.46 – 1.23 (m, 12H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 125.64 (qd, J = 276.8, 3.2 Hz), 87.73 (dq, J = 172.0, 3.2 Hz), 39.52 (qd, J = 28.4, 23.0 Hz), 35.13 (d, J = 20.8 Hz), 34.11, 32.93, 29.43, 29.41, 29.27, 28.83, 28.26, 24.70 (d, J = 4.2 Hz). ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -62.45 (d, J = 7.8 Hz, 3F), -181.90 (q, J = 7.9 Hz, 1F). **ESI-HRMS** exact mass calculated for [C₁₂H₂₂BrF₄⁺]: 321.0836, found 321.0823.

12-Bromo-1-chloro-1,1,3-trifluorododecane (21): 34.9 mg colorless liquid was isolated, yield: 52%. ¹H NMR (400 MHz, Chloroform-*d*) δ 4.96 – 4.74 (m, 1H), 3.41 (t, J = 6.8 Hz, 2H), 2.83 – 2.39 (m, 2H), 1.91 – 1.80 (m, 2H), 1.76 – 1.52 (m, 2H), 1.51 – 1.27 (m, 12H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 127.96 (td, J = 292.4, 2.5 Hz), 88.55 (dt, J = 172.6, 2.9 Hz), 47.14 (q, J = 23.8 Hz), 35.17 (d, J = 20.8 Hz), 34.15, 32.93, 29.43, 29.41, 29.28, 28.84, 28.26, 24.69 (d, J = 4.3 Hz). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -48.48 – -50.41 (m, 2F), -181.10 – -181.18 (m, 1F). **ESI-HRMS** exact mass calculated for [C₁₂H₂₂BrClF₃⁺]: 337.0540, found 337.0544.

13-Bromo-1,1,1,2,2,4-hexafluorotridecane (22): 42.2 mg colorless liquid was isolated, yield: 57%. ¹H NMR (400 MHz, DMSO- d_6) δ 4.99 – 4.78 (m, 1H), 3.52 (t, J = 6.7 Hz, 2H), 2.75 – 2.51 (m, 2H), 1.84 – 1.74 (m, 2H), 1.74 – 1.54 (m, 2H), 1.46 – 1.24 (m, 12H). ¹³C NMR (101 MHz, Chloroform-d) δ 124.28 – 111.29 (2C, m), 86.95 (dt, J = 172.8, 3.2 Hz), 36.80-36.14 (m), 35.75, 35.54, 34.10, 32.94, 29.43, 29.42 (d, J = 1.7 Hz), 29.27, 28.84, 28.27, 24.71 (d, J = 4.2 Hz). ¹⁹F NMR (376 MHz, Chloroform-d) δ -80.23 (d, J = 3.5 Hz, 3F), -109.70 – -112.17 (m, 2F), -175.64 – 175.75 (m, 1F). **ESI-HRMS** exact mass calculated for [C₁₃H₂₁BrF₆K⁺]: 409.0362, found 409.0365.

(1s,1'S,4S,4'R)-4-Pentyl-4'-((S)-1,3,3,3-tetrafluoropropyl)-1,1'-bi(cyclohexane) (23): 49.7 mg white solid was isolated, yield: 71%. ¹H NMR (400 MHz, Chloroform-*d*) δ 4.67 – 4.45 (m, 1H), 2.54 – 2.20 (m, 2H), 1.92 – 1.65 (m, 8H), 1.54 – 1.42 (m, 1H), 1.33 – 1.18 (m, 7H), 1.17 – 1.08 (m, 4H), 1.04 – 0.93 (m, 6H), 0.89 – 0.79 (m, 5H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 126.11 (q, J = 276.9 Hz), 91.15 (dq, J = 174.2, 2.8 Hz), 43.25 (d, J = 27.4 Hz), 42.22 (d, J = 19.3 Hz), 38.04, 37.60, 37.23 (qd, J = 23.2, 28.3 Hz), 33.73, 32.40, 30.20, 29.36 (d, J = 16.7 Hz), 28.56 (d, J = 4.3 Hz), 27.24 (d, J = 5.7 Hz), 26.83, 22.87, 14.26. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -64.25 (d, J = 7.8 Hz, 3F), -187.38 (q, J = 7.9 Hz, 1F). **ESI-HRMS** exact mass calculated for [C₂₀H₃₅F₄⁺]: 351.2669, found 351.2679.

(1S,1's,4R,4'S)-4-((S)-3-Chloro-1,3,3-trifluoropropyl)-4'-pentyl-1,1'-bi(cyclohexane) (24): 46.9 mg white solid was isolated, yield: 64%. ¹H NMR (400 MHz, Chloroform-*d*) δ 4.74 – 4.47 (m, 1H), 2.77 – 2.37 (m, 2H), 1.90 – 1.66 (m, 8H), 1.54 – 1.42 (m, 1H), 1.37 – 1.19 (m, 7H), 1.18 – 1.10 (m, 4H), 1.08 – 0.95 (m, 6H), 0.91 – 0.82 (m, 5H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 128.58 (t, *J* = 293.9 Hz), 91.91 (dt, *J* = 175.3, 2.7 Hz), 44.90 (q, *J* = 23.7 Hz), 43.27 (d, *J* = 26.7 Hz), 42.32 (d, *J* = 19.4 Hz), 38.06, 37.62, 33.74, 32.41, 30.20, 29.39 (d, *J* = 15.7 Hz), 28.60 (d, *J* = 4.1 Hz), 27.23 (d, *J* = 5.8 Hz), 26.85, 22.88, 14.27. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -48.27 – -50.66 (m, 2F), -186.67 (t, *J* = 9.3 Hz, 1F). ESI-HRMS exact mass calculated for [C₂₀H₃₄ClF₃Na⁺]: 389.2193, found 389.2210.

(1S,1's,4R,4'S)-4-((S)-1,3,3,4,4,4-Hexafluorobutyl)-4'-pentyl-1,1'-bi(cyclohexane) (25): 64.8 mg white solid was isolated, yield: 81%. ¹H NMR (400 MHz, Chloroform-*d*) δ 4.81 – 4.50 (m, 1H), 2.50 – 2.12 (m, 2H), 1.94 – 1.66 (m, 8H), 1.55 – 1.42 (m, 1H), 1.35 – 1.21 (m, 7H), 1.20 – 1.09 (m, 4H), 1.08 – 0.94 (m, 6H), 0.94 – 0.82 (m, 5H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 125.29 – 111.34 (2C, m), 90.21 (dt, *J* = 175.2, 2.9 Hz), 43.30 (d, *J* = 26.9 Hz), 42.62 (d, *J* = 19.4 Hz), 38.09, 37.65, 34.14 (q, *J* = 22.2 Hz), 33.76, 32.45, 30.23, 29.40 (d, *J* = 16.8 Hz), 28.63 (d, *J* = 26.9 Hz), 42.62 (d, *J* = 19.4 Hz), 38.09, 37.65, 34.14 (q, *J* = 22.2 Hz), 33.76, 32.45, 30.23, 29.40 (d, *J* = 16.8 Hz), 28.63 (d, *J* = 26.9 Hz), 43.50 (d, *J* = 16.8 Hz), 28.63 (d, *J* = 26.9 Hz), 43.50 (d, *J* = 16.8 Hz), 28.63 (d, *J* = 26.9 Hz), 43.50 (d, *J* = 16.8 Hz), 28.63 (d, *J* = 26.9 Hz), 43.50 (d, *J* = 16.8 Hz), 43.50 (d, *J* = 26.9 Hz), 43.50 (d, *J* = 26.9 Hz), 43.50 (d, *J* = 26.9 Hz), 43.50 (d, *J* = 16.8 Hz), 45.50 (d, *J* = 26.9 Hz), 45.50 (d, *J* = 15.5 Hz), 45.50 (d, J = 15.5 Hz), 45.50 (d, J = 15.5 Hz), 45.50 (d, J = 15.5 Hz), 45.50

4.0 Hz), 27.16 (d, J = 5.8 Hz), 26.88, 22.90, 14.24. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -85.86 (d, J = 3.2 Hz, 3F), -117.15 – 117.36 (m, 2F), -185.50 – -185.65 (m, 1F). **ESI-HRMS** exact mass calculated for [C₂₁H₃₅F₆⁺]: 401.2637, found 401.2633.

5-Chloro-7,7,7-trifluoroheptyl 3-(4,5-diphenyloxazol-2-yl)propanoate (26): 56.5 mg colorless liquid was isolated, yield: 59%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.67 – 7.61 (m, 2H), 7.60 – 7.55 (m, 2H), 7.40 – 7.28 (m, 6H), 4.15 (t, *J* = 6.3 Hz, 2H), 4.10 – 4.03 (m, 1H), 3.20 (t, *J* = 7.4 Hz, 2H), 2.93 (t, *J* = 7.4 Hz, 2H), 2.69 – 2.40 (m, 2H), 1.88 – 1.75 (m, 1H), 1.75 – 1.59 (m, 4H), 1.55 – 1.42 (m, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 172.07, 161.80, 145.48, 135.19, 132.53, 129.04, 128.72, 128.63, 128.55, 128.15, 127.95, 126.53, 125.29 (q, *J* = 277.5 Hz), 64.39, 53.93 (q, *J* = 3.1 Hz), 42.44 (q, *J* = 28.4 Hz), 37.57, 31.20, 27.97, 23.63, 22.55. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -63.69 (s, 3F). **ESI-HRMS** exact mass calculated for [C₂₅H₂₅ClF₃NO₃Na⁺]: 502.1367, found 502.1378.

3-Chloro-5,5,5-trifluoropentyl 2-(**2,2-difluorobenzo**[*d*][**1,3**]*dioxol-5-yl*)*cyclopropane-1-carboxylate* (**27**): 66.4 mg colorless liquid was isolated, yield: 83%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.08 – 7.03 (m, 2H), 6.99 – 6.96 (m, 1H), 4.29 – 4.17 (m, 2H), 4.02 – 3.94 (m, 1H), 2.61 – 2.33 (m, 2H), 2.15 – 2.05 (m, 1H), 1.97 – 1.87 (m, 1H), 1.64 – 1.61 (m, 2H), 1.22 – 1.19 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 173.80, 143.59, 143.02, 135.60, 131.80 (t, *J* = 255.1 Hz), 125.78, 125.09 (q, *J* = 277.6 Hz), 111.96, 109.05, 61.43, 50.60 (q, *J* = 3.3 Hz), 42.35 (q, *J* = 28.6 Hz), 36.72, 29.05, 17.28, 17.13. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -50.08 (s, 2F), -64.21 (s, 3F). **ESI-HRMS** exact mass calculated for [C₁₆H₁₄ClF₅O₄Na⁺]: 432.0393, found 432.0399.

5-Chloro-7,7,7-trifluoroheptyl 2-(3-(2,2-dichlorocyclopropyl)phenoxy)-2-methylpropanoate (28): 53.2 mg colorless liquid was isolated, yield: 56%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.14 – 7.06 (m, 2H), 6.83 – 6.75 (m, 2H), 4.16 (t, J = 6.3 Hz, 2H), 4.06 – 3.95 (m, 1H), 2.82 (dd, J = 10.3, 8.7 Hz, 1H), 2.65 – 2.36 (m, 2H), 1.93 (dd, J = 10.7, 7.4 Hz, 1H), 1.80 – 1.73 (m, 2H), 1.72 – 1.62 (m, 3H), 1.60 (s, 6H), 1.55 – 1.45 (m, 1H), 1.42 – 1.32 (m, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 174.33, 155.11, 129.74, 128.14, 125.31 (q, J = 277.5 Hz), 118.40, 79.20, 65.05, 61.00, 53.89 (q, J = 2.9 Hz), 42.41 (q, J = 28.4 Hz), 37.54, 34.90, 27.81, 25.91, 25.61 – 25.40 (m), 22.47. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -63.74 (d, J = 2.3 Hz, 3F). ESI-HRMS exact mass calculated for [C₂₀H₂₄Cl₃F₃O₃Na⁺]: 497.0635, found 497.0631.

I-(Tert-butyl) 2-(5-chloro-7,7,7-trifluoroheptyl) (2R)-pyrrolidine-1,2-dicarboxylate (29): 56.1 mg colorless liquid was isolated, yield: 70%, d.r. = 1.4:1. ¹H NMR (400 MHz, Chloroform-*d*, a mixture of rotamers) δ 4.29-4.17 (m, 1H), 4.15 – 4.03 (m, 3H), 3.56 – 3.31 (m, 2H), 2.71 – 2.40 (m, 2H), 2.25 – 2.09 (m, 1H), 1.97 – 1.79 (m, 4H), 1.77 – 1.58 (m, 4H), 1.55 – 1.46 (m, 1H), [1.42(s, 3.78H), 1.38 (s, 5.22H), 9H]. ¹³C NMR (101 MHz, Chloroform-*d*, characterization data for the major isomer) δ 173.30, 153.85, 125.26 (q, J = 277.7 Hz), 79.89, 64.42 (d, J = 10.4 Hz), 59.23, 53.94, 46.3, 42.50 (q, J = 28.8 Hz), 37.56, 31.00, 28.43 (d, J = 8.1 Hz), 28.01, 23.68, 22.57. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -63.85 (s, 3F). **ESI-HRMS** exact mass calculated for [C₁₇H₂₇ClF₃NO₄Na⁺]: 424.1473, found 424.1472.

4-(2-Chloro-4,4,4-trifluorobutyl)-2-methoxyphenol (30): 23.0 mg colorless liquid was isolated, yield: 43%. ¹H NMR (400 MHz, Chloroform-*d*) δ 6.88 (d, J = 8.2 Hz, 1H), 6.75 – 6.68 (m, 2H), 5.61 (s, 1H), 4.34 – 4.22 (m, 1H), 3.90 (s, 3H), 3.04 (d, J = 6.9 Hz, 2H), 2.64 – 2.47 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 146.68, 145.03, 128.20, 125.50 (q, J = 277.5 Hz), 122.39, 114.62, 111.92, 56.07, 54.41 (q, J = 2.9 Hz), 44.28, 41.29 (q, J = 28.6 Hz). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -63.55 (s, 3F). **ESI-HRMS** exact mass calculated for [C₁₁H₁₂ClF₃O₂Na⁺]: 291.0370, found 291.0381.

5,7-Dichloro-7,7-difluoroheptyl 2-(4-((2-oxocyclopentyl)methyl)phenyl)propanoate (31): 63.6 mg colorless liquid was isolated, yield: 71%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.18 (d, J = 8.1 Hz, 2H), 7.09 (d, J = 8.2 Hz, 2H), 4.16 – 3.94 (m, 3H), 3.66 (q, J = 7.1 Hz, 1H), 3.08 (dd, J = 13.9, 4.1 Hz, 1H), 2.83 – 2.57 (m, 2H), 2.47 (m, J = 13.9, 9.5 Hz, 1H), 2.35 – 2.23 (m, 2H), 2.12 – 2.01 (m, 2H), 1.96 – 1.87 (m, 1H), 1.80 – 1.48 (m, 7H), 1.44 (d, J = 7.2 Hz, 3H), 1.41 – 1.32 (m, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 219.81, 174.42, 138.80, 138.31 (d, J = 2.0 Hz), 129.02, 127.72 (t, J = 293.3 Hz), 127.41, 64.02, 54.87 (t, J = 2.1 Hz), 50.83, 49.57 (t, J = 23.8 Hz), 45.05, 38.04, 37.38, 35.10, 29.15, 27.73, 22.22, 20.45, 18.34 (d, J = 1.4 Hz). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -48.48 – -49.67 (m, 2F). ESI-HRMS exact mass calculated for [C₂₂H₂₈Cl₂F₂O₃Na⁺]: 471.1276, found 471.1285.

$$\begin{array}{c} \overbrace{}^{O} \overbrace{}^{O} \overbrace{}^{Cl} C_2 F_5 \\ \mathbf{32} \end{array}$$

5-Chloro-7,7,8,8,8-pentafluorooctyl 2-(4-((2-oxocyclopentyl)methyl)phenyl)propanoate (32): 60.7 mg colorless liquid was isolated, yield: 63%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.19 (d, *J* = 8.0 Hz, 2H), 7.10 (d, *J* = 8.0 Hz, 2H), 4.17 – 4.10 (m, 1H), 4.10 – 4.03 (m, 2H), 3.67 (q, *J* = 7.1 Hz, 1H), 3.08 (dd, *J* = 13.9, 4.1 Hz, 1H), 2.63 – 2.37 (m,

3H), 2.36 – 2.26 (m, 2H), 2.14 – 2.01 (m, 2H), 1.98 – 1.88 (m, 1H), 1.87 – 1.76 (m, 1H), 1.76 – 1.65 (m, 2H), 1.65 – 1.49 (m, 4H), 1.46 (d, J = 7.2 Hz, 3H), 1.42 – 1.31 (m, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 219.91, 174.50, 138.86, 138.36 (d, J = 2.0 Hz), 129.06, 127.46, 123.91 – 110.97 (2C, m), 64.06, 53.04, 50.90, 45.11, 38.99 (t, J = 20.7 Hz), 38.08, 37.95, 35.15, 29.20, 27.77, 22.33, 20.48, 18.35. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -85.93 (d, J = 7.2 Hz, 3F), -116.45 – -118.13 (m, 2F). **ESI-HRMS** exact mass calculated for [C₂₃H₂₈ClF₅O₃Na⁺]: 505.1539, found 505.1550.

3-*Chloro-5,5,5-trifluoropentyl-2-(3-cyano-4-isobutoxyphenyl)-4-methylthiazole-5-carboxylate* (**33**): 77.8 mg white solid was isolated, yield: 82%. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.08 (d, *J* = 2.2 Hz, 1H), 8.00 (dd, *J* = 8.8, 2.3 Hz, 1H), 6.96 (d, *J* = 8.9 Hz, 1H), 4.54 – 4.39 (m, 2H), 4.34 – 4.24 (m, 1H), 3.86 (d, *J* = 6.5 Hz, 2H), 2.78 – 2.58 (m, 5H), 2.40 – 2.27 (m, 1H), 2.21 – 2.05 (m, 2H), 1.05 (d, *J* = 6.7 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 167.44, 162.55, 161.67, 161.58, 132.59, 131.98, 125.78, 125.10 (q, *J* = 277.6 Hz), 121.06, 115.35, 112.66, 102.91, 75.71, 61.50, 50.64 (q, *J* = 3.1 Hz), 42.46 (q, *J* = 28.7 Hz), 36.83, 28.17, 19.03, 17.50. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -63.58 (s, 3F). ESI-HRMS exact mass calculated for [C₂₁H₂₃ClF₃N₂O₃S⁺]: 475.1065, found 475.1068.

3,5-Dichloro-5,5-difluoropentyl-2-(3-cyano-4-isobutoxyphenyl)-4-methylthiazole-5-carboxylate (34): 76.4 mg white solid was isolated, yield: 78%. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.16 (d, J = 2.2 Hz, 1H), 8.07 (dd, J = 8.8, 2.3 Hz, 1H), 7.01 (d, J = 8.9 Hz, 1H), 4.58 – 4.44 (m, 2H), 4.42 – 4.34 (m, 1H), 3.89 (d, J = 6.5 Hz, 2H), 3.02 – 2.78 (m, 2H), 2.75 (s, 3H), 2.43 – 2.32 (m, 1H), 2.25 – 2.06 (m, 2H), 1.08 (d, J = 6.7 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 167.64, 162.68, 161.82, 161.75, 132.74, 132.21, 127.59 (t, J = 293.2 Hz), 125.92, 121.20, 115.48, 112.75, 103.06, 75.81, 61.62, 51.73 (t, J = 2.6 Hz), 49.91 (t, J = 24.1 Hz), 36.91, 28.25, 19.15, 17.65. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -49.17 (dd, J = 18.4, 3.1 Hz, 2F). **ESI-HRMS** exact mass calculated for [C₂₁H₂₃Cl₂F₂N₂O₃S⁺]: 491.0769, found 491.0766.

5-Bromo-3-chloro-5,5-difluoropentyl-2-(3-cyano-4-isobutoxyphenyl)-4-methylthiazole-5-carboxylate (35): 70.5 mg yellow solid was isolated, yield: 66%. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.14 – 7.94 (m, 2H), 7.03 – 6.92 (m, 1H), 4.59 – 4.27 (m, 3H), 3.90 – 3.79 (m, 2H), 3.09 – 2.81 (m, 2H), 2.77 – 2.64 (m, 3H), 2.42 – 2.27 (m, 1H), 2.28 – 2.02 (m, 2H), 1.11 – 1.00 (m, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 167.34, 162.47, 161.54, 161.49, 132.53, 131.88, 125.70, 121.06, 119.98 (t, *J* = 306.7 Hz), 115.29, 112.63, 102.82, 75.65, 61.46, 52.24 (t, *J* = 2.4 Hz), 51.94 (t, *J* = 21.6

Hz), 36.73, 28.11, 19.00, 17.51. ¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -42.95 (s, 1F), -43.38 (s, 1F). **ESI-HRMS** exact mass calculated for [C₂₁H₂₃BrClF₂N₂O₃S⁺]: 535.0264, found 535.0270.

3-*Chloro-5*,5,6,6,6-*pentafluorohexyl-2-(3-cyano-4-isobutoxyphenyl)-4-methylthiazole-5-carboxylate* (**36**): 83.8 mg yellow solid was isolated, yield: 81%. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.08 (d, *J* = 2.2 Hz, 1H), 8.00 (dd, *J* = 8.8, 2.2 Hz, 1H), 6.97 (d, *J* = 8.9 Hz, 1H), 4.56 – 4.34 (m, 3H), 3.86 (d, *J* = 6.5 Hz, 2H), 2.70 (s, 3H), 2.67 – 2.49 (m, 2H), 2.44 – 2.31 (m, 1H), 2.26 – 2.06 (m, 2H), 1.05 (d, *J* = 6.7 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 167.27, 162.45, 161.53, 161.44, 132.46, 131.78, 125.67, 120.98, 123.63 – 111.16 (2C, m), 120.98 115.24, 112.59, 102.78, 75.63, 61.45, 49.85, 39.10 (t, *J* = 20.7 Hz), 37.26, 28.10, 18.90, 17.37. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -85.79 – -85.86 (m, 3F), -116.78 – -117.34 (m, 2F). **ESI-HRMS** exact mass calculated for [C₂₂H₂₃ClF₅N₂O₃S⁺]: 525.1033, found 525.1041.

5,7-Dichloro-7,7-difluoroheptyl 2-(2-fluoro-[1,1'-biphenyl]-4-yl)propanoate (37): 61.9 mg colorless liquid was isolated, yield: 74%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.57 (d, J = 7.6 Hz, 2H), 7.51 – 7.33 (m, 4H), 7.16 (t, J = 9.1 Hz, 2H), 4.45 – 4.26 (m, 2H), 4.26 – 4.13 (m, 1H), 3.85 – 3.74 (m, 1H), 2.93 – 2.60 (m, 2H), 2.31 – 2.14 (m, 1H), 2.04 – 1.91 (m, 1H), 1.58 (d, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 173.61 (d, J = 1.7 Hz), 159.75 (d, J = 248.5 Hz), 141.62 (dd, J = 7.5, 3.5 Hz), 135.44 , 130.96 (d, J = 4.0 Hz), 128.97 (d, J = 2.8 Hz), 128.50 , 128.00 (dd, J = 1.0, 13.1 Hz), 127.75, 127.57 (td, J = 294.9, 3.0 Hz), 123.54, 115.22 (dd, J = 23.7, 3.7 Hz), 61.09 (d, J = 2.9 Hz), 51.66 – 51.55 (m), 49.64 (t, J = 24.0 Hz), 45.00 (dd, J = 1.0, 8.1 Hz), 36.78 (d, J = 5.0 Hz), 18.19 (d, J = 0.9 Hz). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -48.45 – -49.79 (m, 2F), -117.32 (d, J = 10.3 Hz, 1F). ESI-HRMS exact mass calculated for [C₂₀H₁₉Cl₂F₃O₂Na⁺]: 441.0606, found 441.0613.

5-Bromo-3-chloro-5,5-difluoropentyl 2-(2-fluoro-[1,1'-biphenyl]-4-yl)propanoate (38): 62.8 mg colorless liquid was isolated, yield: 68%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.57 (d, *J* = 7.5 Hz, 2H), 7.51 – 7.36 (m, 4H), 7.17 (t, *J* = 8.9 Hz, 2H), 4.44 – 4.27 (m, 2H), 4.26 – 4.15 (m, 1H), 3.85 – 3.75 (m, 1H), 2.99 – 2.70 (m, 2H), 2.28 – 2.14 (m, 1H), 2.04 – 1.92 (m, 1H), 1.58 (d, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 173.54, 159.71 (d, *J* = 248.5 Hz), 141.61 (dd, *J* = 7.3, 3.8 Hz), 135.39, 130.93 (d, *J* = 3.9 Hz), 128.94 (d, *J* = 2.8 Hz), 128.48, 127.93 (dd, *J* = 14.1, 1.0 Hz), 127.72, 123.53, 120.06 (t, *J* = 306.9 Hz), 115.21 (dd, *J* = 23.6, 2.5 Hz), 61.04 (d, *J* = 3.0 Hz), 52.30 – 52.08 (m), 51.80 (t, *J* = 21.6 Hz), 44.95(dd, *J* = 1.0, 8.0 Hz), 36.67 (d, *J* = 4.0 Hz), 18.19 (d, *J* = 1.1 Hz). ¹⁹F NMR (376 MHz,

Chloroform-*d*) δ -41.90 - -43.50 (m, 2F), -117.24 (d, J = 10.4 Hz, 1F). **ESI-HRMS** exact mass calculated for [C₂₀H₁₉BrClF₃O₂Na⁺]: 485.0101, found 485.0101.

5-Chloro-7,7,7-trifluoroheptyl 2-(2-fluoro-[1,1'-biphenyl]-4-yl)propanoate (**39**): 68.0 mg colorless liquid was isolated, yield: 79%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.60 – 7.53 (m, 2H), 7.49 – 7.34 (m, 4H), 7.21 – 7.13 (m, 2H), 4.14 (t, *J* = 6.3 Hz, 2H), 4.11 – 4.04 (m, 1H), 3.78 (q, *J* = 7.2 Hz, 1H), 2.68 – 2.41 (m, 2H), 1.88 – 1.60 (m, 5H), 1.57 (d, *J* = 7.2 Hz, 3H), 1.51 – 1.40 (m, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 173.98, 159.75 (d, *J* = 248.3 Hz), 141.96 (dd, *J* = 7.7, 1.3 Hz), 135.51, 130.86 (d, *J* = 4.2 Hz), 128.99 (d, *J* = 2.9 Hz), 128.52, 127.88 (d, *J* = 13.5 Hz), 127.75, 125.30 (q, *J* = 277.6 Hz), 123.63 (d, *J* = 3.3 Hz), 115.30 (d, *J* = 23.6 Hz), 64.50, 53.93 (d, *J* = 2.5 Hz), 45.13, 42.38 (q, *J* = 28.3 Hz), 37.50, 27.89, 22.44 (d, *J* = 1.6 Hz), 18.35. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -63.73 (s, 3F), -117.58 (s, 1F). **ESI-HRMS** exact mass calculated for [C₂₂H₂₃ClF₄O₂Na⁺]: 453.1215, found 453.1216.

5-Chloro-7,7,8,8,8-pentafluorooctyl 2-(2-fluoro-[1,1'-biphenyl]-4-yl)propanoate (40): 71.1 mg colorless liquid was isolated, yield: 74%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.61 – 7.55 (m, 2H), 7.50 – 7.41 (m, 3H), 7.41 – 7.36 (m, 1H), 7.23 – 7.15 (m, 2H), 4.25 – 4.19 (m, 1H), 4.16 (t, J = 6.2 Hz, 2H), 3.80 (q, J = 7.1 Hz, 1H), 2.70 – 2.38 (m, 2H), 1.94 – 1.61 (m, 5H), 1.58 (d, J = 7.2 Hz, 3H), 1.54 – 1.43 (m, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 173.54, 160.94, 158.47, 141.61 (dd, J = 7.3, 3.8 Hz), 135.39, 130.93 (d, J = 3.9 Hz), 128.96, 128.93, 128.48, 127.85 (d, J = 13.5 Hz), 127.72, 123.11 – 117.01 (2C, C₂F₅), 115.21 (dd, J = 23.6, 2.5 Hz), 61.04 (d, J = 3.0 Hz), 52.32 – 52.09 (m), 51.80 (t, J = 21.6 Hz), 44.96 (dd, J = 8.1, 1.0 Hz), 36.69, 36.65, 18.18 (d, J = 1.01 Hz).¹⁹F NMR (376 MHz, Chloroform-*d*) δ -85.90 (s, 3F), -117.09 (s, 1F), -117.35 (s, 1F), -117.60 (s, 1F). ESI-HRMS exact mass calculated for [C₂₃H₂₃ClF₆O₂Na⁺]: 503.1183, found 503.1189.

3-Chloro-1-tosyl-5-(2,2,2-trifluoroethyl)piperidine (42): 44.7 mg colorless liquid was isolated, yield: 63%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.71 (d, J = 8.2 Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H), 3.48 (dd, J = 10.3, 7.0 Hz, 1H), 3.39 (d, J = 4.6 Hz, 2H), 3.36 (d, J = 5.4 Hz, 1H), 3.20 – 3.02 (m, 2H), 2.57 – 2.45 (m, 2H), 2.43 (s, 3H), 2.28 – 2.11 (m, 1H), 2.05 – 1.86 (m, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 144.05, 133.38, 129.96, 127.51, 126.33 (q, J = 278.0 Hz), 51.16 (d, J = 1.6 Hz), 50.39, 43.33, 42.13, 35.03 (q, J = 2.5 Hz), 31.93 (q, J = 29.1 Hz), 21.63. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -63.71 (s, 3F). ESI-HRMS exact mass calculated for [C₁₄H₁₇ClF₃O₂₈Na⁺]: 377.0560, found 377.0565.

4-(1-Chloro-3,3,3-trifluoropropyl)-1,1'-biphenyl (44): 9.7 mg yellow solid was isolated, yield: 17%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.66 – 7.53 (m, 4H), 7.50 – 7.41 (m, 4H), 7.40 – 7.34 (m, 1H), 5.17 (t, J = 7.0 Hz, 1H), 3.14 – 2.83 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 142.18, 140.34, 138.75, 129.01, 127.85, 127.82, 127.38, 127.28, 129.01 – 120.76 (m), 54.91 – 54.52 (m), 43.87 (q, J = 28.2 Hz). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -63.98 (s, 3F) EI-MS calculated for [C₁₅H₁₂ClF₃]: 284.1, found 284.1.

6. Reference

- 1. Y. Ouyang, X.-H. Xu, F.-L. Qing, Angew. Chem., Int. Ed., 2019, 58, 18508-18512.
- 2. Y. Zhang, S. Torker, M. Sigrist, N. Bregović, P. Dydio, J. Am. Chem. Soc., 2020, 142, 18251-18265.
- 3. M. S. Jung, W. S. Kim, Y. H. Shin, H. J. Jin, Y. S. Kim, E. J. Kang, Org. Lett., 2012, 14, 6262-6265.
- 4. (a) A. S. Pirzer, E. M. Alvarez, H. Friedrich, M. R. Heinrich, *Chem.-Eur. J.*, 2019, 25, 2786-2792;
 (b) X. Jiang, Y. Lan, Y. Hao, K. Jiang, J. He, J. Zhu, S. Jia, J. Song, S.-J. Li, L. Niu, *Nat. Commun.*, 2024, 15, 6115.
- 5. M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., Gaussian16, Gaussian, Inc, Wallingford, CT, 2016.
- 6. F. Furche and R. Ahlrichs, J. Chem. Phys., 2002, 117, 7433-7447.
- 7. G. Scalmani, M. J. Frisch, J. Chem. Phys., 2006, 124, 094107.
- 8. D.-C. Fang, THERMO, Beijing Normal University, Beijing, China, 2013.

7 Copies of ¹H NMR, ¹³C NMR and ¹⁹F NMR Spectra

4.925 4.897 4.897 4.897 4.897 4.887 4.8783 4.792 4.764 4.7743 4.7764 4.7745 4.7745 4.7745 4.7745 4.7745 2.27755 2.27755 2.27755 2.27755 2.27755 2

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

7,7,990 7,7,961 7,7,961 7,7,961 7,7,961 7,7,961 6,9233 6,9233 6,9240 6,9240 6,9240 6,9216 6,9266,92

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

¹H NMR, 400 MHz, CDCl₃ ∠CF₃ 23 ÅÅ i. 1.01 6.09 6.09 70 90 90 90 2.08-5 ۲.02 7.12-10.0 9.5 9.0 8.5 7.5 7.0 6.5 5.5 5.0 4.5 4.0 3.5 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 8.0 6.0 3.0 fl (ppm)

$\begin{array}{c} 4.695\\ 4.660\\ 4.660\\ 4.660\\ 4.660\\ 4.553\\ 4.553\\ 4.556\\ 4.553\\ 4.553\\ 4.553\\ 4.553\\ 4.553\\ 4.553\\ 4.553\\ 4.553\\ 4.553\\ 4.553\\ 4.553\\ 4.553\\ 4.553\\ 4.553\\ 4.553\\ 4.553\\ 4.553\\ 4.533\\ 4.$

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -2 f1 (ppm)

						- · ·							- · ·	- · ·								
10	0		-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200
	f1 (ppm)																					

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 f1 (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 f1 (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 fl (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm)

f1 (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm)